用户名: 密码: 验证码:
裂隙表面几何形态对裂隙介质力学、水力学特性的影响规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单裂隙介质的力学、水力学、水-力耦合问题是岩体工程中的基本科学问题,不同尺度条件下裂隙介质有着不同的工程特性,在表征体元(RVE)尺度下裂隙的力学、渗流与水-力耦合特性主要受裂隙表面几何形态影响,其工程性质与断层、节理等长大裂隙有明显不同。本论文试图从对裂隙的三维几何形态进行细观离散化入手,利用随机分形函数描述裂隙介质细观几何形态,通过修正三维粗糙度表征理论提出了3个参数表征裂隙面粗糙性,探索研究了裂隙粗糙度对RVE尺度裂隙的力学与渗流特性以及水-力耦合机理与关系的影响规律。本文的主要工作如下:
     1.利用随机分形函数的分形变量λ、D分别描述几何形态的一级起伏度与高次起伏度,表征裂隙介质细观几何形态与细观几何参量;在修正三维粗糙度表征理论中缺乏裂隙几何形态与力学联系的基础上,提出了分别表征裂隙介质的平均倾斜角、有效倾斜角、倾斜角的不均匀系数的三维表面粗糙度参数JRC、三维剪切方向的平均倾斜角θ'_s,表观各项异性系数k'_α;分析探讨了粗糙度与分形参数的关系以及裂隙细观隙宽分布与裂隙粗糙度的关系。
     2.基于细观变形机制,在裂隙介质三维几何形态细观离散化表征的基础上,定义了裂隙介质的细观机械隙宽,并将裂隙介质的变形过程简化假定为一系列裂隙离散细观点的两棱锥顶点接触变形行为。在假定细观变形行为方式的基础上,推导了裂隙介质在弹性条件下的细观机械隙宽与细观法向变形、剪切变形的关系;提出了基于裂隙细观变形机理的宏观力学行为的数值模拟方法,并运用本模拟方法研究了粗糙度对裂隙介质的法向变形、剪胀剪切变形、不剪胀剪切变形力学性质的影响。
     3.将裂隙介质的渗流过程假定为水在相互连通的一系列细观水力隙宽不等的有限长光滑平板裂隙中流动,提出了基于裂隙细观渗流模型的宏观渗流过程的数值模拟方法。并应用本模型研究了不同粗糙度裂隙在不同闭合面积比下对裂隙渗流中水力梯度、流量、与流线矢量场的影响规律。
     4.运用本文提出的基于裂隙细观力学与渗流模型的宏观变形与渗流过程的数值模拟方法,进行了RVE尺度下裂隙介质不同粗糙度下裂隙介质水-力耦合机理数值试验研究。提出了法向变形、不同形式的剪切变形下水-力耦合的规律。通过基于细观变形与渗流机理的数值试验成果,反推表征裂隙宏观力学与渗流特性的综合机械隙宽与综合水力隙宽,结合裂隙介质水-力耦合数值试验成果拟合,建立了裂隙法向变形、剪胀剪切、不剪胀剪切过程的水-力耦合中综合机械隙宽、综合水力隙宽与粗糙度的关系公式。
It is fundamental scientific problem subjected to the engineering properties of the fracture rocks that researching the coupling hydro-mechanics of the single rocks fracture. Different dimension fracture have different engineering properties Under the dimension scale of RVE(Represent Volume Element), the morphology of rock fracture is play a important role in the mechanics, hydrology and coupled HM(Hydro-mechanics) of rock fracture. In this paper, it is main works that research the morphology of fracture effect on the mechanics, hydrology, coupled HM of single rock fracture by numerical stimulating method. Firstly, these studies carry out the random fractal math theory and the GIS-DEM technical to simulating and describing the 3D morphology of rock fracture by mesh discretion. Then this study revises T.Belem's theory to present a new method of simulating the roughness of rock fracture. Secondly, based on the effect on the morphology of rock fracture during mechanics and hydrology, this study establish the math model of compression and shear's deform and the revised cubic law of rock fracture by the view of semi-micro scopes. Then it use this model and the technical of GIS-DEM and FEM to connecting between morphology and mechanics or hydrology of rock fracture in macroscopic view and to put forward the method for simulating the coupling mechanics and hydrology of macroscopic rock fracture under the dimension scale of RVE. At last, this paper research the roughness of rock fracture effect on the coupling mechanics and hydrology by numerical test, then generalize the rule and formula for the contribution of the morphology of rock fracture to the coupling mechanics of hydro-mechanics in fracture. The main achievements are as follows:
     1. By referencing the random fractal math theory- Weierstrass-Mandelbrot function and using the simulating and analyzing technical of the 3D terrain(GIS-DEM), this study put forward the method of numerical simulating and analyzing the 3D surface and aperture of rock fracture. Based on T.Belem's theory, this study simplify and revise the 3D surface angularityθ_s, the apparent anisotropy of the surface Ka and the surface Z2 parameter Z 2_s, then bring forward to applying the roughness coefficient of 3D surface JRC, the 3D surface average angularity in shear orientationθ'_s and the apparent anisotropy of the surfaceκ'_αto numerical simulating the roughness of rock fracture surface. At last, this study discusses the relationship between the roughness coefficient of 3D surface J-RC and the fractal dimensionλ、D and put forward the math function of the relationship for the aperture distribution, the roughness of fracture surface and the rate of closure area.
     2. Based on Hertzian and Bushan's contact mechanics between globe and plate, it applied this theory to establish the semi-micro relation function between compression and normal deform (between shear stress and shear deform) for the sake of simulating the effect on the morphology of rock fracture during mechanics and seepage. Then, this study in macroscopic view research the roughness effect on the normal deform and shear deform of rock fracture, the relationship between the morphology and mechanics of rock fracture, the roughness influence in semi-micro mechanics under expand and un-expand of shear loading manner.
     3. This study establish the math model of the revised cubic law of rock fracture and local head loss by the view of semi-micro scopes. Then it use this model and the technical of GIS-DEM and FEM to simulating the influence of the morphology of rock fracture for the head, the flux, the flow vector of flowing in fracture under the dimension scale of RVE.
     4. This study use this model and the technical of GIS-DEM and FEM to connecting between morphology and mechanics or seepage of rock fracture in macroscopic view and to put forward the method for simulating the coupling mechanics and hydrology of macroscopic rock fracture under the dimension scale of RVE. Based on the above, this paper research the roughness of rock fracture effect on the coupling mechanics and hydrology by numerical test, then generalize the rule and formula for the contribution of the morphology of rock fracture to the coupling mechanics of hydro-mechanics in fracture.
引文
[1] 柴军瑞,仵彦卿,袁继国.岩体中裂隙水流对裂隙壁的双重力学效应.岩土力学,2003,24(4):514—517
    [2] 常宗旭,杨栋,胡耀青,赵阳生.三维应力作用下单一裂缝渗流规律的理论与实验研究.岩石力学与工程学报.2004(4):620—624.
    [3] 崔美峰,何满潮,刘东燕.岩石力学与工程.北京:科学出版社,2002
    [4] 陈平,张有天.裂隙岩体渗流与应力耦合分析.岩石力学与工程学报,1994,13(4):299—308
    [5] 陈庆中.应力场、渗流场、流场耦合分析及其工程应用.北方交大博士论文.1999.
    [6] 陈颙,黄庭芳.岩石物理学.北京:北京大学出版社,2001
    [7] 杜时贵,郭霄.岩体结构面粗糙度系数JRC的研究现状.水文地质工程地质[J] ,2004,增刊:30~33
    [8] 杜守继,孙钧,江崎哲郎,蒋宇静.岩体不连续面的几何特性与剪切强度的关系.同济大学学报,1999,27(4):379—383
    [9] 范景伟,何江达.含定向闭合连续节理岩体的强度特性.岩石力学与工程学报.1992(2):190—199.
    [10] 葛修润,任建喜,蒲毅彬等.岩石损伤力学宏细观试验研究.北京:科学出版社,2004
    [11] 耿克勤.复杂岩基的渗流、力学及其耦合分析研究以及工程应用.清华大学工学博士论文.1994.
    [12] 耿克勤,吴永平。拱坝和坝肩岩体的力学和渗流耦合分析实例.岩石力学与工程学报.1997(2):125—131.
    [13] 耿克勤,陈凤翔,刘光延,陈兴华.岩体裂隙渗流水力特性的实验研究.清华大学学报(自然科学版),1996,36(1):102—106
    [14] 胡云进,速宝玉,詹美礼.裂隙岩体非饱和渗流研究综述.河海大学学报.2000(1):40—46.
    [15] 黄润秋,许模,陈剑平,胡卸文,范留明.复杂岩体结构精细描述及其工程应用.北京:科学出版社,2004
    [16] 李宁,张平,陈蕴生.裂隙岩体试验研究进展与思考.见:中国岩石力学与工程学会主编.中国岩石力学与工程学会第七次学术大会论文集.特约报告.北京:中国科学技术出版社,2002.261—265
    [17] 李宁,赵颜辉,韩煊.单锚的力学模型与数值仿真试验分析.西安理工大学学报,1997,13(1):6~11
    [18] 李宁,韩煊,陈飞熊,赵彦辉.预应力群锚加固机理数值试验研究.岩土工程学报,1997,19(5):60~66
    [19] 李宁,赵彦辉,韩煊,段庆伟.群锚对断面的加固机理分布及工程应用.西安理工大学学报,1997,13(3):210~215
    [20] 李宁,张平,李国玉.岩质边坡预应力锚固的设计原则与方法讨论.岩石力学与工程学报,2004,23(17):2972~2976
    [21] 李庆松,杜守继.经历剪切变形历史的岩石节理表面粗糙特性分析.岩土力学,2004,25(6).
    [22] 刘才华,陈丛新,傅少兰.二维应力作用下单裂隙规律的实验研究.岩土工程学报.2000(8):1194—1198.
    [23] 刘继山.单裂隙受正应力作用时的渗流公式[J] .水文地质工程地质,1987,14(2):32—28
    [24] 刘继山.结构面力学参数与水力参数耦合关系及其应用[J] .水文地质工程地质,1988,15(2):7—12
    [25] 罗焕炎,陈雨孙.地下水运动的数值模拟.北京:中国建筑工业出版社,1988
    [26] 莫海鸿,林德章.裂隙介质网络水流模型的拓扑研究.岩石力学与工程学报.1997(2):97—103.
    [27] 盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述.岩土力学,1998,19(2):92—98
    [28] 盛建龙,朱瑞赓.岩体地质结构面粗糙系数的分形估测.武汉科技大学学报(自然科学版),2000,23(1):1—3
    [29] 速宝玉,詹美礼,赵坚.光滑裂隙水流模型实验及其机理初探.水利学报.1994(5):19—24.
    [30] 速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的实验研究.岩土工程学报.1997(5).
    [31] 速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的试验研究.岩土工程学报.1997(4):73—77.
    [32] 孙广忠,林文祝.结构面闭合变形法则及岩体弹性本构方程[J] .地质科学,1983,(2):81—87
    [33] 孙役.降雨入渗下的饱和—非饱和裂隙渗流的实验研究及其工程应用.清华大学工学博士论文.1998.
    [34] 汤国安,刘学军,闾国年.《数字高程模型及地学分析的原理与方法》.2005,北京:科学出版社
    [35] 王恩志.裂隙网络地下水流模型的研究与应用.西安地质学院博士论文.1991.
    [36] 王媛,速宝玉,徐志英.三维裂隙岩体渗流耦合模型及其有限元模拟.水文地质与工程地质.1995(3):1—5.
    [37] 王媛.裂隙岩体渗流及其应力耦的全耦合分析.河海大学工学博士论文.1995.
    [38] 王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽.水科学进展.2000(1):61—70.
    [39] 王媛.单裂隙面渗流与应力的耦合特性.岩石力学与工程学报[J] ,2002,21(1):83~87
    [40] 吴持恭.水力学,上、下册.北京:高等教育出版社,1998
    [41] 吴继敏,陈玲,孙少锐,朱家祥.裂隙粗糙度系数及其分数维研究.河海大学学报(自然科学版)[J] ,2003,31(2):152~155
    [42] 仵彦卿,张倬元.岩体水力学导论.成都:西南交通大学出版社,1995
    [43] 忤彦卿.岩体渗流场与应力场耦合的集中参数模型及连续介质模型.水文地质与工程地 质.1997(2):54—57.
    [44] 忤彦卿.岩体渗流场与应力场耦合的离散介质模型.水文地质与工程地质.1997(3):10—14.
    [45] 忤彦卿.岩体渗流场与应力场耦合的裂隙网络模型.水文地质与工程地质.1997(5):41—45.
    [46] 忤彦卿.岩体渗流场与应力场耦合的双重介质模型.水文地质与工程地质.1998(1):43—46.
    [47] 仵彦卿.裂隙岩体应力与渗流关系研究.水文地质工程地质,1995,(6):30—35
    [48] 谢和平.岩石节理粗糙系数(JRC)的分形估计.中国科学(B辑).1994(5).
    [49] 谢和平.分形—岩石力学导论.北京:科学出版社,1996
    [50] 许宏发,李艳茹,刘新宇,廖铁平.节理面分形模拟及JRC与分维的关系.岩石力学与工程学报,2002,21(11):1663—1666
    [51] 张有天.岩石水力学与工程.北京:中国水利水电出版社,2005.
    [52] 周创兵,熊文林.不连续面的形维数及其在渗流分析中的应用.水文地质与工程地质.1996(6):1—5.
    [53] 周创兵,熊文林.不连续面渗流与变形耦合的机理研究.水文地质与工程地质.1996(3):14—17.
    [54] 周创兵,熊文林.岩石节理的渗流广义立方定理.岩土力学,1996,17(4):1—7
    [55] 周创兵,熊文林.节理面粗糙度系数与分形维数的关系.武汉水利电力大学学报[J] ,1996,29(5):1~5
    [56] 周创兵,叶自桐,熊文林.岩石节理非饱和渗流特性研究.水利学报.1998(3):22—25.
    [57] 周创兵,叶自桐,韩冰.岩石节理面形态与水力特性研究.水科学进展,1997,8(3):233—239
    [58] 周宏伟,谢和平.岩石节理张开度的分析描述.水文地质与工程地质.1999(1):1—6.
    [59] 周志芳,王锦国.裂隙介质水动力学.北京:中国水利水电出版社,2004.
    [60] 周枝华,杜守继.岩石节理表面几何特性的三维统计分析.岩土力学,2005,26(8):1227—1232
    [61] 朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用.北京:科学出版社,2003
    [62] 朱珍德,胡定.裂隙水压力对岩体强度的影响.岩土力学.2000(1):64—67.
    [63] 朱学愚,谢春红.地下水运移模型.北京:中国建筑工业出版社,1990
    [64] J 贝尔.许涓铭等译.地下水水力学.北京:地质出版社,1983
    [65] Ahn T, Desai C S. Stability of earth dam contaminated by chemical transport. Int. J. Numer. Anal. Mech. Geomech. [J] , 1999, 23: 1893~1908
    [66] Aydan O. Shimizu Y. and Kawamoto T. The anisotropy of surface morphology characteristics of rock discontinuity. Rock Mech. Rock Engng, 1996, 29(1): pp47—59
    [67] Bandis S, Lumsden A C, Barton N R. Fundamentals of rock joint deformation. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. [J] , 1983, 20 (6): 249~268
    [68] Bandis S, Lumsden A. C. , Barton N. R. . Experimental Studies of Scale Effects on the Shear Behaviour of Rock Jionts. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 18 pp. 1—21, 1981.
    [69] Barton N. Review of a new shear strength criterion for rock joints. Eng. Geol. 7: pp287—332, 1973
    [70] Barton N, Bandis S, Bakhtar K. Strength deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. [J] , 1985, 22 (3): 121~140
    [71] Barton N R. Rock Mechanics Review the shear of strength of rock and rock joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. [J] , 1976, 13: 255~279
    [72] Barton N. S. and Choubey V. The. shear strength of rock joints in theory and practice. Rock Mech 10: pp1—54. 1977
    [73] Belem T. , Homand—Etienue F. , and Souley M. . Quantitative Parameters for Rock Joint Surface Rorghness. Rock Mech. Rock Engng, 2000, 33(4): 217—242
    [74] Berry M. V. and Lewis Z. V. On the Weierstrass—Mandelbrot fractal function. R. Soc. London Proc Ser. A. 370, pp459—84, 1980
    [75] Brown S. R. and Scholz C. H. Broad Bandwidth study of the topography of natural rock surfaces. J. Geophys. Res. 90: pp12575—82, 1985
    [76] Brown S. R. and Scholz C. H. Closure of rock joints. Journal of Geophysical Research 91(B5), pp: 4939—48, 1986
    [77] Brown E. T. Rock characterization, testing and monitoring, ISRM Suggested methods, Pergamon Press. 1981
    [78] Bushan B. Principles and application of tribology. John Wiley & Sons: New York, pp1020, 1999
    [79] Crank J. The mathematics of diffusion. Oxford university press, NewYork, 1975.
    [80] Dight P. M. and Chiu H. K. Prediction of shear behavior of joints using profiles. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 18: pp369—86, 1981
    [81] Du S J, Liu H, Shen S L, Zhou Z H. Simulation of the compression and flow process in a rock joint by using GIS. International Journal of Rock Mechanics & Mining Sciences[J] , 2004, 41 (3): 1~6
    [82] Durham W B, Bourcier W L. Direct observation of reactive flow in a single fracture. Water Resources Research[Jl, 2001, 37 (7): 1~12
    [83] Ehlen J. Fractal analysis of joint patterns in granite. International Journal of Rock Mechanics & Mining Sciences[J] , 2000, 37: 909~922
    [84] Elsworth D. and Goodman R. E. Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. , 1986, 23(3): 233—243
    [85] Esaki T. Du S. Ikusada K. and Jing L. Development of a shear—flow test apparatus and determination of coupled properties for a single rock joint. Int. J. Rock Mech. Min. Sci. 36: pp641—50. 1999
    [86] Fardin N. The effect of scale on the morphology mechanics and transmissivity of single rock fractures: [dissertation] [D] . Stockholm: Royal Institute of Technology, 2003
    [87] Gale J. E. The effects on fracture type (induced versus natural) on the stress—fracture closure—fracture permeability relationship. Conference Proceedings "23rd US. Symoposium on Rock Mechanics", Berkely, pp290—98. 1982
    [88] Gangi A. F. Variation of whole and fracture porous rock permeability with confining pressure. Int. J. Mech. Min. Sci. and Geomech. Abstr., 1978,15(4) :249-257
    [89] Gentier S. Lamontagne E. Archambault G. and Riss J. Anisotropy of flow in fracture undergoing shear and its relationship to the direction of shearing and injection pressure. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. (paper No. 094)37:pp3-4.1997
    [90] Goodman R. E. Methods of geological engineering in discontinuous rock. West, New York, 472p., 1976
    
    [91 ] Goodman R. E. Introduction to rock mechanics. John Wiley & Sons, New York. 562p. 1980
    [ 92 ] Grasselli G, Wirth J, Egger P. Quantitative three-dimensional description of a rough surface and parameter evolution with shearing. International Journal of Rock Mechanics & Mining Sciences [J], 2002, 39: 789-800
    [93] Hakami E. and Barton N. Aperture measurements and flow experiments using transparent replicas of rock joints. In: Proc. Int. Symp. Rock Joints, eds. Barton N. and Stephansson O. Balkema, Rotterdam, 1990, p.383-390
    [94] Hakami E. and Larsson E. Aperture measurements and flow experiments on a single natural fracture. Int. J. Rock Mech. Min. Sci. Geomech Abstr., 1996, 33(4):395-404
    [95] Huang T. H. and Doong T. S. Anisotropic shear strength of rock joints. Pro. "Int. Symp. Rock joints", Leon Norway Rotterdam: Balkema, pp211-18.1990
    [96] Huang T H. Chang C. S. and Chao C. Y. Experimental and mathematical modeling for fracture of rock joint with regular asperities. Engineering Fracture Mechanics, 69:ppl977-96.2002
    [97] Iwai K. Fundamental studies of fluid flow through a single fracture. Ph. D thesis, Univ. Calif. Berkeley, USA, 1976
    
    [98] Jiang Y, Li B, Tanabashi Y. Estimating the relation between surface roughness and mechanical properties of rock joints. International Journal of Rock Mechanics & Mining Sciences [J], 2006, 43: 837-846
    [99] Jing L. Numerical modeling of jointed rock masses by distinct element method for two, and three-dimensional problems. Ph. D. Thesis, Division of Rock Mechanics, Technical University of Lulea, Published 1990.
    [100] Jing L. and Stephansson O. Mechanics of rock joints: Experimental aspects, In: Selvadurai, A.P.S. & Boulon, M. J. (editor) Mechanics of interfaces geomaterial. Elsevier. Pp317-42,1995
    [101] Jones F. O. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rock. J. Petrol. Technol., 1975,21(2):151-159
    [102] Koyama T, Fardin N, Jing L, Stephansson O. Numerical simulation of shear-induced flow anisotropy and scale-dependent aperture and transmissivity evolution of rock fracture replicas. International Journal of Rock Mechanics & Mining Sciences [J], 2006, 43: 86-106
    [103] Koyama T. Numerical modeling of fluid flow and particle transport in rock fractures during shear: [dissertation] [D]. Stockholm: Royal Institute of Technology, 2005
    [104] Krahn J. and Morgenstern N. R. The ultimate frictional resistance of rock discontinuities. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16:pp 127-33.1979
    [ 105 ] Kranz R. L. Frankel A. D. Engelder T. et al. The permeability of whole and jointed Barre granite. Int. Rock Mech. Min. Sci. and Geomech. Abstr., 1979,16(2):225-234
    [106] Kulatilake P. H. S. W., Shou G., Huang T. H. and Morgan R. M. New peak shear strength criteria for anisotropic rock joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32: pp 673—97. 1995
    [107] Kulatilake P. H. S. W. , Um J. and Pan G. Requirement for accurate quantification of self—affine roughness using the line scaling method. Rock Mech. Rock Engng. 30: pp 181—206. 1997
    [108] Lanaro F. Geometry, mechanics and transmissivity of rock fractures: [dissertation] [D] . Stockholm: Royal Institute of Technology, 2001
    [109] Lanaro F. A random field model of surface roughness and aperture of rock fractures. International Journal of Rock Mechanics & Mining Sciences[J] , 2000, 37: 1195~1210
    [110] Lee S D, Harrison J P. Empirical parameters for non—linear fracture stiffness from numerical experiments of fracture closure. International Journal of Rock Mechanics & Mining Sciences [J] , 2001, 38: 721~727
    [111] Lee H. S. and Cho T. F. Hydraulic characteristics of rough fractures in linear flow under normal and shear load. Rock Mech Rock Engng; 35: pp 299—318. 2002
    [112] Lee Y. H. et al. Fractal dimension as a measure of the roughness of the rock discontinuity. Int. J. Rock Mech. Min. Sci. , 1990, 27(6): 453—464
    [113] Liu Z, Boukpeti N, Li X, Collin F, Radu J —P. Modeling Chemo—hydro—mechanical behavior of unsaturated clays: a feasibility study. Int. J. Numer. Anal. Mech. Geomech. [J] , 2005, 29: 919~940
    [114] Lopez P, Riss J, Archambault G. An experimental method to link morphological properties of rock fracture surfaces to their mechanical properties. International Journal of Rock Mechanics & Mining Sciences[J] , 2003, 40: 947~954
    [115] Lomize G. M. Flow in fracture rocks[M] . Moscow: Gesenergoizdat, 1951
    [116] Louis C. A study of groundwater flow in jointed rock and its influence on the stability of rock masses(Rock Mech. Res. Rep. 10). London: Imp. Coll. , 1974
    [117] Louis C. Rock hydraulics. In: Muller L ed. Rock Mechanics. New York: Elsevier Science, 1974
    [118] Maerz N. H. , Franklin J. A. and Bennett C. P. Joint roughness measurement using shadow profilometry. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 27: pp 329—43. 1990
    [119] Makurat A. , Barton N. , Rad N. S. and Bandis S. Joint conductivity variation due to normal and shear deformation. In Proc "Int Symp Rock Joints", eds. N Barton and O Stephansson. Balkema, Rotterdam, pp 535—40. 1990a
    [120] Makurat A. , Barton N. , Tunbridge L. and Vik G. The measurement of the mechanical and hydraulic properties of rock joints at different scales in the Stripa project. In Proc "int Symp Rock Joints", eds. N Barton and O Stephansson. Balkema, Rotterdam, pp 541—548. 1990b
    [121] Malinverno A. A simple method to estimate the fractal dimension of a self affine series. Geophys. Res. Lett. 17: pp 953—6. 1990
    [122] Mandelbrot B. B. The fractal of nature. New York: W. H. Freeman, 468 p. 1983
    [123] Mandelbrot B. B. Self—affine fractals and fractal dimension. Physica Scripta. 32: pp 257—60. 1985
    [124] Matsuki K, Chida Y, Sakaguchi K, Glover P W J. Size effect on aperture and permeability of a fracture as estimated in large synthetic fractures. International Journal of Rock Mechanics & Mining Sciences[J] , 2006, 43: 726~755
    [125] Matsushita M. and Ouchi S. On the self affinity of various curves. Physica D. 38: pp 246—51. 1989
    [126] Momber A W. Wear of rocks by water flow. International Journal of Rock Mechanics & Mining Sciences[J] , 2004, 41: 51~68
    [127] Neuzil C. E. Tracy J. V. Flow through fracture. Water Resour. Resear. , 1981, 17(1): 191—194
    [128] Odling N. E. Natural fracture profiles, fractal dimension and joint roughness coefficient. Rock Mech. Rock. Engng. 27: pp 135—53. 1994
    [129] Olsson R, Barton N. An improved model for hydromechanical coupling during sheafing of rock joints. International Journal of Rock Mechanics & Mining Sciences[J] , 2001, 38: 317~329
    [130] Olsson W. A. and Brown S. R. Hydraulic response of a fracture undergoing compression and shear. Int J Rock Mech Min Sci Geomech Abstr; 30: pp 845—51. 1993
    [131] Orey S. Gaussian simple functions and Hausdorff dimension of level crossing. Z. Wahrscheinlichkeitstheor. Verw. Gebiete. 15: pp 249—56. 1970
    [132] Polak A, Elsworth D, Yasuhara H, Grader A S, and Halleck P M. Permeability reduction of a nature fracture under net dissolution by hydrothermal fluids. Geophysical Research Letters esearch[J] , 2003, 30 (20): 2020
    [133] Polak A, Elsworth D, Liu Jishan, Grader A S. Spontaneous switching of permeability changes in a limestone fracture with dissolution. Water Resources Research[J] , 2004, 40, W03502
    [134] Pyrak—Nolte L. J. , Myer L. R. , Cook N. G. W. and Witherspoon P. A. Hydraulic and mechanical properties of natural fractures in low permeability rock. Conference Proceedings "6th International Congress on Rock Mechanics", Montreal, Canada, pp 225—31. 1987
    [135] Reeves M. J. Rock surface roughness and fi—ictional, strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 27: pp 429—42. 1985
    [136] Romm E. S. Flow characteristics of fracture rocks. Moscow: Nedra, 1966
    [137] Sayles R. S. and Tomas R. R. The spatial representation of surface roughness by means of the structure functions, a practical alternative to correlation. Wear. 42: pp 263—76. 1977
    [138] Seidel J P, Haberfield C M. A theoretical model for rock joints subjected to constant normal stiffness direct shear. International Journal of Rock Mechanics & Mining Sciences [J] , 2002, 39: 539~553
    [139] Snow D. Rock—facture spacing, opening, and porosities. J. Soil Mech. Founda. Div. ASCE. 94: 73—91, 1968
    [140] Tsang C. F. Coupled behavior of rock joints. In: Rock joints, Edited by Barton & Stephansson, Balkema, 1990. 505—518
    [141] Tsang Y. W. and Tsang C. F. Channel model of flow through fractured media. Water Resour. Res. , 1987, 23(3): 467—479 Coupled behavior of rock joins. In: Rock joints, Edited by Barton & Stephansson, Balkema, 1990. 505—518
    [142] Tsang C. F. , Doughty C. A Particle—tracking approach to simulating transport in a complex fracture. Water Resources Research[J] , 2003, 39 (7): 1174
    [143] Tsang Y M, Witherspoon PA. The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size. Water Resource Research [J] , 1983, 93: 2359~2366
    [144] Tsang Y M, Witherspoon P A. Hydromechanical behavior of a deformable rock fracture subject to normal stress. Water Resource Research [J] , 1981, 93: 2359~2366
    [145] Tse R. and Cruden D. M. Estimating joint roughness coefficients. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16: pp 303—7. 1979
    [146] Walsh J. B. Effect of pore pressure and confining pressure on fracture permeability. Int. J. Rock Mech. Min. Sci. Geomech. Abstr; 18: pp 429—35. 1981
    [147] Wong R. H. C. and Chau K. T. Crack coalescence in a rock—like material contain two cracks. Int. J. Rock Mech. Min. Sci, 1998, 35(2): 147—164
    [148] Wu T. H. and Ali E. M. Statistical representation of joint roughness. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15: pp259—62
    [149] Xie H. Fractals In Rock Mechanics. A. A. Balkema, Rotterdam. 1993
    [150] Xie H. , Wang J. A. and Xie W. H. Fractal effects of surface roughness on the mechanical behavior of rock joints. Chaos, Solitons & Fractals. 8: pp 221-52.1997
    [151] Yang Z Y, Di C C. A directional method for directly calculating the fractal parameters of joint surface roughness. International Journal of Rock Mechanics & Mining Sciences [J], 2001, 38: 1201-1210
    [152] YangZY, Chiang DY. An experimental study on the progressive shear behavior of rock joints with tooth-shaped asperities. International Journal of Rock Mechanics & Mining Sciences [J], 2000, 37: 1247-1259
    [153] Yeo I W, De Freitas M H, Zimmerman R W. Effect of Shear Displacement on the aperture and permeability of a rock fracture. International Journal of Rock Mechanics & Mining Sciences [J], 1998, 35 (8): 1051-1070
    [154] Zimmerman R. W. Kumar S. and Bodvarsson G. S. Lubrication theory analysis of the permeability of rough-walled fracture. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1991,28(4):352-331
    [155] Zimmerman R. W. Chen D. W. and Cook N. G. W. The effect of contact area on the permeability of fracture. J Hydrology, 1992,139:79-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700