用户名: 密码: 验证码:
推力轴承三维热弹流润滑性能及其振动噪声特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
推力轴承作为承受轴向重载旋转机械的核心部件之一,其工作性能优劣直接影响到机组的稳定运行和工作效率。对于特殊工作环境,还要求推力轴承不仅具有良好的润滑性能,而且必须保证振动噪声水平在合理的范围之内。本文以具有代表性的水轮发电机组立式推力轴承和船舶推进轴系卧式推力轴承为研究对象,建立对各种结构型式的推力轴承通用的三维热弹流动力润滑性能和油膜动特性计算模型,并在此基础上研究船用推力轴承的振动传递和噪声辐射特性。论文主要包括以下四个方面内容:
     (1)以推力轴承系统为研究对象,在综合考虑流体动力润滑、热效应和热弹变形影响的基础上,建立了由广义雷诺方程、油膜能量方程、油膜厚度方程、润滑油粘温方程、固体热传导方程和固体热弹变形方程等构成的推力轴承三维热弹流动力润滑性能计算的理论模型,并详细介绍了该理论模型的数值计算方法。
     (2)基于上述理论模型,对三峡小支柱簇双层瓦和抽水蓄能机组双向推力轴承进行了系统的理论研究,并通过在哈尔滨大电机研究所3000吨推力轴承试验台上得到的试验结果对理论模型的可靠性进行了验证。
     (3)同时采用二维和三维热弹流动力润滑模型对船用推力轴承润滑性能进行了研究,通过对比验证了二维模型的计算精度,在此基础上采用一阶泰勒级数法对二维雷诺方程进行求解得到推力轴承的轴向动特性系数。
     (4)建立了船用推力轴承系统的有限元和边界元计算模型,分析了支承结构的动特性和结构阻尼比等关键参数对船用推力轴承振动和壳体噪声辐射特性的影响。
     总体来看,论文综合采用理论分析和试验研究方法,对水轮发电机组推力轴承和船用推力轴承的润滑性能进行了深入的研究,同时通过有限元和边界元法对船用推力轴承的振动传递和噪声辐射特性进行了评价。
As one of the key components in rotating machinery with axial heavy load, the performance of thrust bearings directly affect the stability and efficiency of the unit. As for special working environment, not only good lubrication performance, but also reasonable vibration and noise level are required. Taking the representative vertical thrust bearings in hydraulic generator set and horizontal thrust bearings in ship propulsion shafting as the research object of this thesis, universal three dimensional thermo-elasto-hydro-dynamic (TEHD) model and oil film dynamic characteristics calculation model for thrust bearings with kinds of structural types were set up. On this basis, the transmission of vibration and noise radiation characteristics of the marine thrust bearings were also studied. The major contents of this thesis consist of the following four aspects:
     First, taking the thrust bearing system as the research object, on the basis of comprehensively considering the influence of hydrodynamic lubrication, thermal effects and thermoelastic deformations, a three dimensional TEHD model consisting of generalized Reynolds equation, energy equation of oil film, oil film thickness equation, viscosity-temperature equation lubricating oil, solid-state heat conduction equation and solid thermoelastic deformation equation was established. At the same time, the numerical calculation method for the theoretical model was introduced in detail.
     Second, based on the above theoretical model, a detailed theoretical analysis of the thrust bearings with pins and double layer system used in the Three Gorges hydroelectric generators, as well as the bidirectional thrust bearings used in pump-turbines, was carried out. Meanwhile, experimental results were obtained from the HEC (Harbin Electric Machinery Co. Ltd.)3000ton thrust bearing test rig, in order to provide an evidence of validation of the three dimensional TEHD model set up in this thesis.
     Third, both two dimensional and three dimensional TEHD model were adopted to study the lubrication performance of marine thrust bearings, in order to verify the calculation accuracy of two dimensional model by comparison. And then first-order Taylor series method was employed to solve two dimensional Reynolds equation to obtain axial dynamic coefficients of marine thrust bearings.
     Fourth, the finite element and boundary element models of marine thrust bearing system were set up to analyze the influence of key parameters including dynamic characteristics of supporting structure and structural damping ratio on vibration and shell noise radiation characteristics of marine thrust bearings.
     Overall, theoretical analysis and experimental research methods were employed comprehensively to conduct in-depth research on the lubrication performance of thrust bearings used in hydroelectric generators and marine. Finite element method and boundary element method were also employed to evaluate the vibration transmission and noise radiation characteristics of marine thrust bearings.
引文
[1]朱均.水轮发电机组推力轴承失效综述和分析[J].电气技术,1990(3):13-17.
    [2]罗正平.双向推力轴承研究[J].东方电气评论,2002,16(4):208-212.
    [3]吴军令,武中德,孙玉田,等.双向推力轴承试验研究[J].大电机技术,2005(1):1-5.
    [4]Pajaczkowski P. Simulation of transient states in large hydrodynamic thrust bearings[D]. Gdansk:Gdansk University of Technology,2010.
    [5]何少润,陈志凌.GZ-Ⅱ电站推力轴承烧瓦事故的分析及处理[C].第一届水力发电技术国际会议,2006.
    [6]胡荣华.船用滑动推力轴承结构设计研究[J].船舶工程,2007,29(5):60-64.
    [7]Tower B. First Report on Friction Experiments[J]. Proc.Inst.Mech.Engrs.,1883.
    [8]Petroff N P. Friction in Machines and the Effect of the Lubricant.[J]. Engineering Journal. St. Petersburg,1883.
    [9]Reynolds O. On the Theory of Lubrication and Its Application to Mr. Tower's Experiments[J]. Philos. Trans. R. Soc.,1886,177:157-234.
    [10]Christopherson D C. A New Mathematical Model for the Solution of Film Lubrication Problems[J]. Proc Instn Mech Engrs,1942,146:126-135.
    [11]Cope W F. A Hydrodynamic Theory of Film Lubricant[J]. Proc. Royal Soc.(London), Series A,1949,197:201-217.
    [12]Ziekiewicz O C. Temperature Distribution within Lubricating Films Between Parallel Bearing Surfaces and Its Effect on the Pressures Developed[J]. Proc. I.M.E. Conf. on Lubrication and Wear,1957,81:135-141.
    [13]Sternlicht B. Energy And Reynolds Considerations in Thrust Bearing Analysis[J]. Proc. I.M.E. Conf. on Lubrication and Wear,1957,21:28-38.
    [14]Dowson D, Hudson J D. Thermohydrodynamic Analysis of the Infinite Slider bearing, Part I:the Plane Inclined Slider Bearing[J]. Proc. IMehE Lubr. and Wear Conv., 1963,4:31-41.
    [15]Dowson D, Hudson J D. Thermohydrodynamic Analysis of the Infinite Slider bearing, Part II:the Parallel Surface Bearing[J]. Proc. IMehE Lubr. and Wear Conv., 1963,4:42-46.
    [16]Kim K W, Tanaka M, Hori Y. A Three-Dimensional Analysis of Thermo-hydrodynamic Performance of Sector-shaped Tilting-pad Thrust Bearings[J]. ASME Journal of Tribology,1983,105:406-413.
    [17]Kim K W, Tanaka M, Hori Y. An experimental study on the thermohydrodynamic lubrication of tilting-pad thrust bearings[J]. J. JAST,1995,40:70-77.
    [18]陈志澜.巨型推力轴承的三维热弹流动力润滑性能研究[D].西安交通大学,1998.
    [19]Ettles C M, Anderson H G. Three-Dimensional Thermoelastic Solution of Thrust Bearing Using Code Marmacl[J]. ASME Journal of Tribology,1991,113:405-412.
    [20]Ettles C M, Anderson H G. Some Factors Affecting the Design of Spring Supported Thrust Bearing in Hydroelectric Generators [J]. ASME Journal of Tribology, 1991,113:626-632.
    [21]Almqvist T, Glavatskikh S B, Larsson R. THD Analysis of Tilting Pad Thrust Bearings:Comparison Between Theory and Experiments [J]. ASME Journal of Tribology,2000,122(2):412-417.
    [22]Glavatskikh S B, Fillon M. The Significance of Oil Thermal Properties on the Performance of a Tilting-Pad Thrust Bearing[J]. ASME Journal of Tribology, 2002,124(2):377-385.
    [23]马希直.滑动轴承瞬态热弹性流体动力润滑性能分析及实验研究[D].西安交通大学,2002.
    [24]武中德.大型水轮发电机推力轴承热弹流润滑性能研究[D].哈尔滨工业大学,2001.
    [25]Ezzat H A, Rhode S M. A Study of the Thermohydrodynamic Performance of Finite Slider Bearings[J]. ASME Journal of lubrication technology,1973,95(3):298-307.
    [26]Ettles C M. Three Dimensional Computation of Thrust Bearing:Leeds-Lyon Symposium,1987[C].
    [27]Boncompain R, Fillon M, Frene J. Analysis of Thermal Effects in Hydrodynamic Bearings[J]. ASME Journal of Tribology,1986,108(2):217-224.
    [28]Huebner K H. A Three-Dimensional Thermohydrodynamic Analysis of Sector Thrust Bearings[J]. ASLE Transactions,1974,17(1):62-68.
    [29]Tieu A K. Oil-Film Temperature Distribution in An Infinitely Wide Slider Bearing: An Application of the Finite-Element Method[J]. Journal of Mechanical Engineering Science,1973,15(4):311-320.
    [30]Tieu A K. A Numerical Simulation of Finite-width Thrust Bearings, Taking into Account Viscosity Variation with Temperature and Pressure [J]. Journal of Mechanical Engineering Science,1975,17(1):1-10.
    [31]Gero L R. A Finite Element Method for the Solution of Three-Dimensional Thermohydrodynamic Lubrication Problems[D]. NY:Rensselaer Polytechnic Institute,1986.
    [32]Gero L R, Ettles C M. A Three Dimensional Thermohydrodynamic Finite Element Scheme for Fluid Film Bearings[J]. STLE Transactions,1988,31(2):182-191.
    [33]Markin D, McCarthy D M C, Glavatskih S B. A FEM approach to simulation of tilting-pad thrust bearing assemblies[J]. Tribology International,2003,36:807-814.
    [34]Jang G H, Lee S H, Kim H W. Finite Element Analysis of the Coupled Journal and Thrust Bearing in a Computer Hard Disk Drive[J]. ASME Journal of Tribology, 2006,128:335-340.
    [35]赵红梅.水轮发电机组推力轴承的润滑理论及优化研究[D].大连理工大学,1994.
    [36]Jeng M C, Zhou G R, Szeri A Z. A Thermohydrodynamic Solution of Pivoted Thrust Pads Part Ⅰ-Theory[J]. ASME Journal of Tribology,1986,108(2):195-207.
    [37]Jeng M C, Zhou G R, Szeri A Z. A Thermohydrodynamic Solution of Pivoted Thrust Pads Part Ⅱ-Static Loading[J]. ASME Journal of Tribology,1986,108(2):208-213.
    [38]Jeng M C, Zhou G R, Szeri A Z. A Thermohydrodynamic Solution of Pivoted Thrust Pads Part Ⅲ-Linearized Force Coefficients [J]. ASME Journal of Tribology, 1986,108(2):213-218.
    [39]Ettles C M, Anderson H G. The Use of Higher Order Finite Element Methods for the Solution of Reynolds Equation[J]. STLE Transactions,1990,33:163-170.
    [40]Sternlicht B. Adiabatic Analysis of Elastic, Centrally Pivoted, Sector, Thrust-bearing Pads[J]. Journal of Applied Mechanics,1961,28:179-187.
    [41]Ettles C M, Cameron A. Thermal and elastic distortions in thrust-bearings [J]. IMechE Lubr. Wear Conv.,1963,7:60-71.
    [42]Hashimoto H, Wada S. Turbulent Lubrication of Tilting-pad Thrust Bearing With Thermal And Elastic Deformations [J]. ASME Journal of Tribology, 1985,17(1):82-86.
    [43]Abdel-Latif L A. Analysis of Heavily Loaded Tilted Pads Thrust Bearings With Large Dimensions Under TEHD Conditions[J]. ASME Journal of Tribology, 1988,110(3):467-476.
    [44]薛永宽.大型水轮发电机推力轴承的广义热弹性流体动力润滑性能研究[D].西 安交通大学,1990.
    [45]吕新广.弹性金属塑料推力轴承的性能研究[D].西安交通大学,1998.
    [46]Glavatskih S B. Laboratory research facility for testing hydrodynamic thrust bearings[J]. Proc. Instn Mech. Engrs. Part J:J. Engineering Tribology, 2002,216(2):105-116.
    [47]Glavatskih S B. A method of temperature monitoring in fluid film bearings[J]. Tribology International,2004,37(2):143-148.
    [48]Glavatskih S B, Fillon M. TEHD Analysis of Thrust Bearings With PTFE-Faced Pads[J]. ASME Journal of Tribology,2006,128(1):49-58.
    [49]Ferguson J H, Yuan J H, Medley J B. Spring-Supported thrust bearings for hydroelectric generators:Influence of oil viscosity on power loss[J]. Tribology Series, 1998,34:187-194.
    [50]Yuan J H. Experimental investigation of large spring-supported thrust bearings used in hydroelectric generators[D]. Ontario:University of Waterloo,2000.
    [51]Brown A L, Medley J B, Ferguson J H. Spring-supported thrust bearings used in hydroelectric generators:Limit of hydrodynamic lubrication[J]. Tribology Series, 2000,38:261-274.
    [52]Yuan J H, Medley J B, Ferguson J H. Spring-Supported Thrust Bearings Used in Hydroelectric Generators:Comparison of Experimental Data with Numerical Predictions [J]. Tribology Transactions,2001,44(1):27-34.
    [53]王小静.弹簧支承式弹性金属塑料瓦推力轴承TEHD研究[D].上海大学,1997.
    [54]Wang X J, Zhang Z M, Zhang G X. Improving the performance of spring-supported thrust bearing by controlling its deformations [J]. Tribology International, 1999,32(12):713-720.
    [55]El-Saie Y M H, Fenner R T. Three-Dimensional Thermoelastohydrodynamic Analysis of Pivoted Pad Thrust Bearings Part 1:Treatment of Bearing Deflections and Fluid Film Flow and Heat Transfer [J]. Proc. Instn Mech. Engrs. Part J:J. Engineering Tribology,1988,202(1):39-50.
    [56]El-Saie Y M H, Fenner R T. Three-Dimensional Thermoelastohydrodynamic Analysis of Pivoted Pad Thrust Bearings Part 2:Application of Theory and Comparison with Experiments [J]. Proc. Instn Mech. Engrs. Part J:J. Engineering Tribology,1988,202(1):51-62.
    [57]Dabrowski L, Wasilczuk M. Evaluation of water turbine hydrodynamic thrust bearing performance on the basis of thermoelastohydrodynamic calculations and operational data[J]. Proc. Instn Mech. Engrs. Part J:J. Engineering Tribology, 2004,218(5):413-421.
    [58]Hemmi M, Hagiya K, Ichisawa K, et al. Computation of Thermal Deformation of Thrust Bearing Pad Concerning the Convection by Non-Uniform Oil Flow:World Tribology Congress III (WTC2005), Washington, D.C., USA,2005[C].
    [59]Wasilczuk M, Wodtke M. Influence of Collar Deformations on Hydrodynamic Thrust Bearing Performance:Proceedings of ASME/STLE International Joint Tribology Conference, California USA,2007[C].
    [60]Karadere G. The effectsof the totalbearingdeformationonthe performance of hydrodynamic thrust bearings[J]. Industrial Lubrication and Tribology, 2010,62(4):207-213.
    [61]Jiang X, Wang J, Fang J. Thermal Elastohydrodynamic Lubrication Analysis of Tilting Pad Thrust Bearings[J]. Proc. Instn Mech. Engrs. Part J:J. Engineering Tribology,2011,225(2):51-57.
    [62]Ettles C M. Transient Thermo-elastic Effects in Fluid Film Bearings[J]. Wear, 1982,179(1):53-59.
    [63]Ettles C M, Seyler J, Bottenschein M. Some Effects of Start-Up and Shut-Down on Thrust Bearing Assemblies in Hydro-Generators [J]. ASME Journal of Tribology, 2003,125(4):824-832.
    [64]Wang X, Zhang Z, Pan J. A Transient Thermoelastohydrodynamic Analysis of a Tilting-Pad Thrust Bearing During Start-up:World Tribology Congress Ⅲ (WTC2005), Washington, D.C., USA,2005[C].
    [65]马希直,朱均.阶跃载荷扰动条件下推力轴承热瞬态过程研究[J].润滑与密封,2009,34(1):43-45.
    [66]马希直,朱均.载荷扰动下滑动推力轴承绝热瞬态过程分析[J].润滑与密封,2009,34(3):43-45.
    [67]武中德,张宏.水轮发电机非正常运行对推力轴承性能的影响[J].东北电力技术,1998(8):59-62.
    [68]马震岳,董毓新.推力轴承油膜刚度的二维热弹流动力润滑计算[J].大连理工大学学报,1990,30(2):205-212.
    [69]马震岳,董毓新.推力轴承油膜刚度的三维热弹流动力润滑计算[J].大连理工 大学学报,1990,31(1):205-212.
    [70]陈渭.流体动力润滑推力轴承动特性及其对转子横向振动状态影响的研究[D].西安交通大学,1991.
    [71]Mittwollen N, Hegel T, Glienicke J. Effects of Hydrodynamic Thrust Bearings on Lateral Shaft Vibrations[J]. ASME Journal of Tribology,1991,113:811-818.
    [72]姜培林.推力轴承对转子系统横向振动的影响及水轮发电机组轴系动力特性的研究[D].西安交通大学,1998.
    [73]Jiang P L, Yu L. Rotordynamic Modelling of a Hydrodynamic Pivoted-Pad Thrust Bearing[J]. Tribology International,1998,31 (4):175-181.
    [74]Jiang P L, Yu L. Identification of the Oil-Film Dynamic Coefficients in a Rotor-Bearing System with a Hydrodynamic Thrust Bearing[J]. Journal of Sound and Vibration,2000,236(4):733-740.
    [75]Chin S C, Kristin L W, Ilene J B. A Nonlinear Dynamic Model With Confidence Bounds for Hydrodynamic Bearings[J]. ASME Journal of Tribology, 1998,120(3):595-604.
    [76]Storteig E, White M F. Dynamic Characteristics of Hydrodynamically Lubricated Fixed-pad Thrust Bearings[J]. Wear,1999,232(2):250-255.
    [77]李忠.推力轴承的非线性动特性和瞬态性能研究[D].西安交通大学,1999.
    [78]马希直,张功学,朱均.圆形瓦推力轴承动特性研究[J].摩擦学学报,2000,20(4):300-303.
    [79]Berger S, Bonneau O, Frene J. Influence of axial thrust bearing defects on the dynamic behavior of an elastic shaft[J]. Tribology International,2000,33(3):153-160.
    [80]周建军,徐华,叶新功.可倾瓦推力轴承瞬态动特性研究[J].宁夏工程技术,2004,3(2):105-107.
    [81]Jang G, Lee S. Determination of the dynamic coefficients of the coupled journal and thrust bearings by the perturbation method [J]. Tribology Letters,2006,22(3):239-246.
    [82]Srikanth D V, Chaturvedi K K, Reddy A C K. Determination of a large tilting pad thrust bearing angular stiffness[J]. Tribology International,2011,47(3):69-76.
    [83]Lewis D W, Allaire P E. Active Magnetic Control of Oscillatory Axial Shaft Vibrations in Ship Shaft Transmission Systems, Part 1:System Natural Frequencies and Laboratory Scale Model[J]. Tribology Transactions,1989,32(2):170-178.
    [84]Pan J, Farag N, Lin T, et al. Propeller Induced Structural Vibration Through the Thrust Bearing:Proceedings of Acoustics 2002, Adelaide, Australia,2002[C].
    [85]Goodwin A J. The Design of a Resonance Changer to Overcome Excessive Axial Vibration of Propeller Shafting[J]. Institute of Marine Engineers Transactions, 1960,72:37-63.
    [86]Schwanecke H. Investigations on the hydrodynamic stiffness and damping of thrust bearings in ships [J]. Transactions of the Institute of Marine Engineers, 1979,91:68-77.
    [87]Parkins D W, Horner D. Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems, Part 1:System natural frequencies and laboratory scale model[J]. Tribology Transactions,1989,32(2):170-178.
    [88]Daley S, Wang J. A geometric approach to the design of remotely located vibration control systems[J]. Journal of Sound and Vibration,2007,318(4):702-714.
    [89]Dylejko P G, Kessissoglou N J, Tso Y, et al. Optimisation of a resonance changer to minimise the vibration transmission in marine vessels[J]. Journal of Sound and Vibration,2007,300(1):101-116.
    [90]Dylejko P G. Optimum Resonance Changer for Submerged Vessel Signature Reduction[D]. Sydney:University of New South Wales,2007.
    [91]张文平,曹贻鹏.推进轴系振动对潜艇尾部结构水下辐射噪声的影响分析[J].舰船科学技术,2006,28(S2):54-59.
    [92]曹贻鹏,张文平.轴系纵振对双层圆柱壳体水下辐射噪声的影响研究[J].船舶力学,2007,11(2):293-299.
    [93]曹贻鹏,张文平.使用动力吸振器降低轴系纵振引起的水下结构辐射噪声研究[J].哈尔滨工程大学学报,2007,28(7):747-751.
    [94]曹贻鹏.推进轴系引起的艇体结构振动与辐射噪声控制研究[D].哈尔滨工程大学,2008.
    [95]Merz S, Oberst S, Dylejko P G, et al. Development of coupled FE/BE models to investigate the structural and acoustic responses of a submerged vessel[J]. Journal of Computational Acoustics,2007,15(1):23-47.
    [96]孟浩,刘耀宗,王宁,等.壳体弹性对船舶轴系力传递特性的影响[C].第十一届船舶水下噪声学术讨论会,西安,2007.
    [97]刘耀宗,王宁,孟浩,等.基于动力吸振器的潜艇推进轴系轴向减振研究[J].振动与冲击,2009,28(5):184-187.
    [98]张金国,姚世卫,王隽.法兰盘式推力轴承推进轴系振动传递特性分析研究[J].噪声与振动控制,2008,28(2):23-25.
    [99]丁德勇,张钧,贺双元.推力轴承基座带预应力谐响应分析[J].中国舰船研究,2010,5(3):52-55.
    [100]孙大成.润滑力学讲义[M].北京:中国友谊出版公司,1991.
    [101]Gindin L M, Ovsyannikov V V, Sudakov Y T. Calculation of lubricating oil viscosity at a given temperature[J]. Chemistry and Technology of Fuels and Oils, 1986,22(11):612-615.
    [102]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [103]吴军令.3000t推力轴承试验台研制成功[J].电工技术信息,1993(3):39.
    [104]武中德,张宏,任忠海,等.小支柱簇双层瓦推力轴承热弹流润滑性能分析[J].哈尔滨工业大学学报,2003,35(1):81-84.
    [105]邓晓龙.内燃机主要部件结构噪声预测及优化控制研究[D].华中科技大学,2004.
    [106]马烈.某船用齿轮箱动力学性能及辐射噪声仿真分析[D].哈尔滨工程大学,2008.
    [107]Johnson K L. Contact Mechanics[M]. London:Combridge University Press,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700