用户名: 密码: 验证码:
柱塞泵流量脉动测试方法和大范围工况降噪结构优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
噪声污染成为世界范围内的环境问题,在工业领域尤为严重。轴向柱塞泵是液压系统主要噪声源,其流体噪声能够激发相连管道、阀等相关元件振动,致使整个液压系统气动噪声加剧。泵源流量脉动是轴向柱塞泵流体噪声的主要激振源,具有高频、大流量的特点,由于现有高频动态流量计不能直接测试,只能采用间接方法测量。ISO标准“二次源”法是测试容积泵泵源流量脉动的间接方法,该方法基于波的传递理论和管道压力动态特性,应用频率特性已知的辅助泵、阀等改变被测泵所在测试系统的终端阻抗,通过传感器同步测试被测泵和辅助泵、阀之间相连管道不同位置处动态压力推导泵源流量脉动。这一方法适用于多种类型容积泵,测试精度较高,但是系统构成复杂,当传感器距离是压力波波长的整数倍时,不能准确测试泵源流量脉动。因此本文主要针对轴向柱塞泵泵源流量脉动进行研究,以获得一种系统构成简单与全工况精度较高的测试方法,为低敏感度柱塞泵设计提供支撑,选题具有重要的理论意义和工程价值。
     本文首先建立了柱塞泵流动特性的多场耦合数值模型,该模型首次引入油膜运动的柱塞副、滑靴副泄漏流量对流量脉动的影响,提高了柱塞泵流量脉动模型的精度。在出口压力15MPa、缸体转速1000rpm和斜盘倾角13°时的试验结果证实,与传统数值模型相比,该模型对泵源流量脉动率预测精度提高了22.7%。因此该模型计算结果可以作为分析泵源流量脉动和优化降噪结构的参考。然后提出了新的泵源阻抗估值算法和非等径管道特征参数计算方法,解决了应用辅助泵测试被测泵泵源流量脉动的ISO标准“二次源”法不能准确测试压力传感器距离是压力谐波频整数倍工况下泵源流量脉动,将出口管道等效成长直管道的“实用近似”法不能准确测试带有非等径管道容积泵泵源流量脉动的问题。通过出口压力为5MPa-22MPa,转速为400rpm-1500rpm的试验证实,与ISO提供阻抗估值算法相比,新的阻抗估值算法能估测任意工况下泵源流量脉动,且阻抗估值精度提高了20%;同时修正的“实用近似”法测试精度达到92%以上。因此这些方法提高了测试方法的精度,拓展了现有测试方法的使用范围。最后提出了与配流盘缓冲槽结合的预压缩容腔和斜盘交错角降噪结构的优选准则。首次应用泵源流量脉动变化率差值对预压缩容腔边长差值之比选择了预压缩容腔体积大小,应用配流盘对泵源流量脉动峰值和柱塞腔压力峰值敏感区初选了预压缩容腔引入孔角度和斜盘交错角。针对排量56的斜盘式轴向柱塞泵仿真研究表明,这两个优化准则简化了大范围工况、多部件结合降噪结构优化过程。
     论文主要研究内容如下:
     第一章给出了柱塞泵流量脉动研究的目的和意义。针对现有柱塞泵流量脉动仿真模型精度低、测试方法复杂等问题,确定了课题的研究内容、技术路线,并总结了课题的技术难点,给出了课题研究的目标。
     第二章根据柱塞泵运行原理,搭建了柱塞泵油液流动特性的多场耦合数值模型。该模型首次考虑引入油膜运动的柱塞副、滑靴副泄漏流量对流量脉动的影响,提高了柱塞泵流量脉动模型的精度;模型考虑了温度和压力对油液粘度的影响,通过质量、动量和能量守恒方程计算了柱塞泵关键油模的压力场和温度场;搭建了柱塞泵测试系统有限元模型。
     第三章详述了柱塞泵流量脉动测试原理和测试平台搭建需要注意的问题。针对现有“实用近似”法不能准确测试带有非等径出口管道柱塞泵流量脉动的问题,应用第二章建立的有限元模型和动边界理论,计算非等径管道特征参数,修正了“实用近似”法,以拓展拓展其使用范围。
     第四章给出了ISO标准“二次源”法测试数据处理过程,获得了较精确的测试结果,并实验验证了第二章所建立的柱塞泵流量脉动仿真模型的准确性;提出应用阻抗估值带宽估算泵源阻抗,应用线性衰减技术计算估值带宽,试验证实,该方法能够获得全工况范围泵源阻抗。针对第三章提出的修正方法进行了实验验证,结果表明:通过出口压力为5MPa-22MPa,转速为400rpm-1500rpm时试验证实:新的阻抗估值算法能估测任意工况下泵源流量脉动,且阻抗估值精度提高了20%。
     第五章分析了运行工况(包括稳态、瞬态工况)和油液特性对柱塞泵流量脉动的影响,给出了不同参数的影响程度,为降噪结构的优化提供依据。针对柱塞泵流量脉动有限元模型巨大,求解时间过长的问题,应用并行求解器快速获得仿真结果;引入动边界理论模拟瞬态工况下柱塞泵流量脉动,分析了柱塞泵流量脉动瞬态变化。
     第六章研究了缓冲槽、预压缩容腔和交错角对柱塞泵流量脉动的影响,给出了配流盘结构与流量脉动峰值对应关系,并提出了带有配流盘缓冲槽的预压缩容腔和交错角结构优化准则。
     第七章总结了论文研究内容,给出了柱塞泵流体噪声研究结论,引出了本文创新点,最后展望了进一步研究内容。
Noise pollution has become one of the most serious environmental problems in the world, especially in industry. Axial piston pump is one of the main noise sources in hydraulic system, and the air-borne noise of the whole hydraulic system is aggravated by the pump fluid-borne noise. The pump output flow, which is characterized by high frequency, is the main source of the fluid-borne noise, and it is impossible to measure this high frequency flow ripple with traditional flow meters, so some indirect methods have been developed. The Secondary Source Method is a well-known indirect method to measure the pump source flow rate, which is of high precision in most case and can be used for many types of hydraulic pumps. However, the test system is complicated and the accuracy of the measured source flow rate is low when the test pipe length is multiple of the pressure wave length. A new test method, which is simpler and more accurate than traditional ones, has been proposed and discussed in this paper, so that those weaknesses mentioned above have been overcome.
     A numerical simulation model has been developed based on the operating principle of the axial piston pump, and the influence of the pressure and temperature as well as the movement of the oil film has been considered simultaneously in the model. Then this simulation model was validated by the test results obtained with the Secondary Source method. According to experimental test, when the pump output pressure was15MPa, the pump speed1000rpm and the swash plate angle13deg, the computational accuracy was improved22.7%compared to the traditional model. So this numerical simulation model can be used to analyze the source flow rate and optimize the structure of the axial piston pump. A new estimation algorithm of the pump source impedance has been designed to deal with the case when the test pipe length is multiple of the pressure wave length, a new computational algorithm to solve the problem of the source flow rate with unequal diameter discharge pipe has also been developed. It can be seen from the results that the pump source impedance can be obtained with the new estimation algorithm over following operating conditions:the pump output pressure was between5MPa and22MPa, the pump speed was between400rpm and1500rpm. In addition, the92%test accuracy of source flow rate has been reached by the modified Practical Approximate Method with the computational algorithm. So the application of the current test method is expanded. The parameter selection criteria of the pre-compression volume and the swash plate cross angle with relief groove has been developed, the ratio of the non-uniformity grade difference of flow ripple and the volume difference of the pre-compression volume is used to determine the size of pre-compression volume, the position of the sensitive zone of the port plate where the peak value of the source flow rate and cylinder pressure occur was used to choose degrees of both the angle connecting the port plate and the pre-compression volume and the swash plate cross angle. It can be seen from the simulation result that the optimization procedure for the pre-compression volume and the swash plate cross angle with relief groove has been greatly simplified by adopting the developed parameter selection criteria. The results given in this paper help potential researchers to better understand both the development of flow ripple model and the procedure of performing flow ripple test for piston pump, structure optimization criteria for obtaining quieter piston pump are also proposed and validated by simulation, nevertheless, further experiments are required to approve its effectiveness. The structure of this thesis is illustrated in the following:
     In chapter1, the research purpose and the research significance of this thesis are discussed. The research content and the technical route are given, and the technical issues are presented accordingly.
     In chapter2, a newly built numerical simulation model for axial piston pump which is based on the operation principle of the axial piston pump is presented. The computation for the leakage flow rate from all three key oil films is modified, and the calculation accuracy is improved compared to the traditional ones. The energy equation is introduced, and the pressure field and temperature field of the three oil films can be computed simultaneously. The simulation model of the whole hydraulic system connected to the axial piston pump is also built.
     In chapter3, the testing principle of the pump source flow rate is depicted in detail, and problems which are met in building the test apparatus are provided. Because the current test method is difficult to test the source flow rate of the pump with complicated pump discharge pipe, the finite element method and the dynamic boundary condition is used to compute the characteristic of the discharge pipe. Then according to the different test principle, the relationship between the characteristic of the discharge pipe and the source flow rate is presented, and the corresponding test method is modified.
     In chapter4, the signal processing of the Secondary Source Method is presented, the precise test results are obtained, and the simulation model built in chapter2is validated. It can be seen from the test results that the new estimation algorithm of the pump source impedance can get the result over the whole operating conditions and the accuracy increased20%over the following operating conditions:pump delivery pressure is5MPa,15MPa and22MPa, the pump speed is400rpm,1000rpm and1500rpm. The signal processing for the Practical Approximate Method is simplified with the high precision. Therefore, the application of the test method is extending.
     In chapter5, the effect of operating conditions and the fluid characteristic on flow ripple is analyzed, and their influencing degree is concluded, which is the guideline for optimization of the axial piston pump. The parallel solution is used to obtain the simulation result as fast as possible. The dynamic boundary condition is used to define the time-depended pump delivery pressure and pump speed, and the effect of transient operating condition is also provided.
     In chapter6, the structure of the pre-compression volume and the swash plate cross angle with relief groove have been optimized with the built simulation method. The selection criteria of the Pre-compression volume and the swash plate cross angle with relief groove is presented.
     In chapter7, the conclusion of this thesis is provided and the further research is analyzed.
引文
[1]路甬祥.液压气动技术的进展[J].国际学术动态,1994(3):64--68.
    [2]张林.噪声及其控制[M].哈尔滨:哈尔滨工程大学出版社,2002.
    [3]曾祥荣.液压噪声控制[M].哈尔滨工业大学出版社,1988.5.
    [4]马大猷.声学与人的生活质量[J].噪声与振动控制,2001(6):2-6.
    [5]吕玉恒.国内噪声控制近况评述[J].噪声与振动控制,2001(6):14-17.
    [6]翟培祥.斜盘式轴向柱塞泵[M].北京:煤炭工业出版社,1978.
    [7]徐绳武.柱塞式液压泵[M].北京:机械工业出版社,1983.
    [8]许耀铭.油膜理论与液压泵和马达的摩擦副设计[M].北京:机械工业出版社,1984.
    [9]马吉恩.轴向柱塞泵流量脉动及配流盘优化设计研究[D].杭州:浙江大学,2009.
    [10]Viral Mehta.2006. Torque Ripple Attenuation for an Axial Piston Swash Plate Type Hydrostatic Pump: Noise Consideration. University of Missouri-Columbia.
    [11]I.Z. Zaichenko, A.D. Boltyanskii, Reducing noise levels of axial piston pumps[J]. Russ. Engine J, 1969, XLLX4.
    [12]K. Yamauchi, T. Ymamoto, Noise generated by hydraulic pump and their control method[R]. Mitsubishi heavy industries technical report, Tokyo.1975,12.4.
    [13]K.A. Edge, J. Darling. The cylinder pressure transients in oil hydraulic pumps with sliding plate valve[C].Proceeding of the Institution of Mechanical Engineers, Pate B-Journal of Management and Engineering Manufacture,1986.200(B1):45-54.
    [14]K.A. Edge, J. Darling. The pumping dynamics of swash plate piston pumps[J]. Journal of Dynamic System Measurement and Control-Transactions of the ASME,1986.111(2):307-312.
    [15]J-J Shu, C R Burrows and K.A. Edge. Pressure Pulsation in reciprocating Pump Piping Systems Part 1: Modeling[J]. Proceeding of the Institution of Mechanical Engineers,1997.211(1):229-236.
    [16]J-J Shu, C R Burrows and K.A. Edge. Pressure Pulsation in reciprocating Pump Piping Systems Part 2: Experimental Investigation and Model Validation[J]. Proceeding of the Institution of Mechanical Engineers,1997.211(1):239-250.
    [17]C. Huang. CASPAR based slipper performance prediction in axial piston pumps[C]. Proceedings of 3rd FPNI-PhD symposium on Fluid Power. Terassa. Spain,2004:229-238.
    [18]I. Monika. A new approach to the design of sealing and bearing gaps of displacement machines[C].4th JHPS International Symposium on Fluid Power. Tokyo. Japan,1999.
    [19]I. Monika, C. Huang. Thermal analysis in axial piston machines using CASPAR[C]. Proceedings of the Sixth International Conference on Fluid Power Transmission and Control. Hangzhou. China 2005.
    [20]U. Wieczorek, I. Monika. CASPAR-a computer aided design tool for axial piston machines[C]. Proceedings of the Bath Workshop on Power Transmission and Motion Control PTMC,2000.
    [21]C. Huang, I. Monika. A new approach to predict the load carrying ability of the gap between valve plate and cylinder block[C]. Proceedings of Bath Workshop on Power Transmission and Motion Control (PTMC). Bath,2003:225-239.
    [22]I. Monika, R. Lasaar. An investigation into micro-and macrogeometric design of piston/cylinder assembly of swash plate machings[J]. International Journal of Fluid Power,2004:23-36.
    [23]R. Lasaar, I. Monika. Advanced gap design-basis for innovative displacement machines[C]. Proceedings of 3rd Internationales Fluidtechnisches Kolloquium. Aachen. Germany,2002:215-230.
    [24]I. Monika, C. Huang. Investigation of the gap flow in displacement machines considering elastohydrodynamic effect[C]. Fifth JHPS International Symposium on Fluid Power. Tokyo. Japan, 2002:219-229.
    [25]R. Lasaar. The influence of the microscopic and macroscopic gap geometry on the energy dissipation in the lubricating gaps of displacement machines[C]. Proceedings of 1st FPNI-PhD Symposium Hamburg,2000:101-116.
    [26]R. Lasaar, I. Monika. Gap geometry variations in displacement machines and their effect on the energy dissipation[C]. Proceedings of 5th International Conference on Fluid Power Transmission and Control (ICFP'2001). Hangzhou. China,2001:296-301.
    [27]Ivantysynova Monika, Ganesh Seeniraj, Huang Changchun, in:Comparison of Different Valve Plate Design Focusing on Oscillating Force Flow Pulsation, The Ninth Scandinavian International Conference on Fluid Power, SICFP'05, June 1-3,2005.
    [28]Ivantysynova Monika, Huang Changchun, Christiansen Sven-kelana, in:Computer Aided Valve Plate Design-An Effective Way to Reduce Noise, SAE Technical Paper Series, Publication by SAE, Warrendale, PA,USA,2001-01-2621.
    [29]N.D. Manring, Yihong Zhang. The Improved Volumetric-Efficiency of an Axial-Piston Pump Utilizing a Trapped-Volume[J]. Journal of Dynamic Systems, Measurement and Control, Transaction of the ASME, Sep.2001(123):479-487.
    [30]N.D. Manring. Tipping the Cylinder Block of an Axial-Piston Swash-Plate Type Hydrostatic MachinefJ]. Journal of Dynamic Systems, Measurement and Control, Transaction of the ASME, Mar. 2000(122):216-221.
    [31]N.D. Manring. Zhilin Dong. The Impact of Using a Secondary Swash-Plate Angle Within an Axial Piston Pump[J]. Journal of Dynamic Systems, Measurement and Control, Transaction of the ASME, Mar.2004(126):65-74.
    [32]N.D. Manring, S.B. Kasaragadda. The Theoretical Flow Ripple of an External Gear Pump[J]. Journal of Dynamic Systems. Measurement and Control, Transaction of the ASME, Sep.2003,125:396-404.
    [33]Noah D. Maring,2003. Valve-Plate Design For an Axial Piston Pump Operating at low Displacement, Journal of Mechanical Design, Vol.125:200-207.
    [34]N.D. Manring. the Discharge Flow Ripple of an Axial-Piston Swashplate Type Hydrostatic PumpfJ]. Journal of Dynamic Systems, Measurement and Control, Transaction of the ASME, Jun.2000(122): 263-268.
    [35]C. Paolo, V. Andrea. Modeling of an axial piston pump for pressure ripple analysis[C]//The eighth scandinavian international conference on fluid power SICFP'03, Tampere, Finland, May 7-9,2003.
    [36]C. Paolo, V. Andrea, L.B. Gian. Potentials of a numerical tool for the simulationof flow in external gear machines[C]. The Tenth Scandinavian International Conference on Fluid Power SICFP'07, Tampere, May 21-23,2007.
    [37]C. Paolo, V. Andrea, F. Germano and L.B. Gian. Modeling of Fluid Properties in Hydraulic Positive Displacement Machine[C]. Simulation Modeling Practice and Theory,2006 (14):1059-1072.
    [38]K. Weddfelt, M. Pettersson. A General Simulation Program for Flow Ripple of Axial Piston Machines[R]. An Application Program to HOPS AN. Model manual, Division of Fluid and Mechanical Engineering Systems. Linkopings University, Sweden,1997.
    [39]A. Johansson. Noise Reduction of Piston Pumps-a Simulation Approach[D]. Mechanical Engineering Systems. Linkoping University, Sweden,2000.
    [40]N P. Mandal, R Saha and D Sanyal. Theoretical Simulation of Ripples for Different Leading-Side Groove Volumes on Manifolds in Fixed-Displacement Axial-Piston Pump[J]. Proceeding of the Institution of Mechanical Engineers, Pate I:J System and Control Engineering,2008.(222):557-570.
    [41]Nimai Pada Mandal, Rana Saha and Dipankar Sanyal. Valve Plate Design of a Swash Plate Type and Axial Piston Pump through Theoretical Simulation of Flow Dynamics. The 7th International Fluid Power Conference. Aachen 2010.
    [42]余经洪,陈兆能.液压柱塞泵的噪声控制[J].液压与气动,1991(4):18-22.
    [43]邱泽麟,陈兆能.柱塞泵配流冲击分析与实验研究[J].上海交通大学学报,1992.26(4):20-27.
    [44]陈兆能,陆元章.液压柱塞泵流量脉动测试的试验研究[J].机床与液压,1992(4):187-193.
    [45]余经洪,陈兆能.液压泵流量脉动特性的精确评定[J].机床与液压,1993(4):217-223.
    [46]邱泽麟,陈兆能.柱塞泵柱塞腔内压力瞬变过程的实验研究[J].液压与气动,1990(1):29-31.
    [47]余经洪,陈兆能.液压柱塞泵配流过程的理论模型及参数辨识[J].上海交通大学学报,1992.26(4):28-33.
    [48]邱泽麟,陈兆能.轴向柱塞泵配流盘阻尼结构降噪特性的理论分析与实验研究[J].机床与液压,1989(5):22-27.
    [49]那成烈.旋转配流盘调节排量的轴向柱塞泵配流冲击特性[J].甘肃工业大学学报,1989.15(3):1-11.
    [50]那成烈,范春行.轴向柱塞泵气穴振动问题研究[J].液压与气动,1992(4):20-23.
    [51]那成烈.三角槽节流口面积的计算[J].甘肃工业大学学报,1993.19(2):45-48.
    [52]邢科礼,那成烈.轴向柱塞泵配流盘减振结构对压力特性的影响[J].甘肃工业大学学报,1995.21(3):35-39.
    [53]邢科礼,那成烈.轴向柱塞泵配流盘减振结构对压力流量的影响[J].机械研究与应用,1997.10(1):10-13.
    [54]那成烈.轴向柱塞泵可压缩流体配流原理[M],北京:兵器工业出版社,2003.1.
    [55]赵弘,那成烈.遗传算法在轴向柱塞泵配流盘结构优化设计中的应用[J].机床与液压,2001(5):112-113,104.
    [56]那焱青,那成烈等.轴向柱塞泵配流盘液压支承力的计算[J].甘肃工业大学学报,2003.29(2):53-55.
    [57]那成烈,尹文波.可压缩流体工作介质情况下轴向柱塞泵配流盘设计[J].甘肃工业大学学报,2002.28(4):65-67.
    [58]那成烈.低噪声轴向柱塞泵的配流方法及配流盘结构[P],专利号:CN91111998.1,1993.7.7.
    [59]赵弘,那焱青,那成烈.液压泵阻尼结构形式的改进[J].机床与液压,2000(5):17-18.
    [60]那焱青,尹文波,那成烈.轴向柱塞泵瞬时流量的理论分析[J].兰州理工大学学报,2004.30(1):56-59.
    [61]许贤良,赵连春,杨奇顺.轴向柱塞泵流量脉动的理论研究[J].淮南矿业学院学报,1993.13(3):69-80.
    [62]许贤良,陈亚力,栾振辉.偶数柱塞泵配流结构形式及流量脉动[J].合肥工业大学学报(自然科学版),1996.19(1):75-81.
    [63]许贤良,赵连春,王传金.轴向柱塞泵的流量脉动[J].中国矿业大学学报,1992.21(4):73-82.
    [64]李静.基于CFD的轴向柱塞泵配流特性研究[D].杭州:浙江大学,2008.
    [65]许书生.轴向柱塞泵摩擦副特性测试的结构优化设计与实验研究[D].杭州:浙江大学,2011。
    [66]童章谦.轴向柱塞泵结构辐射噪声的分析与研究[D].杭州:浙江大学,2012.
    [67]艾青林.轴向柱塞泵配流副润滑特性的试验研究[D].浙江大学,2005.
    [68]焦素娟.纯水液压柱塞泵及溢流阀关键技术的研究[D].浙江大学,2004.
    [69]李佳鑫.纯水轴向柱塞泵的研究[D].浙江大学,2001.
    [70]王彬.轴向柱塞泵平面配流副润滑特性及其参数优化[D].浙江大学,2009.
    [71]郭卫东,王占林.斜盘式轴向柱塞泵实际流量的分析研究.北京航空航天大学学报,1996.4,22(2):223-227.
    [72]卢菊仙.飞机液压油源脉动分析与消振研究[D].北京航空航天大学,2006.
    [73]闻德生,潘景异等.开路式变量轴向柱塞泵噪声控制方法[J].机床与液压,2004(10):137-138,65.
    [74]闻德生,潘景异等.轴向柱塞泵配油窗口面积对转速和噪声的影响[J].机床与液压,2003(5):115-116,268.
    [75]D.E. Bowns, K.A. Edge, D.G. Tilley. The assessment of pump fluid borne noise[C]//I. Mech. E. Conf.-Quiet Oil Hydraulic Systems, London, Nov.1977.
    [76]D.E. Bowns, K.A. Edge, D. McCadlish. Factors affecting the choice of a standard method for the determination of pump pressure ripple[C]//I. Mech. E. seminar-Quieter Oil Hydraulics, London, Oct. 1980.
    [77]K.A. Edge, T.J. Wing. Measurement of the fluid borne pressure ripple characteristics of hydraulic components[C]//Proceedings of the Institution of Mechanical Engineers, Part B:Management and Engineering Manufac,1983(197):247-254.
    [78]K.A. Edge, F.J.T. Freitas. Study of pressure fluctuations in the suction lines of positive displacement pumps[C]//Proceedings of the Institution of Mechanical Engineers, Part B:Management and Engineering Manufacture,1985,199(B4):211-217.
    [79]The International Organization for Standardization. ISO 10767-1-1996 Hydraulic Fluid Power Determination of Pressure Ripple Levels Generated in System and Components Part 1:Precision method for pumps[S]. London:British Standards Institution,1996.
    [80]EDGE K A, JOHNSTON D N. The secondary source method for the measurement of pump pressure ripple characteristics 1. Description of method[C]. Proceedings of the institution of mechanical engineers part A-journal of power and energy,1990,204 (1):33-40.
    [81]EDGE K A, JOHNSTON D N. The secondary source method for the measurement of pump pressure ripple characteristics 2. Experimental results[C]. Proceedings of the institution of mechanical engineers part A-journal of power and energy,1990,204 (1):41-46.
    [82]E. Kojima, N. Hyodo. Characteristics of fluidborne noise generated by a fluid power pump (1st report, Mechanisms of generation of pressure pulsations in axial piston pump)[J]. Bulletin of the JSME, Jan.1982,25(199):46-53.
    [83]E. Kojima. Experimental determining and theoretical predicting of source flow ripple generated by fluid power piston pumps[J]. SAE International Off-Highway and Power plant Congress and Exposition, Milwaukee, USA. SAE Special Publ. Topics in Hydraulics SP-1554,2000:73-82.
    [84]E. Kojima, M. Shinada. Characteristics of fluid borne noise generated by a fluid power pump (4th report, pressure ripple in hydrostatic power transmission)[J]. Bulletin of the JSME,1986,29(258): 4147-4155.
    [85]M.E. Pettersson, K.G. Weddfelt, J.O.S Palmberg. Methods of Reducing Flow Ripple from Fluid Power Pumps-A Theoretical Approach[J]. SAE Transactions,1991.100(2):158-167.
    [86]K. Weddfelt. Measurement of pump source characteristics by the two-microphone method[C]//The second Tampere international conference on fluid power, Tampere Finland, March 1991.
    [87]L. Ericson. Measurement system for hydrostatic pump flow pulsations [D]. Sweden:Linkopings Universitet,2005.
    [88]A. Johansson. Design principles for noise reduction in hydraulic piston pumps-simulation, optimization and experimental verification [D]. Sweden:Linkopings Universitet,2005.
    [89]Larsson P, Palmberg J.O. and Weddfelt K. Analysis and Measurement of Pressure Ripple of Fluid Power Pumps, the 8th IASTED International Symposium. Measuremt, Signal Processing and Control-MECO'86, Taormina, Italy, Sep.1986.
    [90]Edge K.A. and Mccandlish D. the Measurement and Assessment of Pump Fluid Borne Pressure Ripple Generated by Positive Displacement Pumps. The 5th international fluid power symposium, Durham, 1978(F2):15-26.
    [91]Kojima E. and Shinada M. development of an active attenuator for pressure pulsation in liquid piping system, JSME Internation Journal, Series Ⅱ,1991.34(4):466-573.
    [92]Nafz Timo, Murrenhoff Hubertus and Rudik Ruslan. Active Systems for Noise Reduction and Efficiency Improvement of Axial Piston Pumps. Fluid Power And Motion Control, Proc. Of the 9th conference 2008.
    [93]Edge K.A. and Liu Y. Reduction of Piston Pump Pressure Ripple. Fluid Power And Motion Control, Proc. Of the 2th conference 1989.
    [94]A Johansson, J olvander and J-o Palmberg. Experimental verification of cross angle for noise reduction in hydraulic piston pumps[C]. Proc. IMechE Part Ⅰ. J. Systems and Control Engineering. 2007, Vol221:321-330.
    [95]Ganesh Kumar SEENIRAJ and Monika IVANTYSYNOVA. Noise Reduction in Axial Piston Machines Based on Multi-Parameter Optimization. Proc of 4th FPNI-PhD Symp Sarasota 2006:235-246.
    [96]Jarchow M. Maβnahmen zur Minderung hochdruckseitiger pulsationen hrdrostatischer Schragscheibenernherten. Dissertation, IFAS, RWTH Aachen.
    [97]Harrison A.M., Edge K.A.,2000. Reduction of Axial Piston Pump Pressure Ripple, Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering,214(1),: 53-63.
    [98]盛敬超.液压流体力学[M].北京:机械工业出版社,1979.3
    [99]蔡亦钢.流体传输管道动态过程的基础研究及应用[D].杭州.浙江大学,1989.10.
    [100]温诗铸,杨沛然.弹性流体动力润滑[M].清华大学出版社,1992.
    [101]Ivantysynova,M., Huang,C. and Andreas J Japing. Determination of gap surface temperature distribution in axial piston machines. Proc. Of IMECE2006. Chicago, USA.2006.
    [102]张斌.轴向柱塞泵的虚拟样机及工作油膜试验研究[D].杭州.浙江大学,2009.
    [103]Ivantysynova,M., Huang,C. and Andreas J Japing. Determination of gap surface temperature distribution in axial piston machines. Proc. Of IMECE2006. Chicago, USA.2006.
    [104]邱泽麟.轴向柱塞泵流体噪声与振动研究及降噪、诊断应用[D].上海:上海交通大学,1988.
    [105]余经洪.柱塞泵动态模型与降噪[D].上海:上海交通大学,1990.
    [106]JOHNSTON D N, DREW J E. Measurement of positive displacement pump flow ripple and impedance[C]. Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems & Control Engineering,1996,210(1):65-74.
    [107]朱云辉,朱秀清.互相关虚拟测速仪的试验分析[J].仪器仪表用户,200613(3):108-109.
    [108]蔡少川,施文康,毕浩然.互相关测速虚拟仿真的实验方法[J].实验室研究与探索,200625(10):1197-1198,1207.
    [109]A.K. Singhal, H.Y. Li, M.M. Athavale. Mathematical basis and validation of the full cavitation model[J]. ASME Journal of Fluids Engineering,2002,124(3):617-624.
    [110]M.M. Athavale, H.Y. Li, Y. Jiang. Application of the full cavitation model to pumps and inducers[J]. International Journal of Rotating Machinery,2002(2):45-56.
    [111]A.K. Singhal, N.Vaidya, A.D.Leonard. Multi-Dimensional Simulation of Cavitating Flows Using a PDF Model for Phase Change[C]//FEDSM97-3272,1997 ASME Fluids Engineering Division Summer Meeting, Vancouver, British Columbia, Canada, June 22-26,1997.
    [112]陈春,聂松林等.海水轴向柱塞马达偏心配流盘的研究[J].机床与液压,2005(8):53-55,43.
    [113]邓斌.水压轴向柱塞泵的特性研究与分析[D].西南交通大学,2004.
    [114]林静,孙明智.轴向柱塞泵配流盘结构对流量脉动的影响[J].液压与气动,2007(2):32-35.
    [115]诸葛辉,邓斌.基于CFD中压柱塞泵流道优化研究[J].流体传动与控制,2007,21(2):10-12.
    [116]孙明智,柯坚.轴向柱塞泵吸油腔的CFD解析[J].流体传动与控制,2007,21(2):16-18.
    [117]王福军,黎耀军等.水泵CFD应用中的若干问题与思考[J].排灌机械,2005.23(5):1-10.
    [118]王福军.CFD在水力机械湍流分析与性能预测中的应用[J].中国农业大学学报,2005.10(4):75-80.
    [119]王艳珍,于兰英等.水压锥阀流场的CFD解析[J].机械,2003.30(5):20-22.
    [120]袁冰,于兰英等.液压滑阀阀芯旋转现象的CFD解析[J].机床与液压,2006(3):131-134.
    [121]冀宏,傅新,杨华勇.非全周开口滑阀稳态液动力研究[J].机械工程学报,2003.39(6):13-17.
    [122]Craig Hornsby. CFD-driving pump design forward[J]. World Pumps,2002 (8):18-22.
    [123]Y. Qian. CFD Application in Implantable Rotary Blood Pump Design and Validation[J]. Journal of Shanghai University(Natural science edition),2004.10(z1):194-197.
    [124]J. Plutecki, J. Skr:zypacz. CFD simulations of 3D flow in a pump stator with a spherical surface. [J] World Pumps,2003 (443):28-31.
    [125]F. Moukalled, A. Honein. Computer-aided analysis of hydraulic pumps[J]. International Journal of Mechanical Engineering Education,1999.27(4):293-310.
    [126]J.V. Voorde, J. Vierendeels, E. Dick. Flow simulations in rotary volumetric pumps and compressors with the fictitious domain method[J]. Journal of Computational and Applied Mathematics, 2004(168):491-499.
    [127]李小宁.降低斜盘型轴向柱塞泵噪声的理论和实验研究[D].哈尔滨:哈尔滨工业大学,1984.
    [128]卢义敏,周华,杨华勇.纯水液压泵配流盘的仿真研究[J].液压与气动,2005(7):56-57.
    [129]艾青林,周华,杨华勇.轴向柱塞泵配流副润滑特性试验系统的建立及仿真研究[J].煤炭学报,2004,29(6):731-735.
    [130]艾青林,周华.轴向柱塞泵配流副与滑靴副润滑特性试验系统的研制[J].液压与气动,2004(11):22-25.
    [131]孙新学,苏曙,周玉平.工程机械液压技术发展综述[J].液压与气动,2001(3):3-7.
    [132]司癸卯,魏立基.液压系统振动与噪声的分析与对策[J].液压与气动.1999(2):8-9.
    [133]郜立焕,王佃武,生凯章.液压系统振动与噪声的原因分析[J].液压与气动,2005(12):73-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700