用户名: 密码: 验证码:
基于LD自混合干涉的位移及速度测量技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于光反馈效应的激光自混合干涉技术是近年来兴起的、具有应用前景的技术。重新注入激光腔的激光与腔内的光混合引起输出功率变化和频率变化,该性质可应用于各种传感器,实现对速度、距离、位移或振动等物理量的非接触、高精度测量。基于半导体激光器LD的自混合干涉效应,开展了对位移和速度测量技术的研究。
     采用Lang-Kobayashi速率方程方法和三镜法-珀腔模型,阐述了LD自混合干涉的机理,得到了出射光频率和光强表达式以及通用数学模型。针对LD自混合干涉位移测量系统,建立了弱反馈、适度反馈和强反馈机制下的LD的工作模型,对输出光功率信号进行了数值模拟与分析。根据不同条件下模拟的输出光功率信号波形,分析了各种测量参数的影响及外腔位移调制方式的影响规律。
     设计了基于半导体激光器自混合干涉的位移测量系统,实验验证了理论分析的结果。
     应用垂直腔面发射激光器的自混合效应对激光多普勒测速方法进行了研究,设计了一种结构紧凑的激光多普勒测速装置。采用快速傅立叶变换方法对自混合干涉信号进行频谱分析,可获得多普勒频率信息,从而获得运动物体沿光学轴向的速度分量信息。实验结果表明当被测物体速度在70~400mm/s范围时,相对误差小于2%。为了有效减小因温度不稳定而造成的LD输出功率不稳定、输出波长发生漂移等不良影响,对光源LD内部温度的高精度控制技术进行了研究。分别采用半导体热敏电阻和半导体热电制冷器作为感温元件和控温执行元件,提出了一种模糊控制理论与数字PID参数自适应调整相结合的增量式控制算法。实验结果表明,该方法的控温稳定度优于0.1℃,有效地抑制了LD波长的温度漂移。
     光反馈所引起的非线性现象很大程度上影响LD的特性,应用卡尔曼滤波算法更适于处理自混合效应的非线性问题,且能提高测量精度。提出了一种基于扩展卡尔曼滤波器的信号处理方法,适用于弱光反馈强度的自混合干涉位移测量系统。实验结果表明该方法可有效地实时重构目标反射体的位移波形,测量分辨力为λ20。
Based on the use of optical feedback that occurs in a semiconductor laser diode when the optical beam is back reflected toward the cavity and then re-introduced inside, the self-mixing interference has been demonstrated to be suitable for non-contact and high-accuracy sensing applications. This is an emerging and promising technique enabling notably displacement, distance, vibration and/or velocity measurements to be performed. The techniques of displacement and velocity measurement based on self-mixing interference in a laser diode have been studied in this thesis.
     By using the rate equations first derived by Lang and Kobayashi and the model of a three-mirror cavity, the mechanics of the self-mixing interference effect can be analyzed. The general expression of the optical frequency and power emitted by the laser diode are obtained, and then the mathematical model of the common self-mixing can be established. The displacement sensing properties have been numerically simulated and analyzed by using Matlab tools. In order to represent the self-mixing interference phenomenon occurring in different optical feedback regime, a behavioral model of a laser diode described by schematic block diagrams is presented. By virtue of this behavioral model, the simulation of output power of a self-mixing sensor can be performed. The simulated fluctuation waveforms of the power shows that how the parameters associated with the external target movement have influence on the self-mixing interference signal, as well as that the dependence of the self-mixing interference signals on the external cavity vibration modulated by different waveforms.
     The measuring systems of displacement and velocity base on self-mixing effect have been designed. Correspondingly, the optical path and experimental setups have been established.
     A simple and compact laser Doppler velocimeter is developed based on self-mixing effect in a vertical-cavity surface-emitting laser (VCSEL). The monitor photodiode mounted on the back facet of the VCSEL acts as a transducer and it generates the self-mixing current signal. The FFT technique is applied to analyze self-mixing interferometric signal. The power spectrum of this signal can be acquired and analyzed to extract the Doppler frequency and the information relative to the velocity measurement. The target velocity component projected along the optical axis of the laser beam is calculated. The experiment results show that the accuracy of velocity measurement is high with relative error of Doppler frequency lower than 2%, while for the velocity higher than 70mm/s.
     In order to eliminate the output power and wavelength shift of LD caused by temperature instability, A temperature control method of LD with high accuracy is proposed, which adopts thermistor and thermo-electric cooler as temperature sensor and execute component of temperature control respectively. A control algorithm based on fuzzy theory and digital PID control is proposed. The experimental results show that the precision of controlled temperature is better than 0.02℃, and the response characteristic of the system with Fuzzy-PID control is better than that of with general PID control.
     Although the nonlinear phenomena can govern the global behavior of the laser diode, we concluded that Kalman filtering techniques could also be popular to deal with this problem and increase the measurement precision of self-mixing interferometry. In this paper, a new signal processing method based on Klaman filter is presented for the self-mixing displacement sensor. Based on the approximate linearized model of a LD, the robust Kalman filter is designed for an estimation of the system parameters and the target displacement in the wake feedback regime. The simulation analysis and experiments have been done to illustrate the validity and the effectiveness of the method. These results show that the displacement estimation is good with little noise and the estimated resolution of aboutλ20 is achievable.
引文
1 W. M. Wang, W. J. O. Boyle, K. T. V. Grattan. Fiber-optic doppler velocimeter that incorporates active optical feedback from a diode laser. Optical Society of America, 1992, 17(11): 819-821
    2 T. Kanada, K. Nawata. Injection laser characteristics due to reflected optical power. IEEE Journal of Quantum Electronics, 1979, 15(7): 559-565
    3 L. Goldberg, H. F. Taylor, A. Dandridge, et al. Spectral characteristics of semiconductor laser with optical feedback. IEEE Journal of Quantum Electronics, 1982, 18(6): 555-563
    4 T. Chartier, B. Mezine, F. Sanchez, et al. Optical feedback effects in Nd-doped fiber lasers with broadband spectral. Applied Optics, 1996, 32(12): 2016-2022
    5 J. Sacher, W. Elsasser, E. Gobel. Intermittency in the coherence collapse of a semiconductor laser with external feedback. Phys. Rev. Lett., 1989, 63(20): 2224-2227
    6 B. Tromborg, J. Mork. Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers. IEEE Journal of Quantum Electronics, 1990, 26(4): 642-654
    7 N. Kikuchi. Chaos control and noise suppression in external cavity semiconductor lasers. IEEE Journal of Quantum Electronics, 1997, 33(1): 57-65
    8 O. Hirota. Noise properties of injection lasers due to reflected waves. IEEE Journal of Quantum Electronics, 1979, 15(3): 142-149
    9 M. Fujiwara, K. Kubota, R. Long. Low-frequency intensity fluctuation in laser diode with external optical feedback. Appl. Phys. Letter, 1981, 38(4): 217-220
    10 G. A. Acket. The Influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers. IEEE Journal of Quantum Electronics, 1984, 20(10): 1163-1168
    11 G. P. Agrawal. Line narrowing in a single mode injection laser due to external optical feedback. IEEE Journal of Quantum Electronics, 1984, 20(5): 468-471
    12 T. Bosch, N. Servagent. Optical feedback interferometry for sensing application. Opt. Eng.,2001, 40(1): 20-27
    13 W. M. Wang, W. J. O. Boyle, K. T. V. Grattan. Self-mixing interference in a diode laser: experimental observation and theoretical analysis. Applied Optics, 1993, 32(9): 1551-1558
    14 W. M. Wang, K. T. V. Grattan, A. W. Palmer, et al. Self-mixing interference inside a single mode diode laser for optical sensing applications. IEEE J. Lightwave, 1994, 12(9): 1577-1587
    15 P. J. de Groot. Ranging and velocimetry signal generation in a backscatter modulated laser diode. Appl. Opt., 1988, 27 (21): 4475-4480
    16 P. G. R. King, G. J. Stepward. Metrology with an optical master. Rev. Sci., 1963, 17: 180-182
    17 M. J. Rudd. A laser doppler velocimeter employing the laser as a mixer-oscillator. J. Phys. E., 1968, 1(1): 723-726
    18 R. Lang, K. Kobayashi. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 1980, 16(3): 347-355
    19 J. H. Churnside. Laser doppler velocimetry by modulating a CO2 laser with back-scattered light. Appl. Opt., 1984, 23(1): 61-65
    20 E. T. Shimizu. Directional discrimination in the self-mixing type laser Doppler velocimeter. Appl. Opt., 1987, 26(21): 4541-4544
    21 P. J. de Groot. Range dependent optical feedback effects on the multimode spectrum of laser diode. J. Mod. Opt., 1990, 37(1): 1199-1214
    22 P. Spano, S. Piazzolla, M. Tamburrini. Theory of noise in semiconductor lasers in the presence of optical feedback. IEEE Journal of Quantum Electronics, 1984, 20(4): 350-357
    23 J. A. Smith. Lasers with optical feedback as displacement sensors. Opt. Eng., 1995, 34(9): 2802 -2810
    24 R. C. Addy, A. W. Palmer, Effects of external reflector alignment in sensing applications of optical feedback in laser diode. IEEE J. Lightwave, 1996, 14(12): 2672-2676
    25 G. Giuliani, M. Norgia. Laser diode linewidth measurement by means of self-mixing interferometry. IEEE Photonics Technology Letters, 2000, 12(8): 1028-1030
    26 G. Plantier, C. Bes, T. Bosch. Behavioral Model of a Self-Mixing Laser Diode Sensor. IEEE Journal of Quantum Electronics, 2005, 41(9): 1157-1166
    27丁迎春,张书练,李岩. He-Ne激光自混合干涉的模式研究.激光杂志,2003, 24(6): 16-19
    28 G. Liu, S. L. Zhang, J. Zhu, et al. Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser. Optics Communications, 2003, 221: 387-393
    29 G. Liu, S. L. Zhang, T. Xu, et al. Optical feedback signals involving the misalignmentinformation. Optics and Lasers in Engineering, 2006, 44: 567-576
    30 G. Liu, S. L. Zhang, J. Zhu, et al. Modes competition in a dual modes He-Ne laser with optical feedback. Optics & Laser Technology, 2007, 39: 593-597
    31张勇,姚建铨,王鹏等. LD泵浦单模绿光激光器自混合干涉效应的研究.光电子·激光, 2003, 14(7): 679-682
    32禹延光,叶会英,姚建铨.激光自混合干涉位移测量系统的稳态解.光学学报, 2003, 23(1): 80-84
    33 S. Shinohara. Compact and versatile self-mixing type semiconductor laser doppler velocimeters with direction discrimination circuit. IEEE Trans. Instrum. Meas., 1989, 38(2): 574-577
    34 J. H. Churnside. Signal-to-noise in a backscatter-modulated doppler velocimeter. Appl. Opt., 1984, 23(13): 2097-2104
    35 M. H. Koelink, M. Slot, F. M. DeMul, et al. Glass-fibre self-mixing diode laser Doppler velocim -eter. Measurement Science & Technology, 1992, 3(1): 33-37
    36 F. Gouaux, N. Servagent, T. Bosch. Absolute distance measurement with an optical feedback interferometer. Appl. Opt., 1998, 37(28): 6684-6689
    37 G. Mourat, N. Servagent, T. Bosch. Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode. Opt. Eng., 2000, 39(3): 738-743
    38 S. Donati, L. Fazoni, S. Merlo. A pc-interfaced compact laser-diode feedback interferometer for displacement measurements. IEEE Trans. Instrum. Meas., 1996, 45(6): 942-947
    39 J. Kato, N. Kikuchi. Optical feedback displacement sensor using a laser diode and its performance improvement. Meas. Sci. Technical, 1995, 6(1): 45-52
    40 N. Servagent, T. Bosch, M. lescure. A laser displacement sensor using the self- mixing effect for modal analysis and defect detection. IEEE Trans. Instrum. Meas., 1997, 46(4): 847-850
    41 G. Giuliani, M. Norgia, S. Donati et al. Laser diode self-mixing technique for sensing applications. J. Opt. A: Pure Appl. Opt. 2002, (4): S283-S294
    42 S. Donati, G. Giuliani, S. Merlo, et al. Laser diode feedback interferometer for measurement of displacements without ambiguity. IEEE Journal of Quantum Electronics, 1995, 31(1): 113-119
    43 T. Yoshino, M. Nara, S. Mnatzakanian et al. Laser Diode feedback interferometer for stabilization and displacement measurements. Appl. Opt., 1987, 26 (5): 892-897
    44 W. M. Wang, K. T. V. Grattan, W. J. O. Boyle. Active optical feedback in a dual-diode laserconfiguration applied to displacement measurements with a wide dynamic range. Appl. Opt., 1994, 33(10): 1795-1800
    45 N. Takahashi. Active heterodyne interferometric displacement measurement using optical feedback effects of laser diode. Opt. Eng., 1996, 35(3): 802-806
    46 T. Suzuki, T. Muto, O. Sasaki, et al. Self-mixing Type of Phase-locked Laser Diode Interferometer. Appl.Opt., 1999, 38(3): 543-548
    47 S. Merlo, S. Donati. Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer. IEEE Journal of Quantum Electronics, 1997, 33: 527-531
    48 F. Gouaux, N. Servagent, T. Bosch. A phase-modulated method to improve the resolution of a self-mixing interferometer. Proc. IEEE-LEOS ODIMAPⅡ, pavia, 1999: 81-86
    49 M. Norgia, S. Donati, D. D’Alessandro. Interferometric measurements of displacement on a diffusing target by a speckle tracking technique. IEEE Journal of Quantum Electronics, 2001, 37(6): 800-806
    50 M. Norgia,S. Donati. A Displacement-measuring instrument utilizing self-mixing interferometry. IEEE Trans. Instrum. Meas., 2003, 52(6): 1765-1770
    51 N. Servagent, F. Gouaux, T. Bosch. Measurement of displacement using the self-mixing interference in a laser diode. J. Opt., 1998, 29: 168-173
    52 N. Servagent, T. Bosch, M.Lescure. Design of a phase-shifting optical feedback interferometer using an electro-optic modulator. IEEE. J. Selected Topics in Quantum Electron., 2000, 6(5): 798-802
    53 D. Guo, M. Wang. Self-mixing interferometer based on temporal-carrier phase-shifting technique for micro-displacement reconstruction. Optics Communications, 2006, 263: 91-97
    54 D. Guo, M. Wang, S. Tan. Self-mixing interferometer based on sinusoidal phase modulating technique. Optics Express, 2005, 13(5):1537-1543
    55郭冬梅,谈苏庆,王鸣.正弦相位调制自混合干涉微位移测量精度分析.光学学报, 2006, 26(6): 845-850
    56沈赟华,王鸣,郭冬梅.自混合干涉信号的位相调制.光学技术, 2007, 33(4): 526-529
    57 P. Castellini, G. M. Revel, E. P. Tomasini. Laser Doppler vibrometry: a review of advances and applications. Shock Vib. Digest, 1998, 30: 443-456
    58 S. Shinoara, A. Mochizuki. H. Yoshida et al. Laser Doppler velocimeter using the self-mixingeffect of a semiconductor laser diode. Appl. Opt., 1986, 25(9): 1417-1419
    59 H. W. Jentink. Small laser doppler velocimeter based on the self-mixing effect in a diode laser. Appl. Opt. 1988, 27(2): 379-385
    60 P. J. Groot and G M. Gallatin. Backscatered-modulation velocimetry with an external cavity laser diode. Optics Letter., 1989, 14(3): 165-167
    61 M. H. Koelink, M. Slot, F. F. M. de Mul, et al. Laser dopper velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory. Applied Optics, 1992, 31(18): 3401-3408
    62 T. Ren. A. L. Nuttall, J. M. Miller. Relative blood velocity measurement in individual microvessels using the self-mixing effect in a fiber-coupled Helium-Neon laser. Microvascular Research, 1995, 49: 233-245
    63 L. Scalise, W. Steenbergen, F. de Mul. Self-mixing feedback in a laser diode for intra-arterial optical blood velocimetry. Applied Optics, 2001, 40(25): 4608-4615
    64 T. Shibata, S. Shinohara, H.Ikeda, et al. Laser speckle velocimeter using self-mixing laser diode. IEEE Trans. Instrum. Meas., 1996, 45(2): 499-503
    65 M. Wang, M. Liu, H. Hao, et al. Statistics of self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity. Optics Communications, 2006, 260: 242-247
    66 G. Plantier, N. Servagent, A. Sourice, et al. Real-time parametric estimation of velocity using optical feedback interferometry. IEEE Trans. Instrum. Meas., 2001, 50(4): 915-919
    67 X. Raoul, T. Bosch N. Servagent. Double laser diode speed sensor for contactless measures of moving targets. 5th Int. Conf. on Vibration Measurement by Laser Techniques: Advances and Applications. Proc. SPIE, 2002, 4827: 363-373
    68 G. Plantier, N. Servagent, T. Bosch, et al. Real-time tracking of time-varying velocity using a self-mixing laser diode. IEEE Trans. Instrum. Meas., 2004, 53(1): 109-115
    69 P. A. Porta, D. P. Curtin, J. G. Mclnerney. Laser Doppler velocimetry by optical self-mixing in vertical-cavity surface-emitting lasers. IEEE Photonics Technology Letters, 2002, 14(12): 1719-1721
    70 L. Kervevan, H. Gilles, S. Girard, et al. Two-dimensional velocity measurements with self-mixing technique in diode-pumped Yb: Er glass laser. IEEE Photonics Technology Letters, 2004,16(7): 1709-1711
    71徐军,赵天鹏,何德勇等.高精度宽动态范围单模VCSEL自混合LDV测速方法研究.中国科学技术大学学报, 2005, 35(5): 583-587
    72杨淑连.双激光二极管速度传感器设计.光电工程, 2006, 33(8): 132-135
    73 L. Scalise, N. Paone. Laser Doppler vibrometry based on self-mixing effect. Optics and Lasers in Engineering, 2002, 38: 173-184.
    74 L. Scalise. Self-mixing feedback laser Doppler vibrometry. 5th Int. Conf. on Vibration Measurement by Laser Techniques: Advances and Applications, Proc. SPIE, 2002, 4827: 374-384
    75 G. Giuliani, S. Bozzi-Pietra, S. Donati. Self-mixing laser diode vibrometer. Meas. Sci. Technol. , 2003, 14(1): 24-32
    76芦汉生,古寺博,角正雄.基于频率分析的激光多普勒微小振动测量.北京理工大学学报, 2002, 22(2): 231-233
    77 Q. G. Wu, S. Shinohara, H. Ikeda, et al. Application and accuracy improvement of vibrometer using frequency modulated self-mixing laser diode. IEEE Instrumentation and Measurement Technology Conference, St. Paul, USA, 1998: 707-711
    78 L. Scalise, Y. G. Yu, G. Giuliani, et al. Self-mixing laser diode velocimetry: application to vibration and velocity measurement. IEEE Trans. Instrum. Meas., 2004, 53(1): 223-232
    79张德辉,禹延光,叶会英.自混合干涉型振动仪应用于PZT特性的测量.光电子·激光, 2005,16(6): 714-717
    80 S. Koboyashi, Y. Yamamoto. Direct frequency modulation in AlGaAs semiconductor laser. IEEE Journal of Quantum Electronics, 1982, 18(4): 582-595
    81 J. Mato, J.Yamato. Non-contact optical probing sensor applying optical feedback effects in laser diodes. Sci. Technical .1991, 3(4): 146-153
    82 K. L. Deng, J. Wang. A nanometer resolution distance measurement with a non-interferometric method. Appl. Opt., 1994, 33(1): 113-116
    83 M. Norgia, G. Giuliani, S. Donati. New absolute distance measurement technique by self-mixing interferometry in closed loop. Instrumentation and Measurement Technology Conference, Como, Italy, 2004: 216-221
    84禹延光,李世阳,安亚飞.含参考臂的半导体激光自混合干涉测距系统研究.河南科学, 2004, 22(5): 605-607
    85 D. Guo, M. Wang. Self-mixing interferometry based on a double modulation technique for absolute distance measurement. Applied Optics, 2007, 46 (9): 1486-1491
    86 T .Bosch, N .Servagent, R .Chellali et al. Three-dimensional object construction using a self-mixing type scanning laser range finder. IEEE Trans. Instrum. Meas., 1998, 47 (5): 1326-1329
    87 E. Gagnon, J. Rivest. Laser range imaging using the self-mixing effect in a laser diode. IEEE Trans. Instrum. Meas., 1999, 48 (3): 693-699
    88 H. Q. Wang, T. P. Zhao, J. Xu, et al. Optimized design of laser range finding system using the self-mixing effect in a single-mode VCSEL. Chinese Optics Letters, 2006, 4(2): 87-90
    89 A .Q .Liu, X .M .Zhang, V. M. Murukeshan. Novel integrated micromachined tunable laser using polysilicon 3-D mirror. IEEE Photo. Tech. Lett, 2001, 13(5): 1041-1135
    90 A. N. Lukashkin, M. E. Bashtanov, Ian J. Ruasell. A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea. J. Neuroscience Methods, 2005, 148: 122-129
    91 Y. G. Yu, G. Giuliani, S. Donati. Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect. IEEE Photonics Technology Letters, 2004, 16(4): 990-992
    92 J. T. Xi, Y. G. Yu, J. F. Chicharo, et al. Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry. IEEE Journal of Quantum Electronics, 2005, 41(8): 1058-1064
    93禹延光,闫艳霞.半导体激光器线宽展宽因数的估计方法.激光与红外,2006,36(2): 114-117
    94 M. Norgia, A. Pesatori, C. Svelto, Novel interferometric method for the measurement of laser wavelength/frequency-modulation sensitivity. IEEE Trans. Instrum. Meas., 2007, 56(4): 1373-1376
    95禹延光,闫艳霞.仿真分析测量参数对光反馈自混合信号的影响光学与光电技术, 2005, 3(5):33-35
    96李世阳,禹延光,叶会英等.一种半导体激光自混合效应模型参数的测量方法.激光技术, 2005, 29(5): 519-521
    97闫艳霞,禹延光.光反馈自混合干涉系统模型中的参数研究.河南科学,2006,24(2): 178-181
    98 Drain LE, editor. The laser Doppler technique. Chichester, New York: Wiley, 1980:126-128
    99 P. Castellini, G. M. Revel, and E. P. Tomasini. Laser Doppler vibrometry: a review of advances and applications. The Shock Vibr. Dig, 1998, 30(6): 443-456
    100 P. Roos, M. Stephens, C. Wieman. Laser vibrometer based on optical feedback-induced frequency modulation of a single-mode laser diode. Applied Optics, 1996, 35: 6754–6761
    101 H. Wang, T. Zhao, J. Xu et al. Optimized design of laser range finding system using the self-mixing effect in a single-mode VCSEL. Chinese optics letters, 2006, 4(2): 97-90
    102赵路民,王青,宁永强,等.垂直腔面发射激光器及其进展.激光技术与应用,2003,(7):18-21
    103刘维清,邹文强,黄瑞强,等.垂直腔面发射激光器的特性分析.江西理工大学学报, 2007, 28(4):68-71
    104韩力英.垂直腔面发射激光器偏振特性的研究.河北工业大学硕士学位论文, 2004:4-5
    105 K. D Choquette, R. P. Sehneider,K. L. Lear, et al. Gain-dependent polarization properties of vertical-cavity lasers. IEEE J. Selec. Top. Quantum Electron, 1995, 1:661-666
    106 A. K. V. Doorn, M. P. V. Exter, J. P. Woerdman. Elastooptic anisotropy and polarization orientation of VCSEL’s. Appl. Phys. Lett., 1996, 69:1041-1043
    107 R. F. M. Hendriks, M. P. V. Exter, J. P. Woerdman. Electro-optic birefringence in semiconductor vertical-cavity lasers. Appl. Phys. Lett., 1997, 71:2599-2601
    108 M. Sonderman, H. Bohnet, T. Ackemann. Low-frequency fluctuations and polarization dynamics in vertical-cavity surface-emitting lasers with isotropic feedback. Physical Review A, 2003, 67(2):021802-1-021802-4
    109 S. Bandyopadhyay, Y. Hong, P. S. Spencer, et al. Experimental observation of anti-phase polarization dynamics in VCSELS. Optics Communications, 2002, 202(1):145-154
    110 F. Prati, G. Giacomelli, F. Marin. Competition between orthogonally polarized transverse modes in vertical cavity surface-emitting lasers and its influence on intensity noise. Physical Review A, 2000, 62(3):033810-1-033810-8
    111 G. Pan, S.Jiang, M. Dagenais. Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers. Appl. Phys. Lett., 1993, 63(22):2999-3001
    112 J. M. Regalado, F. Prati, M. S. Miguel, et al. Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electronics, 1997, 33(5):765-783
    113曾华林,江鹏飞,谢福增.半导体激光器温度控制研究.激光与红外, 2004, 34(5): 339-340
    114王肖飞,伊红晶,钱龙生.半导体激光器温度控制系统的设计.长春理工大学学报, 2005,28(1): 20-22
    115焦明星,邢俊红,刘芸等.半导体激光器温度控制系统的设计.激光与红外, 2006, 36(4): 261-264
    116李发泉,王玉平,程学武等.稳频半导体激光器的温度控制技术.光学与光电技术, 2005, 3 (3):29-31
    117杨建新,杜永贵.模糊自适应整定PID控制及其仿真.机械工程与自动化, 2006, 23(5): 110-112
    118 G. Plantier, C. Bes, and T. Bosch. Auto adaptive signal processing of a laser diode self-mixing displacement sensor. Proc. 22nd IEEE Instrum. Meas. Conf., 2005, 2: 1013 -1017
    119 C. Bes, V. Belloeil, G. Plantier, et al. A self-mixing laser sensor design with an extended Kalman Filter for optical online structural analysis and damping evaluation. IEEE/ASME Trans. Mechartronics, 2007, 12(3): 387-394
    120 SimonHaykin著,郑宝玉等译.自适应滤波器原理(第四版),北京:电子工业出版社, 2003:372-374
    121李建威,姚和军,韩建国等.半导体激光器的高精度温度控制优化设计.现代测量与实验室管理, 2006, (3): 16-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700