用户名: 密码: 验证码:
面向轴向柱塞泵降噪的配流盘及配流方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴向柱塞液压泵是多种大型机电装备和国防装备配套液压传动系统的核心动力元件,是液压系统主要噪声源,随着社会对环保的日益重视,主机对配套元件的噪声指标提出了日益严格的要求,因此轴向柱塞泵的减振降噪问题十分迫切。轴向柱塞泵是一个涉及多学科的复杂液压元件,其噪声形成机理复杂,存在多种噪声激振源间转换和耦合传递,并影响泵的寿命、可靠性和效率,因此实现轴向柱塞泵噪声控制是流体传动领域的研究重点和难点。本学位论文针对柱塞泵噪声形成机理及多目标优化展开研究,目的在于提高柱塞泵综合性能,为低噪音高可靠性柱塞泵设计提供设计工具和方法,选题具有很强的工程应用背景和重要的学术研究价值。
     本学位论文提出三种新型的轴向柱塞泵降噪方法,包括低流量脉动轴向柱塞泵配流盘设计方法,具有转位角的同轴驱动双转子结构降噪方法,以及具有能量回收功能的压力平均结构降噪方法,仿真计算和试验结果表明,这三种降噪方法可以不同程度降低轴向柱塞泵的流体噪声和结构噪声激振源强度,可为现有轴向柱塞泵噪声等级优化和新型低噪音轴向柱塞泵开发提供理论支撑。第一种,低流量脉动轴向柱塞泵配流盘设计方法首次考虑了柱塞腔流量倒灌峰值分布位置对泵出口流量脉动幅值的影响,以实现柱塞腔压力平稳过渡和流量倒灌递减分布为约束函数,建立配流盘过渡区阻尼槽通流面积最优值求解模型。该设计方法可消除传统基于柱塞泵流体特性仿真模型设计方法中的反复仿真、数据处理、筛选的设计流程,而且由于求解模型中没有限定阻尼槽结构形式,因此可以用于不同类型配流盘过渡区的优化设计。配流盘优化前后的试验结果对比表明,此设计方法可以降低柱塞泵出口流量脉动和柱塞腔压力冲击。第二种,具有转位角的同轴驱动双转子结构降噪方法创新性提出用同轴驱动的双转子结构代替传统单进单出轴向柱塞泵的单转子结构,两个转子结构的输出流量波形具有最佳相位差,在柱塞泵出油口处合流时,波峰和波谷叠加的平均效应可显著降低轴向柱塞泵的出口流量脉动。仿真计算表明此降噪方法可使泵出口流量脉动降低60%以上,斜盘转矩脉动降低约40%,主轴转矩脉动降低80%以上。由于合流叠加时的平均效果仅受转位角确定,因此此降噪方法的降噪效果对泵工作参数的敏感度较低。第三种,具有能量回收功能的压力平均结构降噪方法则提出通过内死点高压柱塞腔和外死点低压柱塞腔间的压力平均完成柱塞腔的压力过渡,单向流动的压力容腔作为中转站,实现高压柱塞腔闭死容积内部分液压能的回收,并降低柱塞腔与腰型槽之间的流量倒灌总量及峰值。仿真计算结果表明,能量回收总量与高压柱塞腔闭死容积内存储的液压能成正比,在高压和小斜盘倾角时,压力平均的效果最显著,与传统的柱塞泵相比,泵出口流量脉动和斜盘转矩可以分别降低40%和30%以上,泵容积效率可以提高3%以上,因此此设计方法有利于改善柱塞泵在高压小排量时效率低的固有缺陷。
     论文主要结构如下:
     第一章,指出了论文研究的背景和意义,对国内外主要的柱塞泵科研院所和企业相关研究情况进行了调研,综述了柱塞泵减振降噪技术的研究现状和发展趋势,在此基础上确定了本学位论文的研究内容和技术难点。
     第二章,建立完整的轴向柱塞泵噪声激振源评估模型。建立了柱塞泵宏观流动特性数学模型,并基于油膜动态润滑模型对摩擦副微观特性参数进行优化,优化模型中的主要影响参数,为不同降噪方法的降噪效果分析提供理论依据,通过不同工况下流量脉动和容积效率试验测试结果和仿真结果的对比,对模型的仿真精度进行验证。
     第三章,提出低流量脉动轴向柱塞泵配流盘设计方法。首先分析流体噪声和结构噪声耦合形成机理,提出配流盘过渡区设计最佳约束函数;然后建立配流盘过渡区阻尼槽、阻尼孔及腰型槽等参数的计算数学模型,并讨论最佳设计参数的选择,并分析此降噪方法在降柱塞腔压力冲击和流量倒灌幅值、减少配流盘过渡区交叉流量的效果,指出传统配流盘配流结构存在对泵工作参数敏感性高的缺点;最后采用此设计方法对某型号配流盘进行优化设计,通过流量脉动试验对比,验证此设计方法的可行性。。
     第四章,分析具有转位角的同轴驱动双转子结构降噪方法。首先提出具有转位角的双联式轴向柱塞泵结构方案,分析此降噪方案的工作原理;然后优化转位角数值,分析此降噪方法降低出口流量脉动、斜盘转矩脉动和主轴转矩脉动的显著效果及机理,以及降噪效果对轴向柱塞泵工作参数的敏感性;最后对具有转位角双联泵物理实现方案进行设计。
     第五章,分析具有能量回收功能的压力平均结构降噪方法。首先分析柱塞腔油液和压力在配流盘过渡区变化过程,设计基于高速单向阀和压力回收容腔的压力平均配流结构;然后分析此降噪方法的工作原理及显著降低流量脉动和斜盘转矩脉动的原因;最后优化单向阀响应频率和压力回收容腔容积,分析降噪效果受轴向柱塞泵工作参数影响规律,并设计了相关模型泵。
     第六章,对论文的研究结论进行总结,在基础上提出本博士学位论文的创新点,并展望了该研究课题的后续研究方向。
Axial piston pump, the most important driving component of hydraulic transmission system, is widely applied in large-size electromechanical and military equipment. Meanwhile, it constitutes the main source of noise. With the growing attention on the environmental protection, the equipment puts forward increasingly strict demands for components on noise emission, making research on noise reduction of axial piston pump important. An axial piston pump is the most complicated hydraulic component whose research involves several disciplines. The generation mechanisms of noise excitation sources in axial piston pump are complex due to the presence of transitions and coupling transmissions among them. Moreover, the noise reduction is related to the service life of pump, as well as reliability and efficiency. Therefore, noise reduction of axial piston pump is always a great challenge in the hydraulic transmission filed. This thesis focuses on the noise-generation mechanisms of axial piston pump and effective design methods for low-noise axial piston pump.
     Three new noise reduction methods for axial piston pump were proposed in this thesis, which includes the low-flow-ripple valve plate, the tandem axial piston pump with indexing angle and the energy-recuperated pressure equalization unit. The simulation and experimental results showed that all of these methods could reduce both the fluid-born and structural noise. Thus, these methods can be applied in the optimization of existing axial piston pumps and development of new low-noise axial piston pumps. The first design method, a low-flow-ripple valve plate, was designed inventively considering the influence of peak backflow position on outflow ripple. A mathematical model of the flow area calculation of damping grooves was developed, which could realize a smooth pressure transition and a diminishing backflow in the piston chamber. This novel method avoids the repeated simulation, data processing and selection in the traditional ones based on flow characteristics simulation models. It can be applied in the design of valve plate with different damping grooves since the section shape of damping groove is not defined. The experimental comparisons between pumps with and without optimization show that the proposed method is effective in reducing outflow ripple and pressure overshoot in the piston chamber. The second one, a tandem axial piston pump with indexing angle, was innovatively designed to replace the signal rotary unit with two tandem rotary units for axial piston pump with one suction and delivery port. The outflows of these two rotary units have an optimal phase difference. The outflow ripple, swash-plate and shaft torque pulsations can be reduced by more than60%,40%and80%respectively due to the superposition of wave crests and troughs when two flows converge at the delivery port. The superposition effect is only determined by the indexing angle, so the noise reduction effect of this method is insensitive to the pump's working parameters. The third method, the pressure equalization unit composed of two check valves and one-way-flow pressure chamber was creatively proposed, which utilized the hydraulic energy stored in the high-pressure piston chamber at the inner dead center to pressurize the low-pressure piston chamber at the outer dead center. The hydraulic energy stored in the high-pressure piston chamber can be partly recuperated. The amount and peak valve of backflow between the piston chamber and the kidney slot are reduced. Simulation results show that the recuperated energy is proportional to the energy stored in the piston chamber, so the pressure equalization effect is more evident when the pump works at high pressure and small displacement. Compared with traditional pump, the flow ripple and swash-plate torque pulsation can be reduced by more than40%and30%respectively, and the volumetric efficiency can be improved by more than3%.
     In chapter1, the aim and significance of the studies in the dissertation were discussed. Then, the research on axial piston pump at home and abroad was investigated, and the current research progresses and trends on noise reduction of axial piston pump were reviewed. At last, the main research subjects in this dissertation were presented.
     In chapter2, a simulation model of noise excitation sources for axial piston pump was developed. Besides the mathematical model of flow characteristics of axial piston pump, the micro parameters of friction pairs were optimized by a dynamic lubrication oil-film model. The accuracy of simulation model was verified by the comparisons between experimental and simulation results of flow ripple and volumetric efficiency at different working conditions.
     In chapter3, a design method of low-flow-ripple valve plate was discussed. Firstly, the coupling generation mechanisms of fluid-born and structural noises were analyzed, and the influence of the peak backflow on the flow ripple was discussed. Then, the mathematical models for calculations of damping grooves, damping orifices and kidney slots were developed. The influences of design parameters on the noise reduction effect were discussed. The effects of this method on reducing pressure overshoot in the piston chamber, flow ripple at the delivery port and cross flow at the transitional region are analyzed. It was pointed out that the noise reduction effect of valve plate was sensitive to working parameters.Lastly, the valve plate of one domestic axial piston pump was optimized employing this design method, and the noise reduction effect was verified by the comparative experiments.
     In chapter4, a noise reduction method based on a tandem axial piston pump utilizing indexing angle was discussed. Firstly, the working principle of this design method was introduced. Secondly, the indexing angle was optimized to realize better noise reduction effect. The flow ripple, swash-plate and shaft torque pulsation of the tandem pump with indexing angle were compared with the traditional pump. The sensitivity of noise reduction effect to working parameters was also analyzed. Lastly, a model pump was designed.
     In chapter5, a noise reduction method based on pressure equalization mechanism is discussed. Firstly, the variations of pressure and flow in the piston chamber during the transitional region of valve plate are analyzed. The pressure equalization structure composed of two high-speed check valves and a pressure recuperation chamber was designed. Then, the working principle and effects of this method on reducing flow ripple and swash-plate torque pulsation were analyzed. Lastly, the model pump was designed based on the parameters optimization of the check valve and pressure chamber.
     In chapter6, conclusions in this dissertation were summarized and future research proposals were suggested.
引文
[1]翟培详.斜盘式轴向柱塞泵设计[M].煤炭工业出版社,1978.
    [2]徐绳武.柱塞式液压泵[M].机械工业出版社,1985.
    [3]徐绳武.轴向柱塞泵和马达的发展动向[J].液压气动与密封,2003,4:10-15.
    [4]史维祥.流体传动及控制的现状及新发展[J].流体传动与控制,2003(001):1-6.
    [5]王益群,张伟.流体传动及控制技术的评述[J].机械工程学报,2003,39(10):95-99.
    [6]徐绳武.从节能看液压传动控制系统发展的三个阶段[J].液压气动与密封,2005(005):21-28.
    [7]H M. Improving efficiency of hydrostatic drives:The 7th International Conference on Fluid Power Transmission and Control (ICFP 2009), Hangzhou,2009[C].
    [8]Gels S, Murrenhoff H. Simulation of the lubricating film between contoured piston and cylinder[J]. International Journal of Fluid Power,2010,11(2):15-24.
    [9]Lasaar R. The influence of the microscopic and macroscopic gap geometry on the energy dissipation in the lubricating gaps of displacement machines,2000 [C].
    [10]Wohlers A, Murrenhoff H. Tribological Simulation of a Hydrostatic Swash Plate Bearing in an Axial Piston Pump:PTMC, Bath,2007[C].
    [11]Zhang B, Xu B, Yang H, et al. Investigation on the Cross Power Control of Axial Piston Double Pump Based on the Virtual Prototype[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing,2009,3(3):277-288.
    [12]文哲.轴向柱塞泵的变量控制方法与特性研究[D].浙江大学,2011.
    [13]北京欧立信经济信息咨询中心.2011-2015年中国液压马达行业市场深度调研及战略研究咨询报告[R].2010.
    [14]Ivantysynova M, Huang C, CHRISTIANSEN S K. Computer aided valve plate design:An effective way to reduce noise [J]. SAE transactions,2004,113(2):162-173.
    [15]马大猷.声学和人的生活质量[J].噪声与振动控制,2001,21(6):2-6.
    [16]Ivantysynova M, G S, Huang C. Comparison of Different Valve Plate Designs Focusing on Oscillating Forces and Flow Pulsation:The Ninth Scandinavian International Conference on Fluid Power, Linkoping,2005 [C].
    [17]Seeniraj G K, Ivantysynova M. Impact of Valve Plate Design on Noise, Volumetric Efficiency and Control Effort in an Axial Piston Pump,2006 [C]. ASME.
    [18]Helgestad B O, Foster K, Bannister F K. Pressure transients in an axial piston hydraulic pump[J]. ARCHIVE:Proceedings of the Institution of Mechanical Engineers 1847-1982 (vols 1-196),1974,188(1974):189-199.
    [19]Mandal N P, Saha R, Sanyal D. Theoretical simulation of ripples for different leading-side groove volumes on manifolds in fixed-displacement axial-piston pump[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,2008,222(6):557-570.
    [20]H M. active system for noise reduction and efficiency improvement of axial piston pump:Fuild Power and Motion Control 2008, Bath,2008[C].
    [21]Ma J, Fang Y, Xu B, et al. Optimization of cross angle based on the pumping dynamics model[J]. Journal of Zhejiang University-Science A,2010,11(3):181-190.
    [22]Karl B, Bernd E. Die folgenden Angaben sind den vom Anmelder eingererchten Unterlagen entnommen:
    [23]Weingart D I J, Helduser S. Gerauschminderung von Hydraulikpumpen durch aktive Verminderung der Volumenstrom-und Druckpulsation[J]. VDMA-Abschlussbericht, TU Dresden,2004.
    [24]Cho J, Zhang X, Manring N D, et al. Dynamic modelling and parametric studies of an indexing valve plate pump.[J]. International Journal of Fluid Power,2002,3(3):37-48.
    [25]Edge K A, Darling J. A theoretical model of axial piston pump flow ripple,1988[C].
    [26]Cho J. Dynamic modeling and analysis for swash-plate type axial pump control utilizing indexing valve plate[D]. University of Missouri, Columbia,2000.
    [27]那成烈.轴向柱塞泵可压缩流体配流原理[M].兵器工业出版社,2003.
    [28]邢科礼,那成烈.轴向柱塞泵配流盘减振结构对压力特性的影响[J].甘肃工业大学学报,1995,21(003):35-39.
    [29]邢科礼,那成烈.轴向柱塞泵配流盘减振结构对压力流量的影响[J].机械研究和应用,1997,10(1):11-13.
    [30]Harrison K A, Edge K A. Reduction of axial piston pump pressure ripple[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,2000,214(1):53-64.
    [31]Weddfelt K, Pettersson M, Palmberg J O. Methods of Reducing Flow Ripple from Fluid Power Piston Pumps-an Experimental Approach:SAE International Off-Highway & Powerplant Congress,1991[C]. Society of Automotive Engineers,400 Commonwealth Dr. Warrendale, PA,15096, USA,.
    [32]Pettersson M E, Weddfelt K G, PALMBERG J S. Methods of Reducing Flow Ripple From Fluid Power Pumps-A Theoretical Approach[R].Society of Automotive Engineers,400 Commonwealth Dr, Warrendale, PA,15096, USA,1991.
    [33]Johansson A. Design Principles for Noise Reduction in Hydraulic Piston Pumps: Simulation, Optimisation and Experimental Verification[D]. Linokping:Linokping University, 2005.
    [34]SEENIRAJ G K, IVANTYSYNOVA M. Noise Reduction in Axial Piston Machines Based on Multi-Parameter Optimization:4th FPNI-PhD Symp, Sarasota,2006[C].
    [35]Linde. CHINA-Prospekt HPR-02[Z].2010.
    [36]Jones J. Hydraulic Pump Noise Reduction[EB/OL]. http://www.designworldonline.com/hydraulic-pump-noise-reduction/.
    [37]J D. hydrostatische Maschine:
    [38]S H, J W. Piezoaktor 2ur aktiven Pulsationsminderung bei hydraulischen Verdrangereinheiten:4th IFK, Dresden,2004[C].
    [39]Pettersson M, Technology U I L D. Design of Fluid Power Piston Pumps:With Special Reference to Noise Reduction[M]. Division of Fluid Power Technology, Department of Mechanical Engineering, Linkoping University,1995.
    [40]Grahl T. Gerauschminderung an Axialkolbenpumpen durch variable Umsteuersysteme[J].O+P "Olhydraulik und Pneumatik,1989,33.
    [41]Jarchow M. Maβnahmen zur Minderung hochdruckseitiger Pulsationen hydrostatischer Schragscheibeneinheiten[M]. Mainz,1997.
    [42]Harrison A M. Reduction of Axial Piston Pump Pressure Ripple[D]. Bath:Bath University,1997.
    [43]Martin F J. Hydraulic axial piston pump[Z]. Google Patents,1992.
    [44]Johansson A, Palmberg J O, Rydberg K E. Cross angle- a design feature for reducing noise and vibrations in hydrostatic piston pumps.,2001 [C].
    [45]Johansson A, Ovander J, Palmberg J O. Experimental verification of cross-angle for noise reduction in hydraulic piston pumps[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,2007,221(3):321-330.
    [46]Andersson J. Applications of a multi-objective genetic algorithm to engineering design problems,2003 [C]. Springer.
    [47]Johansson A, Andersson J, Palmberg J O. Optimal design of the cross-angle for pulsation reduction in variable displacement pumps,2002 [C]. PROFESSIONAL ENGINEERING PUBLISHING.
    [48]M K. Die Verbesserung des Umsteuerganges schlitzgesteuerter Hydro-Axialkolbenmaschinen mit Hilfe eines Druckansgleichkanals[J]. Olhydraulik und Pneumatik (O+P),1968,12(1):7-21.
    [49]Lemmen R, Joachim S. Axialkolbenmaschine mit Mitteldruckoffnung:
    [50]Kunze T, Berneke S. Noise reduction at hydrostatic pumps by structure optimization and acoustic simulation[C].
    [51]Palmen A. Noise reduction of an axial piston pump by means of structural modification[EB/OL]. ftp://ftp.ifas.rwth-aachen.de/Veroeffentlichungen/OuP_2004_04_Pa_Noise_reduction_of_an_axial_piston_pump_by means_of_structural_modification.pdf.
    [52]周高明.基于壳体结构优化的轴向柱塞泵减振降噪技术研究[D][D].浙江大学,2008.
    [53]童章谦,徐兵.轴向柱塞泵的模态分析及基于壳体的结构优化[J].机床与液压,2010,38(015):65-67.
    [54]徐兵,童章谦,周高明.轴向柱塞泵的振动噪声测试分析及基于壳体的结构优化[J].机床与液压,2010,38(013):116-121.
    [55]童章谦.轴向柱塞泵结构辐射噪声的分析与研究[D].杭州:浙江大学,2012.
    [56]Mikota J, Scheidl R. Comparison of Various Forms of Oscillators for the Compensation of Fluid Flow Pulsations in Hydraulic Systems:Proceedings of XXVIII Summer school:Advanced problems in Mechanics 2000, St. Petersburg, Russia,2000[C].
    [57]Parker样本.Inline Pulse-ToneTM Hydraulic Shock Suppressors[Z].2010.
    [58]Hydac样本.Hydraulic Dampers[Z].2010.
    [59]Kawasaki样本.]educed pressure pulsation type K3 VG[Z].2010.
    [60]Ivantysyn J, Ivantysynova M. Hydrostatic pumps and motors[J]. Saurabh Print-O-Pack A-16, Sector IV, NODIA (UP), India,2001.
    [61]Wieczorek U, Ivantysynova M. Computer aided optimization of bearing and sealing gaps in hydrostatic machines- the simulation tool CASPAR.[J]. International Journal of Fluid Power,2002,3(1):7-20.
    [62]Huang C, Ivantysynova M. A new approach to predict the load carrying ability of the gap between valve plate and cylinder block,2003 [C]. PROFESSIONAL ENGINEERING PUBLISHING.
    [63]Wieczoreck U, Ivantysynova M. CASPAR-A computer aided design tool for axial piston machines,2000[C].
    [64]Becher D. Untersuchungen an einer Axialkolbenpumpe mit Ringsystem zur Minderung von Pulsationen[M]. Shaker,2003.
    [65]余经洪.柱塞泵动态模型与降噪[D][D].上海:上海交通大学,1990.
    [66]余经洪,陈兆能,陆元章.液压柱塞泵配流过程的理论模型及参数辨识[J].上海交通大学学报,1992,4.
    [67]马吉恩.轴向柱塞泵流量脉动及配流盘优化设计研究[D][D].杭州:浙江大学,2009.
    [68]马吉恩,徐兵,杨华勇.轴向柱塞泵流动特性理论建模与试验分析[J].农业机械学报,2010,41(1).
    [69]Vacca A, Klop R, Ivantysynova M. A Numerical Approach for the Evaluation of the Effects of Air Release and Vapour Cavitation on Effective Flow Rate of Axial Piston Machines[J]. International Journal of Fluid Power,2010,11(1).
    [70]Bair S, Michael P. Modelling the pressure and temperature dependence of viscosity and volume for hydraulic fluids [J]. International Journal of Fluid Power,2010,11(2):37-42.
    [71]杨智炜,徐兵,张斌.基于虚拟样机技术的轴向柱塞泵特性仿真[J].液压气动与密封,2006(003):33-36.
    [72]张斌.轴向柱塞泵的虚拟样机及工作油膜试验研究[D].杭州:浙江大学,2009.
    [73]徐兵,张军辉,杨华勇.基于虚拟样机的轴向柱塞泵柱塞副仿真分析[J].兰州理工大学学报,2010,36(003):31-37.
    [74]Seeniraj G K, Ivantysynova M. Multi-objective optimization tool for noise reduction in axial piston machines[J]. SAE International Journal of Commercial Vehicles, 2009,1(1):544-552.
    [75]Seeniraj G K, Ivantysynova M. A multi-parameter multi-objective approach to reduce pump noise generation[J]. International Journal of Fluid Power,2011,12(1):7-17.
    [76]Ericson L. On Fluid Power Pump and Motor Design:Tools for Noise Reduction[D]. LinkSping,2012.
    [77]Edge K A, Wing T J. The measurement of the fluid borne pressure ripple characteristics of hydraulic components [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,1983,197(4):247-254.
    [78]Edge K A, Johnston D N. The'secondary source'method for the measurement of pump pressure ripple characteristics Part 1:description of method[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 1990,204(1):33-40.
    [79]Edge K A. The'secondary source'method for the measurement of pump pressure ripple characteristics Part 2:experimental results[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1990,204(1):41-46.
    [80]Kojima E, Yu J, Ichiyanagi T. Experimental determining and theoretical predicting of source flow ripple generated by fluid power piston pumps[J]. SAE transactions, 2000,109(2):348-357.
    [81]Johnston D N, Drew J E. Measurement of positive displacement pump flow ripple and impedance[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,1996,210(1):65-74.
    [82]Johansson A, Blackman L D. Prediction of Pump Dynamics Utilizing Computer Simulation Model-With Special Reference to Noise Reduction[J]. SAE transactions, 2000,109(2):426-432.
    [83]Weddfelt K, Pettersson M. A General Simulation Program for Flow Ripple of Axial Piston Machines, An Application Program to HOPSAN[Z]. IKP, Linkoping University,1990.
    [84]马吉恩,方攸同,徐兵,等.基于压力波传播特性的动力系统流量脉动测试机理研究[J].
    [85]L O. Investigation of the Temperature Behavior of the Piston Cylinder Assembly in Axial Piston Pumps[J]. International Journal of Fluid Power,2000,1(1):27-38.
    [86]R L, M I. A New Test Rig for Measuring Friction Force in Swash Plate Type Axial Piston Pump:1st Fluid Power Symposium Bratislavian,2000[C].
    [87]Ivantysynova M, Lasaar R. An investigation into micro-and macrogeometric design of piston/cylinder assembly of swash plate machines. [J]. International Journal of Fluid Power, 2004,5(1):23-36.
    [88]陈庆瑞.轴向柱塞泵柱塞副油膜特性测试系统研究[D].杭州:浙江大学,2008.
    [89]GOLD S, HELDUSER S, WUSTMANN W. Experimental and numerical investigations of suction performance of pumps,2008[C].
    [90]Meincke O, Rahmfeld R. Measurements, analysis and simulation of cavitation in an axial piston pump,2008[C].
    [91]MAHA. AVAS[EB/OL]. https://engineering.purdue.edu/Maha/software.html.
    [92]Gels S, Murrenhoff H. Simulation of the lubricating film between contoured piston and cylinder[J]. International Journal of Fluid Power,2010.11(2):15-24.
    [93]陶文诠.数值传热学[Z].西安交通大学出版社,2001.
    [94]帕坦卡,Patankar S. V.,郭宽良,等.传热和流体流动的数值方法[M].安徽科学技术出版社,1984.
    [95]Patir N, Cheng H S. Application of average flow model to lubrication between rough sliding surfaces[J]. ASME J. Lubr. Technol,1979,101 (2):220-230.
    [96]Patir N, Cheng H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication [J]. ASME, Transactions, Journal of Lubrication Technology,1978,100:12-17.
    [97]Ivantysynova M, Huang C. Investigation of the gap flow in displacement machines considering elastohydrodynamic effect,2002[C].
    [98]罗德刚,张伟文.液压轴向柱塞泵JB/T7043—2006[S].2006.
    [99]Achten P, Van den Brink T L, Paardenkooper T, et al. Design and testing of an axial piston pump based on the floating cup principle[J]. Proc. SICFP,2003,3:805-820.
    [100]ACHTEN P A J, SCHELLEKENS M, MURRENHOFF H, et al. Efficiency and low speed behavior of the floating cup pump[J]. SAE transactions,2004,113(2):366-376.
    [101]Achten P A J, van den Brink T L, Potma J W. Movement of the cups on the barrel plate of a floating cup, axial piston machine[J]. International Journal of Fluid Power, 2004,5(2):25-33.
    [102]Achten P A J, Innas B V. Power density of the floating cup axial piston principle, 2004[C].
    [103]Vael G, Lopez I, Achten P. Reducing flow pulsation with the floating cup pump-theoretical analysis,2004[C]. PROFESSIONAL ENGINEERING PUBLISHING.
    [104]宋俊,王淑莲,王洁.液压元件优化[M].机械工业出版社,1999.
    [105]Mehta V. Torque ripple attenuation for an axial piston swash plate type hydrostatic pump:Noise considerations[D]. University of Missouri,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700