用户名: 密码: 验证码:
智能变电站二次系统测试方法及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着智能电网推广建设,智能化开关、电子式互感器、合并单元等新型设备被引入变电站。这些设备的使用有助于提高变电站内部信息组织、分配的灵活性。但是,从另一方面来看,智能变电站整个一次、二次系统的实现方式和应用方式也发生了较大的变化。传统以电缆为媒介传输电气信号的方式,被光纤数字化方式所取代。信息也不再是单一的点对点通信方式,可通过构建新型的通信网络加以传播。同时,智能变电站中单个设备与其他设备之间的关联性也更加紧密,部分新型保护装置需要依据多设备的输出信息进行判断。这些复杂的信息组织关系和综合保护、控制功能如何检验,是智能变电站投运前的检测工作必须解决的问题。
     以往,智能变电站二次系统的测试方法主要针对单体设备的功能检验问题,在现场测试中,难以涉及设备关联性检查和网络行为检查。因此,测试工作缺乏完整性,不利于电网安全和稳定运行。本文从系统级测试的角度出发,研究二次系统测试方法及其关键技术,为提升智能变电站安全运行水平和现场调试工作的效率提供解决方案。主要内容有以下几点:
     1)针对智能变电站二次系统的组成结构以及网络特性,在分析了二次系统测试应涵盖的内容以及技术需求的基础上,提出了一种新型智能变电站全场景测试方法。论文详细阐述了该方法的测试原理、测试流程以及测试结果的判别方式,探讨了方法实现的可行性,以及需要解决的各项关键技术。
     2)针对全场景测试方法的分布式特点和变电站现场所需的同步性能指标,结合变电站现场环境因素,研究一种适用于智能变电站全场景测试的无线IEEE1588时钟同步解决方案。论文在分析影响其精度各因素的基础上,通过改变对时方式以及基于平均速率进行修正的方法,研究了一种基于WLAN的无线1588对时方法,结合具体实现,对比研究了改进方法的性能。同时,通过构建无线电磁辐射传递模型,定量分析了无线同步过程中电磁辐射对二次设备的影响。
     3)针对全场景测试方法快速电磁暂态计算的需求,在分析仿真过程和计算速度影响因素的基础上,提出两种适用于现场全场景测试系统加速仿真的方法:基于CUDA的并行化计算方法和基于FPGA的硬件计算方法。论文基于因子表路径树的矩阵分解方法,将求解过程中的导纳矩阵转化为对角加边形式,将计算任务分配到CUDA提供的独立计算硬件资源,实现了单步长电磁暂态仿真中线性方程组求解的分解并行化计算;论文设计了构建电磁暂态元件以及故障的逻辑电路表达形式的方法和FPGA硬件计算方法,实现了基于隐式积分方法的电磁暂态实时计算;结合实际变电站测试实例,对两种计算方法的加速性能和计算精度进行了评估。
     4)为了进一步节省计算资源,论文基于频率相关网络等值的思想,探讨了在较大规模电网的电磁暂态仿真中,采用矢量拟合法进行等值电路计算的改进方法及其实现步骤。针对该方法存在的不足,论文引入混合矩阵法,研究计及三相耦合因素的电磁暂态仿真中的等值电路计算方法。并针对实际电路的等值计算分析,比较了矢量拟合法和混合矩阵法在稳态计算和暂态计算中的性能,评估了混合矩阵法在全场景测试中的适用性。
As the development of smart grid, the concept of smart substation is proposed, inwhich some novel types of devices such as smart switch, electronic transformer,merging unit (MU) etc, are introduced. These devices can greatly increase the flexibilityin the organization and distribution of the information. However, the implementationand application of the whole primary and secondary systems are changed greatly. Thetraditional signal transmission by electrical cable is replaced by digital fiber.Information is not transmitted through point to point communication, but through novelcommunication network. Simultaneously, the interrelationship among different devicesin smart substation is closer. Some of the novel types of protection devices need tojudge based on the outputs from multiple devices. The utility engineers must solve theproblems such as how to verify the complex information distribution relationship andcheck the functionalities of comprehensive protection and control, before putting thesmart substation into operation.
     In the past, the test of secondary system in smart substation mainly involves withthe function verification of single devices. This approach is not able to check thenetwork behavior and correlationship of devices in field test. Therefore, the test lacks ofintegrity, threatening the security and stability power system operation. In thisdessertation, we study the test approach and its key technologies of secondary system ina smart substation from a systematic view. It is expected that the research would providesolution for enhancing the security level of the operation of smart substation and testefficiency. The main research contents and innovative results include:
     1. By analyzing the structure and network characteristics of the secondary systemin smart substation, a novel whole-view test approach is proposed based on the analysisof the test contents and requirements. The principle, test procedure, and processing oftest results are described in detail. The feasibility of the approach and the keytechnologies to implement are discussed.
     2. According to time synchronization performance requirement of substation fieldtest, a scheme of wireless time synchronization by IEEE1588and WLAN technology,suitable for distributed whole-view test, is proposed. The impact of field is alsoconsidered. Based on analyzing factors affecting accuracy of synchronization, an improved method based on wireless IEEE1588is proposed by changing the timingmethod and time correction based on average transmission rate of the network. Thesystem is implemented and the performance is comparatively studied. A model ofwireless radiation is built, and the effect of radiation of2.4GHz wireless communicationon secondary device is quantitatively evaluated.
     3. As the whole-view test needs fast electromagnetic transient simulation, twomethods for accelerating computation are proposed in the dissertation, based on theanalysis of the factors affecting the simulation process and computation speed. InCUDA based parallel computing method, the solution of conductance matrix istransformed into bordered diagonal form by using the matrix decomposition based onpath tree of factor table. The computer tasks are distrubted to independent computingresources provided by CUDA, accelerating the solution of linear equations in theprocess of electromagnetic transient simulation process. In FPGA based hardwarecomputing method, the method of contruction of logic circuit of electromagnetictransient components and faults is designed, which implemented the real-timecomputing of electromagnetic transient simulation based on implicit integral. Withactual examples, the performance of acceleration and computation accuracy is assessed.
     4. In order to further save computing resources, the improvement and realization ofnetwork equivalence based on VF (Vector Fitting) in large-scale electromagnetictransient simulation are explored in the dissertation, based the Frequency DependentNetwork Equivalence (FDNE) approach. To overcome the shortcomings of VF, MixingMatrix method is introduced. And a new method for network equivalence forelectromagnetic transient simulation considering three-phase coupling is discussed. Bysimulation with actual circuits, the performance of steady-state and transientcomputation with VF method and Mixing Matrix method is comparatively studied. Theapplicability of Mixing Matrix method in the whole-view test is evaluated.
引文
[1]刘振亚.智能电网规划纲要[C].2011年智能电网国际论坛,济南,2011,1-6
    [2]曹楠,李刚,王冬青.智能变电站关键技术及其构建方式探讨[J].电力系统保护与控制,2011,39(5):63-68
    [3]司为国.智能变电站若干关键技术研究与工程应用[D].上海:上海大学,2009
    [4] Fang-xing Li, Wei Qiao, Hong-bin Sun, et al. Smart Transmission Grid: Vision andFramework[J]. IEEE Transactions on Smart Grid,2010,1(2):168-177
    [5]张兆云,刘宏君.数字化变电站光纤差动保护同步新方法[J].电力系统自动化,2010,34(22):90-92
    [6]王彪,甄威,张华等.智能变电站二次系统试验方法综述[J].四川电力技术,2012,35(2):4-8
    [7]李瑞生,李燕斌,周逢权.智能变电站功能架构及设计原则[J].电力系统保护与控制,2010,38(21):24-27
    [8]李澄,袁宇波,罗强.基于电子式互感器的数字保护接口技术研究[J].电网技术,2007,31(9):84-87
    [9]冯军.智能变电站原理及测试技术[M].北京:中国电力出版社,2011
    [10]王勇,梅生伟,何光宇.变电站一次设备数字化特征与实现[J].电力系统自动化,2010,34(13):93-98
    [11]刘延冰.电子式互感器原理、技术及应用[M].北京:科学出版社,2009
    [12]赵应兵,周水斌,马朝阳.基于IEC61850-9-2的电子式互感器合并单元研制[J].电力系统保护与控制,2009,38(6):104-106
    [13]宋璇坤,李颖超,李军等.新一代智能变电站层次化保护系统[J].电力建设,2013,34(7):24-29
    [14]高厚磊,刘益青,苏建军等.智能变电站新型站域后备保护研究[J].电力系统保护与控制,2013,41(2):32-38
    [15]樊陈,倪益民,窦仁辉等.智能变电站过程层组网方案分析[J].电力系统自动化,2011,35(18):67-71
    [16] J.Bowen. Substation Commissionina and Turnover Planning [J]. IEEE Industry ApplicationsMagazine,2000,10(10):8-15
    [17]黄曙,陈炯聪,李晓明等.数字化变电站二次系统综合测试仪的研制[J].电力系统保护与控制,2010,38(24):77-83
    [18] Krebs, R., Ruhle, et al. NETOMAC Real-time Simulator–A New Generation of Stan-dard Test Modules for Enhanced Relay Testing[C]. The8th IEE International Conferen-ce on Developments in Power System Protection, London,2004,669-674
    [19]周春霞,詹荣荣,姜建宁等.500kV数字化变电站动模试验研究[J].电网技术,2011,34(6):193-197
    [20]王涛,高厚磊,邹贵彬等.基于IEC61850标准的数字化保护动模试验系统[J].电力系统保护与控制,2009,37(4):133-136
    [21]周家旭,张延鹏.智能化变电站保护及过程层组网试验研究[J].东北电力技术,2010,30(10):25-27
    [22]杨永标,丁孝华,黄国方等.基于IEC61850的数字化故障录波器的研制[J].电力系统自动化,2008,32(13):58-61
    [23]王云茂,张春欣.智能变电站二次系统试验技术探讨[J].电力与电工,2010,30(2):19-22
    [24]梅德冬,黄国方,孙军陵.智能变电站二次设备自动检测系统设计[J].低压电器,2011,33(4):43-46
    [25]辛耀中,王永福,任雁铭.中国IEC61850研发及互操作试验情况综述[J].电力系统自动化,2007,31(12):1-6
    [26]赵曼勇,周红阳,陈朝晖等.基于IEC61850标准的广域一体化保护方案[J].电力系统自动化,2010,34(6):58-60
    [27]廖泽友,郭赟,杨恢宏.数字化变电站采样值传输规约的综述与对比分析[J].电力系统保护与控制,2010,38(4):113-115
    [28]张沛超,高翔,顾黄晶等.全数字化保护系统的主要问题及解决方案[J].电力自动化设备,2007,27(6):104-107
    [29]于鹏飞,喻强,邓辉等. IEEE1588精确时间同步协议的应用方案[J].电力系统自动化,2009,33(13):99-103
    [30]庄玉飞,黄琦,井实.基于GPS和IEEE1588协议的时钟同步装置的研制[J].电力系统保护与控制,2011,39(13):111-115
    [31]姚奕荣.并行处理技术在电磁暂态仿真计算中的应用研究[J].华东电力,2010,35(2):9-12
    [32] Liu He, Sun Youqun, Lie Jianpin, et al. Testing Technology on Very Fast Transient O-vervoltage in500kV HGIS Intelligent Substation[C]. The Second International Conferen-ce on Instrumentation&Measurement, Computer, Communication and Control, Harbin,2012,363-366
    [33] G. N. Ericsson. Cyber Security and Power System Communication-Essential Parts of ASmart Grid Infrastructure[J]. IEEE Transactions on Power Delivery,2010,25(3):1501-1507
    [34]熊小伏,陈星田,夏莹等.面向智能电网的继电保护系统重构[J].电力系统自动化,2009,33(17):33-37
    [35] Dong Wei, Yan Lu, M. Jafari, et al. Protecting Smart Grid Automation Systems Again-st Cyberattacks[J]. IEEE Transactions on Smart Grid, Vol.2(4):782-795
    [36] Li Yang, P. Crossley, Xin Sun, et al. Protection Performance Testing in IEC61850Ba-sed Systems[C]. The10th IET International Conference on Developments in Power Sy-stem Protection, Manchester,2010,1-5
    [37] G.J. Arvay, B.L. Eisenrich, R. Smith. Electrical System Design, Interface, and CommissioningRequirements for A Large Cogeneration Project[C]. IEEE Industry Applications Society AnnualMeeting, NewYork,1990,1793-1803
    [38] J.C.Tan, P. A. Crossley, P.G. McLaren, et al. Application of A Wide-area Backup ProtectionExpert System to Prevent Cascading Outages[J]. IEEE Transactions on Power Delivery,2002,17(2):375-380
    [39] Y. Liu, M. Steurer, P. Ribeiro. A Novel Approach to Power Quality Assessment: Real TimeHardware-in-the-Loop Test Bed[J]. IEEE Transactions on Power Delivery,2005,20(2):1200-1201
    [40] R. Podmore, M.R. Robinson. The Role of Simulators for Smart Grid Development[J]. IEEETransactions on Smart Grid,2010,1(2):205-212
    [41] R.Bell, C.Charlson, S. P. Halliday, et al. High-Voltage Onsite Commissioning Tests forGas-Insulated Substations Using UHF Partial Discharge Detection [J]. IEEE Transactions onPower Delivery,2003,18(4):1187-1191
    [42]孟劲松.无线扩展仪器关键技术研究[D].成都:西南交通大学,2008
    [43]胡永春,张雪松,许伟国等. IEEE1588时钟同步系统误差分析及其检测方法[J].电力系统自动化,2010,34(21):107-111
    [44] J.Elson, L.Girod, D.Estrin. Fine-grained Network Time Synchronization Using RefereneceBroadcasts[C]. The Fifth Symposium on Operating System Design and Implementation,Boston,2002,147-163
    [45] L.Kyoung, S.Erghin, Q.Khalid. A New Approach for Time Synchronization in WirelessS-ensor Networks: Pairwise Broadcast Synchronization[J]. IEEE Transactions on Wireless,2008,7(9):3318-3322
    [46]李本亮,王厚军,师奕兵等.基于PTP的无线分布式测试系统时钟同步研究[J].电子科技大学学报,2010,39(7):556-559
    [47] Qin Hong-lei, Qiu Chang-quan, Cong Li, et al. Wireless LXI Bus Clock Synchronization andTrigger Design [J]. IEEE Transactions on Instrument and Measurement,2010,59(9):2420-2430
    [48]徐露.思科WLAN无线传输距离计算损耗计算[EB/OL]. http://wenku.baidu.com/view/93-40821bff00bed5b9f31d98.html, March18,2011
    [49]宋军,黄剑,金艳华. IEEE802.11DCF及其改进方案性能分析与比较[J].重庆大学学报,2009,32(4):458-462
    [50]林昌禄,聂在平.天线工程手册[M].北京:电子工业出版社,2002
    [51]路宏敏等.工程电磁兼容[M].西安:西安电子科技大学出版社,2010
    [52]李本亮.分布式测试系统实时性及时钟同步研究[D].成都:电子科技大学,2010
    [53] J. McGhee, M. Goraj. Smart High Voltage Substation Based on IEC61850Process Bus andIEEE1588Time Synchronization[C]. IEEE International Conference on Smart GridCommunications, Beijing,2010,489-494
    [54] P. Ferrari, A. Flammini, S. Rinaldi, et al. Evaluation of Time Gateways for Synchronization ofSubstation Automation Systems[J]. IEEE Transactions on Instrumentation and Measurement,2012,61(10):2612-2621
    [55] Yuan Chen, Venkata Dinavahi. An Iterative Real-Time Nonlinear Electromagnetic TransientSolver on FPGA [J]. IEEE Transactions on Industrial Electronics,2011,58(6):2547-2555
    [56]夏道止.电力系统分析[M].北京:水利电力出版社,1989
    [57] V. Jalili-Marandi, Zhiyin Zhou, V. Dinavahi. Large-Scale Transient Stability Simulation ofElectrical Power Systems on Parallel GPUs[J]. IEEE Transactions on Parallel and DistributedSystems,2012,23(7):1255-1266
    [58]井实.电力系统网格计算平台功能组件的设计与实现[D].成都:电子科技大学,2006
    [59] L.Gomez, G. Franquelo. An Effient Ordering Algorithm To Improve Sparse Vector Methods[J].IEEE Transactions on Power Systems,1998,3(4):1538-1544
    [60] L.Kawah, D. J. Tylavsky. Corse Grain Scheduling In Parallel Triangular Factorization andSolution of Power System Matrices[J]. IEEE Transactions on Power Systems,1991,6(2):708-714
    [61] Hong Chao, Shen Jun-min. A Parallel Algorithm for Solving Large Sparse Matrix Equationsand Its Application to Parallel Power Flow Calculation [J]. Journal of Wuhan University ofHydraulic and Electric Engineering,2000,Vol.33(4):29-34
    [62] B.Timon, L.Matthias, Z.Christoph, et al. Hardware-Accelerated Simulation Environment for CTSigma-Delta Modulators Using an FPGA[J]. IEEE Transactions on Circuits andSystems-II:Express Briefs,2012,59(8):471-475
    [63] M.Mahmoud, I.Reza. Massively Parallel Implementation of AC Machine Models forFPGA-Based Real-Time Simulation of Electromagnetic Transients [J]. IEEE Transactions onPower Delivery,201126(2):830-840
    [64] Yuan Chen, V. Dinavahi. FPGA-Based Real-Time EMTP [J]. IEEE Transactions on PowerDelivery,2009,24(2):892-902
    [65] H. W. Dommel.电力系统电磁暂态计算理论[M].北京:水利电力出版社,1983
    [66] Yuan Chen, V. Dinavahi. Digital Hardware Emulation of Universal Machine and Universal LineModels for Real-Time Electromagnetic Transient Simulation [J]. IEEE Transactions onIndustrial Electronics.2012,59(2):1300-1309
    [67] Ying-yi Hong, Yu-qing Bao. FPGA Implementation for Real-Time Empirical Mode Deco-mposition[J]. IEEE Transactions on Instrumentation and Measurement,2012,61(12):3175-3184
    [68] S. Karimi, P. Poure, S. Saadate. Fast Power Switch Failure Detection for Fault Tolerant VoltageSource Inverters Using FPGA [J]. IET Power Electron,2009,2(4):346-354
    [69] L. Jonathan, M. Phil, V. Ramprasad, et al. Mapping Dense LU Factorization on MulticoreSupercomputer Nodes[C]. IEEE26th International Parallel and Distributed ProcessingSymposium,Shanghai,2012:1-10
    [70] Y. Chen, V. Dinavahi. Multi-FPGA Digital Hardware Design for Detailed Large-scale R-eal-time Electromagnetic Transient Simulation of Power Systems [J]. IET Generation,Tr-ansmission&Distribution,2013,7(5):451-463
    [71] Zhang Ning-yu, Gao Shan, Zhao Xin. A Fine Granularity Parallel Algorithm forElectromechanical Transient Stability Simulation Based on Graphic Processing Unit [J].Automation of Electric Power Systems,2012,36(9):54-60
    [72]岳程燕.电力系统电磁暂态和机电暂态混合实时仿真的研究[D].北京:中国电力科学研究院,2004
    [73] O.Devaux, A.Levacher, et al. An Advanced and Powerful Real-time Digital Transient NetworkAnalyzer[J]. IEEE Transactions on Power Delivery,1998,13:421-426
    [74] J. Hollman, A. Marti, et al. Real-time Network Simulation with PC-cluster[J]. IEEETransactions on Power System,2003,18(2):563-569
    [75] Myaing, A., Dinavahi, et al. FPGA-based Real-time Emulation of Power Electronic Systemswith Detailed Representation of Device Characteristics. IEEE Transactions on Industrial.Electronic,2011,58(1):358-368
    [76] L.Monmasson, E.Idkhajine, et al. FPGA-based Controllers[J]. IEEE Industrial Electronic.Magazine,2011,5(1):14-26
    [77] N. Kapre, A.DeHon. SPICE: Spatial Processors Interconnected for Concurrent Execution forAccelerating the SPICE Circuit Simulator Using an FPGA[J]. IEEE Transactions onComputer-Aided Design of Intergrated Circuit and Systems,2012,31(1):9-22
    [78] Yue-feng Liang, Xi Lin, M.Gole,et al. Improved Coherency-Based Wide-Band Equivalents forReal-Time Digital Simulators[J]. IEEE Transactions on Power Systems,2011,26(3):1410-1417
    [79]林济铿,闫贻鹏,刘涛等.电力系统电磁暂态仿真外部系统等值方法综述[J].电力系统自动化,2012,36(11):108-115
    [80] B.Gustavsen, A.Semlyen. Rational Approximation of Frequency Domain Response By VectorFitting [J]. IEEE Transactions on Power Delivery,1999,14(3):1052-1061
    [81] B.Gustavsen. Computer Code for Rational Approximation of Frequency Dependent AdmittanceMatrices [J]. IEEE Transactions on Power Delievery,2002,17(4):1093-1098
    [82] A.Ubolli, B.Gustavsen. Mutiport Frequency-Dependent Network Equivalencing Based OnSimulated Time-Domain Responses[J]. IEEE Transactions on Power Delivery,2012,27(2):648-657
    [83] Watson N R,Arrillaga J.Frequency-dependent AC system equivalents for harmonic stu-dies and transient convertor simulation[J]. IEEE Transactions on Power Delivery,1988,3(3):1196-1203
    [84] B.Gustavsen, A.Semlyen. Fast Passivity Assessment for S-parameter Rational Models via AHalf-size Test Matrix[J].IEEE Transactions on Microwave Theory and Techniques,2008,56(12):2701-2708
    [85]张怡,吴文传,张伯明等.电磁-机电暂态混合仿真中的频率相关网络等值[J].中国电机工程学报,2012,32(13):61-68
    [86] A.Rahman, M.Semlyen, et al. Two-layer Network Equivalent for Electromagnetic Transients[J]. IEEE Transactions on Power Delivery,2003,18(4):1328-1335
    [87] Xi Lin, A.Gole, et al. A Wide-band Multi-port System Equivalent for Real-time Digital PowerSystem Simulators[J]. IEEE Transactions on Power System,2009,24(1):237-249
    [88] B.Gustavsen. Enforcing Passivity for Admittance Matrices Approximated by RationalFunctions[J].IEEE Transactions on Power Systems,2001,16(1):97-104
    [89]林济铿,闫贻鹏,蒲天骄等.频率相关的电力系统网络等值新方法[J].中国科学-技术科学,2012,42(7):838-850
    [90]晁储乾.三相电网的三相等值电路及其不对称相量分析[D].南宁:广西大学,2012
    [91] A.S.Morched, B.Gustavsen, M.Tartibi. A Universal Model for Accurate Calculation of El-ectromagnetic Transients on Overhead Lines and Underground Cables[J]. IEEE Trans-actions on Power Delivery,1999,14(3):1032-1038.
    [92]刘文焯,侯俊贤,汤涌等.考虑不对称故障的机电暂态-电磁暂态混合仿真方法[J].中国电机工程学报,2010,30(13):8-17
    [93]刘浩明,朱浩骏,严正等.含统一潮流控制器装置的电力系统动态混合仿真接口算法研究[J].中国电机工程学报,2005,25(16):1-7
    [94] Y.Nie, X.Chen, et al. Real-time Transient Simulation Based on a Robust Two-layer NetworkEquivalent [J]. IEEE Transactions on Power System,2007,22,(4):1771-1781
    [95] M.Matar, M.Iravani, et al. A Modified Multiport Two-layer Network Equivalent for TheAnalysis of Electromagnetic Transients. IEEE Transactions on Power Delivery,2010,25(1):434-441
    [96]庄玉飞.面向电力系统广域测量的同步时钟的设计与实现[D].成都:电子科技大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700