用户名: 密码: 验证码:
二氧化钛准一维纳米材料的合成及其高压相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用水热法系统地研究了纳米管、纳米带等不同晶型、不同形貌的TiO_2准一维纳米材料的合成,探讨了水热反应条件对制备TiO_2纳米材料的影响,分析了其生长机制,研究了部分材料的电化学性质;利用原位高压实验技术对准一维TiO_2纳米材料进行了高压结构相变研究,拓展了低维纳米体系下的高压研究。
     利用水热法制备出不同形貌和晶型的TiO_2纳米管、纳米带、纳米“竹筏”。揭示了水热反应过程中反应温度、反应时间、添加物浓度等对反应产物的影响,解释了不同形貌的形成机制,并对其晶型转变做出了合理的解释。
     首次利用水热法制备出多孔洞TiO_2-B纳米带和TiO_2-B@C核壳纳米带,对其电化学特性进行了初步的探索性研究。发现多孔洞结构和碳包覆能够有效的提高TiO_2-B纳米带的电化学嵌锂特性,为设计合成新型纳米锂电池阴极材料提供了一条新思路。
     对单晶TiO_2-B纳米带其进行了高压结构相变研究,发现了TiO_2-B纳米带在高压下的压致非晶及非晶多形现象。利用HRTEM揭示了低密度非晶TiO_2的微观结构,进一步解释了非晶多形现象的本质。提出了TiO_2-B单晶纳米带高压相变过程中的均相成核机制。这是首次在准一维体系中发现了压致非晶及非晶多形现象。
     研究了纳米多孔金红石相微米棒和锐钛矿相TiO_2微米棒/纳米带/纳米棒的高压结构相变。揭示了不同形貌和尺寸对材料结构稳定性和相变规律的影响,这些工作拓展了低维纳米体系下的高压结构相变研究。
TiO_2 nanomaterial is one of the most important semiconductors have become the most focused material because of their potential applications in numbers of fields, such as: photocatalysis, lithium ion batteries, gas sensors, microelectronics, and photovoltaic cells. Recent years, new phenomena and new rules of quasi-one-dimensional namimaterials are important research subjects in the field of condensed matter physics and nanomaterials. Currently, controlled synthesis of quasi-one-dimensional TiO_2 nanomaterials is still a challenge topic. Meanwhile, high pressure structural phase transition of quasi-one-dimensional TiO_2 nanomaterials is also a new topic for further understanding physical properties of low dimensional nanosystems. In this dissertation, we synthesized various quasi-one-dimensional TiO_2 nanomaterials via a hydrothermal route, and studied the effects of reaction temperatures, reaction times and reactant concentrations on their morphologies and crystal structure. We have further analyzed growth mechanisms for the different morphology of TiO_2 nanomaterials. We have successfully synthesized TiO_2 nanoribbons with high density nanocavities and TiO_2@C core-shell nanoribbons, and investigated their electrochemical properties. We also have systematically studied high pressure structural phase transitions of quasi-one-dimensional TiO_2 nanomaterials, and revealed the effects of morphologies and sizes on their high pressure phase transitions.
     TiO_2 quasi-one-dimensional nanomaterials with different morphologies and structures were synthesized by modified the reaction time, reaction temperature, and reactant concentration during the hydrothermal process. It was found that anatase TiO_2 nanotubes and TiO_2-B nanoribbons can be obtained through controlling reaction times and reaction temperatures. Reaction times and reaction temperatures can modify and control reaction process and growth velocity. It revealed that the growth mechanism from titanate nanotubes to nanobelts. The filling degrees have no obvious effects on hydrothermal reaction that morphologies and crystallinity of as-prepared TiO_2 nanomaterials are not affected by filling degrees. The reactant concentrations have important effects on morphologies and crystal structures of as-prepared TiO_2 nanomaterials. Through controlling reactant concentrations, we obtained anatase“nano-bamboo raft”, anatase/TiO_2-B nanoribbons and TiO_2-B nanoribbons. We also found the crystal structures and crystallinity of titanate play important roles in the calcination process, which determined crystal structures of as-prepared TiO_2 nanomaterials. After calcinations, titanate with low crystallinity converts into anatase TiO_2, while titanate with high crystallinity converts into TiO_2-B.
     TiO_2-B@C core-shell nanoribbons were synthesized via a simple hydrothermal route, firstly. The nanoribbons are up to tens of micrometers in length and 50-200 nm in width. TiO_2-B@C core-shell nanoribbons shown higher discharge capacity (360 mAh/g) than those of bare TiO_2-B nanowires and nanotubes. It was found that the carbon shell not only benefits to enhance their discharge specific capacity, but also improved their surface conduction properties. This novel material could also be applied in various fields, for example, catalysis, gas sensors, electrode materials. Our study offers an effective method for the preparation of high-quality TiO_2-B@C nanoribbons and provides a better opportunity for the further investigation of their properties and applications. In addition, we further studied the stability of TiO_2-B@C nanoribbons in the range of 500-1000 oC, obtained various crystal structural (TiO_2-B, anatase and rutile) TiO_2@C core-shell nanomaterials. Our results showed that the inner TiO_2-B nanoribbons have similar phase transition series with those of bare TiO_2-B nanowires under high temperatures, but with different phase transition temperatures. The carbon shell can not only preserved TiO_2-B nanoribbons morphology to high temperature, but also decreased the phase transition temperature to rutile phase. It also provides a new approach for preparing rutile TiO_2 nanomaterials under relative low temperatures.
     TiO_2-B nanoribbons with high density nanocavities were successfully synthesized via a simple hydrothermal route and posttreatment. The as-prepared TiO_2-B nanoribbon is a single crystal grow along the [010] direction, which has a uniform width (30-200 nm) and length (tens of micrometers). The TiO_2-B nanoribbons have high specific surface area (305 m2/g) because of large number of nanocavities inside TiO_2-B nanoribbons. Electrochemical measurements indicated that the TiO_2-B nanoribbons with dense nanocavities showed high discharge specific capacity (356 mAh/g) and good cycle stability. The discharge specific capacity is higher than those of TiO_2-B nanowires and nanotubes. It was found that the dense nanocavities have an important influence on the electrochemical lithium intercalation properties, which is benefit to improve their electrochemical properties. These TiO_2-B nanoribbons with dense nanocavities also may be of interest for a variety of applications such as gas sensors and photocatalysts.
     Nanoporous anatase TiO_2 rods and rutile TiO_2 chrysanthemums were successfully synthesized via a simple ethylene glycol-mediated synthesis route. We found a self-assembly growth takes place in the calcinations under vacuum. The possible mechanism: titanium glycolate rods were aggregated and self-assembled grown into chrysanthemums with the dehydration and carbonization of organic groups of titanium glycolate rods in vacuum. The pure rutile TiO_2 chrysanthemums were obtained through calcining TiO_2/C chrysanthemums in air (400 oC). In this process, the organic compositions of titanium glycolate rods and carbon of TiO_2/C chrysanthemums play important roles in the phase transition toward rutile phase.
     The structural phase transitions of single-crystalline TiO_2-B nanoribbons were investigated by in-situ high pressure synthrotron radiation X-ray diffraction and Raman methods. The morphology changes of samples were observed before compression and after decompression by TEM and HRTEM. It was found that TiO_2-B nanoribbons begin to transform into high density amorphous form upon compression, the high density amorphous form transforms into the low density amorphous form upon decompression. The pressure induced amorphization and polyamorphism were observed in TiO_2 one-dimensional nanomaterials for the first time. It was found that the high density amorphous form and the low density amorphous form have structural relation with baddeleyite andα-PbO_2 structures, respectively. HRTEM images showed that the low density amorphous TiO_2 nanoribbon is a long range disordered and short range ordered structure, in which some short range domains withα-PbO_2 structure randomly dispersive in the body of nanoribbons. We further revealed that the structural relations are originated from these baddeleyite andα-PbO_2 structural nucleus, respectively, the transformation between the high density amorphous form and the low density amorphous form are determined by these nucleus with different crystal structures. We proposed a homogeneous nucleation mechanism to explain the pressure induced phase transitions for the TiO_2-B nanoribbons, and revealed the essence of structural relation between the high/low density amorphous forms and baddeleyite/α-PbO_2 structures. In addition, we also found that the low density amorphous TiO_2 are still remain their pristine nanoribbon morphologies. It also provides a new method for preparing one-dimensional amorphous nanomaterials from crystalline nanomaterials.
     High pressure structural phase transitions of nanoporous TiO_2 microrods, anatase TiO_2 nanoribbons and nanorods were studied. It was found that nanoporous rutile TiO_2 microrods take on an abnormal property that phase transition pressure is elevated. This abnormal property is associated with their particular nanoporous structure. We suggested that a large volume collapse does not occur during the phase transition from rutile to baddeleyite, so the surface energy becomes the main reason for their phase transition pressure. For the nanoporous anatase TiO_2 microrods, anatase phase is stable up to ~16 GPa, then transform into amorphous form directly. Upon decompression, the amorphous form transform intoα-PbO_2 structure. These unique phase transition behaviors are also associated with their nanoporous structure. In anatase TiO_2 nanoribbons, the anatase phase is stable up to ~12 GPa, and transforms to baddeleyite phase directly, then pressure induced amorphization occurs under higher pressure. Upon decompression, the amorphous form transforms intoα-PbO_2 structure under low pressures which remains at ambient pressure. In anatase TiO_2 nanorods, the anatase phase is stable up to ~16 GPa, and transforms into amorphous form under higher pressure. The low orderedα-PbO_2 structure is obtained after released to ambient pressure. We found that the high pressure phase transition processes of nanoporous TiO_2 microrods, anatase TiO_2 nanorods and nanoribbons are absolutely different from those of the corresponding bulks. We suggested that morphologies and sizes play a crucial role during the high pressure phase transitions, in which high surface energy enhances pristine structural stability, small size effects preclude nucleation and growth of high pressure phases and result in pressure-induced amorphization under high pressures.
引文
[1]Chen X B, Mao S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications [J]. Chem. Rev., 2007, 107, 2891-2959.
    [2]Bavykin D V, Friedrich J M, Walsh F C. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications [J]. Adv. Mater., 2006, 2807-2824.
    [3]Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes [J]. J Mater. Chem., 2007, 17, 1451-1457.
    [4]Yeredla R R, Xu H F. An investigation of nanostructured rutile and anatase plates for improving the photosplitting of water [J]. 2008, 19, 055706.
    [5]Kumar A, Jose R, Fujihara K, et al. Structural and optical properties of electrospun TiO2 nanofibers [J]. Chem. Mater., Nanotechnology, 2007, 19, 6536-6542.
    [6]Peng X S, Chen A C. Large-scale synthesis and characterization of TiO2-based nanostructures on Ti substrates [J]. Adv. Funct. Mater., 2006, 16, 1355-1362.
    [7]Sugimoto T, Zhou X P, Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 3. Formation process and size control [J]. J. Colloid Interface Sci., 2003, 259, 43-52.
    [8]Sugimoto T, Zhou X P, Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 4. Shape control [J]. J. Colloid Interface Sci., 2003, 259, 53-61.
    [9]Wang S, Ji L J, Wu B, et al. Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes [J]. Appl. Surf. Sci., 2008, 255, 3263-3266.
    [10]Zhao L, Yu J G. Controlled synthesis of highly dispersed TiO2 nanoparticles using SBA-15 as hard template [J]. J. Colloid Interface Sci., 2006, 304, 84-91.
    [11]Eiden-Assmann S, Widoniak J, Maret G. Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles [J]. Chem. Mater., 2004, 16, 6-11.
    [12]Li DF, Guo YH, Hu CW, et al. A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films [J]. Mater. Chem. Phys., 2004, 83, 169-177.
    [13]Chemseddine A, Morotz T. Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization [J]. Eur. J. Inorg. Chem., 1999, 2, 235-245.
    [14]Liu S M, Gan L M, Liu L H, Zhang W D, Zeng H C. Synthesis of Single-Crystalline TiO2 Nanotubes [J]. Chem. Mater., 2002, 14, 1391-1397.
    [15]Anukunprasert T, Saiwan C, Traversa E. Microstructure effect of nanocrystalline titanium dioxide prepared by microemulsion technique on photocatalytic decomposition of phenol [J]. J. Mater. Res., 2006, 21, 3001-3008.
    [16]Wang J Y, Liu Z H, Zheng Q, et al. Preparation of photosensitized nanocrystalline TiO2 hydrosol by nanosized CdS at low temperature [J]. Nanotechnology, 2006, 17, 4561-4566.
    [17]Zhang W J, He Y Q, Qi Q. Synthesize of porous TiO2 thin film of photocatalyst by charged microemulsion templating [J]. Mater. Chem. Phys. 2005, 93, 508-515.
    [18]Yan M C, Chen F, Zhang J L, et al. Preparation of controllable crystalline titania and study on the photocatalytic properties [J]. J Phys. Chem. B, 2005, 109, 8673-8678.
    [19]Fernandez-Garcia M, Martinez-Arias A, Fuerte A, et al. Nanostructured Ti-W mixed-metal oxides: Structural and electronic properties [J]. J. Phys. Chem. B, 2005, 109, 6075-6083.
    [20]Yan MC, Chen F, Zhang JL. Synthesis of controllable crystalline nano-TiO2 at low temperature [J]. 2004, Chem. Lett., 33, 1352-1353.
    [21]Moriguchi I, Katsuki Y, Yamada H, et al. Bicontinuous microemulsion-aided synthesis of mesoporous TiO2 [J]. 2004, Chem. Lett., 33, 1102-1103.
    [22]Zhang D B, Qi L M, Ma J M, et al. The formation of crystalline nanosized titania in reverse micelle at room temperature [J]. J. Mater. Chem., 2002, 12, 3677-3680.
    [23]Kim K D, Kim S H, Kim H T. Applying the taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles. ColloidsSurf., A, 2005, 254, 99-105.
    [24]Li G L, Wang, G H. Synthesis of nanometer-sized TiO2 particles by a microemulsion method [J]. Nanostruct. Mater., 1999, 11, 663-668.
    [25]Lin J, Lin Y, Liu P, et al. Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension [J]. J. Am. Chem. Soc., 2002, 124, 11514-11518.
    [26]Zhu H Y, Lan Y, Gao X P, Ringer S P, et al. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions [J]. J. Am. Chem. Soc., 2005, 127, 6730-6736.
    [27]Zhu J F, Zhang J L, Chen F, et al. Preparation of high photocatalytic activity TiO2 with a bicrystalline phase containing anatase and TiO2(B) [J]. Mater. Lett., 2005, 59, 3378-3381.
    [28]Morgado Jr E, Jardim P M, Marinkovic B A, et al. Multistep structural transition of hydrogen tritanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials [J]. Nanotechnology, 2007, 18, 495710.
    [29]Nian J N, Teng H. Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor [J]. J. Phys. Chem. B, 2006, 110, 4193-4198.
    [30]Kasuga T, Hiramatsu M, Hoson A, et al. Titania nanotubes prepared by chemical processing [J]. Adv. Mater., 1999, 11, 1307-1311.
    [31]Armstrong A R, Armstrong G, Canales J, et al. TiO2-B nanowires as negative electrodes for rechargeable lithium batteries [J]. J. Powder Sources, 2005, 146, 501-506.
    [32]Horvath E, Kukovecz A, Konya Z, et al. Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave [J]. Chem. Mater., 2007, 19, 927-931.
    [33]Wang N, Lin H, Li J B, et al. Effect of annealing temperature on phase transition and optical property of titanate nanotubes prepared by ion exchange approach [J]. J. Alloys Compounds, 2005, 178, 2179-2185.
    [34]Elsanousi A, Elssfah E M, Zhang J, et al. Hydrothermal treatment duration effecton the transformation of titanate nanotubes into nanoribbons [J]. J. Phys. Chem. C, 2007, 111, 14353-14357.
    [35]Wen P H, Itoh H, Tang W P, et al. Single nanocrystals of anatase-type TiO2 prepared from layered titanate nanosheets: formation mechanism and characterization of surface properties [J]. Langmuir, 2007, 23, 11782-11790.
    [36]Weng L Q, Sog S H, Hodgson S, et al. Synthesis and characterisation of nanotubular titanates and titania [J]. J. European Ceramic Society, 2006, 26, 1405-1409.
    [37]Tsai C C, Teng H. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments [J]. Chem. Mater., 2006, 18, 367-373.
    [37]Nian J N, Chen S A, Tsai C C, et al. Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes [J]. J. Phys. Chem. B, 2006, 110, 25817-25824.
    [38]Lin Y J, Wang L, Chiu W Y. Preparation and characterization of titania nanotubes and hybrid materials derived from them [J]. J. Vac. Sci. Technol. B, 2005, 23, 2398-2402.
    [39]Kolen’ko Y V, Kovinir K A, Gavrilov A I, et al. Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide [J]. J. Phys. Chem. B, 2006, 110, 4030-4038.
    [40]Xu C K, Zhan Y J, Hong K Q, et al. Growth and mechanism of titania nanowires [J]. Solid State Communications, 2003, 126, 545-549.
    [41]Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube [J]. Langmuir, 1998, 14, 3160-3163.
    [42]Paudel B, Wang W Z, Dames C, et al. Formation of crystallized titania nanotubes and their transformation into nanowires [J]. Nanotechnologu, 2005, 16, 1935-1940.
    [43]Yao B D, Chan Y F, Zhang X Y, et al. Formation mechanism of TiO2 nanotubes [J]. Appl. Phys. Lett., 2003, 82, 281-283.
    [44]Tomita K, Petrykin V, Kobayashi M, et al. A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method [J]. Angew. Chem. Int. Ed., 2006, 45, 2378-2381.
    [45]吴玉,徐柏庆,单斜相片状纳米TiO2的合成和表征[J].科学通报,2005,13,1310-1313.
    [46]Chae S Y, Park M K, Lee S K, et al. Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films [J]. Chem. Mater., 2003, 15, 3326-3331.
    [47]Zhang Q H, Gao L. Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: Insights from rutile TiO2 [J]. Langmuir, 2003, 19, 967-971.
    [48]Bae E, Murakami N, Ohno T. Exposed crystal surface-controlled TiO2 nanorods having rutile phase from TiCl3 under hydrothermal conditions [J]. J. Molecular Cata. A-Chem., 2009, 300, 72-79.
    [49]Jiang Y H, Yin H B, Sun Y M, et al. Effects of organic acids on the size-controlled synthesis of rutile TiO2 nanorods [J]. Appl. Surf. Sci., 2007, 253, 9277-9282.
    [50]Yu K F, Zhao J Z, Zhao X, et al. Self-assembly and oriented organization of shape-controlled nanocrystalline TiO2 [J]. Mater. Lett., 2005, 59, 2676-2679.
    [51]Armstrong A R, Armstrong G, Canales J, et al. TiO2-B nanowires [J]. Angew. Chem. Int. Ed., 2004, 43, 2286-2288.
    [52]Zhang S, Liu C Y, Liu Y, et al. Room temperature synthesis of nearly monodisperse rodlike rutile TiO2 nanocrystals [J]. Mater. Lett., 2009, 63, 127-129.
    [53]Chen R F, Zhang L, Wei Y, et al. Preparation of rutile (TiO2) nanostructured materials at low temperature from TiCl4 aqueous solution [J]. J. Mater. Sci., 2007, 42, 7141-7146.
    [54]Cassaignon S, Koelsch M, Jolivet J P. Selective synthesis of brookite, anatase and rutile nanoparticles: thermolysis of TiCl4 in aqueous nitric acid [J]. J. Mater. Sci., 2007, 42, 6689-6695.
    [55]Chen Y H, Lin A, Gan F X. Preparation of nano-TiO2 from TiCl4 by dialysis hydrolysis [J]. Powder Technology, 2006, 167, 109-116.
    [56]Lee J H, Yang Y S. Synthesis of TiO2 nanoparticles with pure brookite at low temperature by hydrolysis of TiCl4 using HNO3 solution [J]. J. Mater. Sci., 2006, 41, 557-559.
    [57]Jing S, Lian G. Influence of the TiCl4 hydrolysis condition on the phase transformation [J]. J. Inorg. Mater., 2003, 18, 505-508.
    [58]Zhang Q H, Gao L, Guo J K. Effects of sulfate ions and hydrolytic temperature on the properties of TiCl4-derived nanostructured TiO2 [J]. J. Inorg. Mater., 2000, 15, 992-998.
    [59]Zhang Q H, Gao L, Guo J K. Preparation of nanosized TiO2 powders from hydrolysis of TiCl4 [J]. J. Inorg. Mater., 2000, 15, 21-25.
    [60]Park N G, Schlichthorl G, Van de Lagemaat J, et al. Dye-sensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4 [J]. J. Phys. Chem. B, 1999, 103, 3308-3314.
    [61]Niederberger M, Bartl M H, Stucky G D. Benzyl Alcohol and Titanium Tetrachloride A Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles [J]. Chem. Mater., 2002, 14, 4364-4370.
    [62]Joo J, Kwon S G, Yu T, et al. Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli. [J]. J. Phys. Chem. B., 2005, 109, 15297-15302.
    [63]Zhang Z, Zhong X H, Liu D, et al. Strong optical limiting capability of a triosmium cluster bonded indium porphyrin complex [(TPP)InOs3(μ-H)2(CO)9(μ-η2-C5H4N)] [J]. Angew. Chem. Int. Ed., 2005, 44, 3466-3470.
    [64]Das K, Panda S K, Chaudhuri S. Solvent-controlled synthesis of TiO2 1Dnanostructures: Growth mechanism and characterization [J]. J. Cryst. Growth, 2008, 310, 3792-3799.
    [65]Supphasrirongjaroen P, Praserthdam P, Panpranot J, et al. Effect of quenching medium on photocatalytic activity of nano-TiO2 prepared by solvothermal method [J]. Chem. Engineering J., 2008, 138, 622-627.
    [66]Yin S, Komatsu M, Liu B, et al. Improvement of thermal stability of nitrogen doped titania photocatalyst by addition of surfactants during solvothermal treatment [J]. J. Mater. Sci., 2008, 43, 2240-2246.
    [67]Wu Z B, Gu Z L, Zhao W R, et al. Photocatalytic oxidation of gaseous benzene over nanosized TiO2 prepared by solvothermal method [J]. Chinese Science Bulletin, 2007, 52, 3061-3067.
    [68]Qin W, Liu J J, Zuo S L, et al. Solvothermal synthesis of nanosized TiO2 particles with different crystal structures and their photocatalytic activities [J]. J. Inorg. Mater., 2007, 22, 931-936.
    [69]Xie R C, Shang J K. Morphological control in solvothermal synthesis of titanium oxide [J]. J. Mater. Sci., 2007, 42, 6583-6589.
    [70]Kim C S, Moon B K, Park J H, et al. Solvotherinal synthesis of nanocrystalline TiO2 in toluene with surfactant [J]. J. Cryst. Growth, 2003, 257, 309-315.
    [71]Kim C S, Moon B K, Park J H, et al. Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route [J]. J. Cryst. Growth, 2003, 254, 405-410.
    [72]Li X L, Peng Q, Yi J X, et al. Near Monodisperse TiO2 Nanoparticles and Nanorods [J]. Chem.-Eur. J., 2006, 12, 2383.
    [73]Wen B M, Liu C Y, Liu Y. Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires [J]. New J. Chem., 2005, 29, 969-971.
    [74]Zhao L, Yu Y, Song L X, et al. Synthesis and characterization of nanostructured titania film for photocatalysis [J]. Appl. Surf. Sci., 2005, 239, 285-291.
    [75]Nanu M, Schoonman J, Goossens A. Solar-energy conversion in TiO2/CuInS2 nanocomposites [J]. Adv. Func. Mater., 2005, 15, 95-100.
    [76]Cozzoli P D, Curri M L, Agostiano A. Efficient charge storage in photoexcitedTiO2 nanorod-noble metal nanoparticle composite systems [J]. Chem. Comm. 2005, 25, 3186-3188.
    [77]Mori S N, Kubo W, Kanzaki T, et al. Investigation of the effect of alkyl chain length on charge transfer at TiO2/dye/electrolyte interface [J]. J. Phys. Chem. C, 2007, 111, 3522-3527.
    [78]Ramier J, Da Costa N, Plummer CJG, et al. Cohesion and adhesion of nanoporous TiO2 coatings on titanium wires for photovoltaic applications [J]. Thin Solid Films, 2008, 516, 1913-1919.
    [79]Li G, Jiang K J, Li YF, et al. Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells [J]. J. Phys. Chem. C, 2008, 112, 11591-11599.
    [80]Henderson M A. Relationship of O-2 photodesorption in photooxidation of acetone on TiO2 [J]. J. Phys. Chem. C, 2008, 112, 11433-11440.
    [81]Kang T S, Smith A P, Taylor B E, et al. Fabrication of Highly-Ordered TiO2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells [J]. Nano Lett., 2009, 9, 576-582.
    [82]Wei M D, Qi Z M, Ichihara M, et al. Ultralong single-crystal TiO2-B nanowires: synthesis and electrochemical measurements [J]. Chem. Phys. Lett., 2006, 424, 316-320.
    [83]Zhang H, Li G R, An L P, et al. Electrochemical lithium storage of titanate and titania nanotubes and nanorods [J]. J. Phys. Chem. C, 2007, 111, 6143-6148.
    [84]Wang K X, Wei M D, Morros A A, et al. Mesoporous titania nanotubes: their preparation and application as electrode materials for rechargeable lithium batteries [J]. Adv. Mater. 2007, 19, 3016-3020.
    [85]Wang G, Wang Q, Lu W, et al. Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors [J]. J. Phys. Chem. B, 2006, 110, 22029-22034.
    [86]Armstrong A R, Armstrong G, Canales J, et al. TiO2-B nanowires as negative electrodes for rechargeable lithium batteries [J]. J. Powder Sources, 2005, 146,501-506.
    [87]Bizarro M, Tapia-Rodriguez M A, Ojeda ML, et al. Photocatalytic activity enhancement of TiO2 films by micro and nano-structured surface modification [J]. Appl. Surf. Sci., 2009, 255, 6232-6239.
    [88]Chen C M, Shiu H S, Cheng S J, et al. Preparation of polymer film of micro-porous or island-like structure and its application in dye-sensitized solar cell [J]. J. Powder Sources, 2009, 188, 319-322.
    [89]Deng L X, Wang S R, Liu D Y, et al. Synthesis, Characterization of Fe-doped TiO2 Nanotubes with High Photocatalytic Activity [J]. Catalysis Letters, 2009, 129, 513-518.
    [90]Pan Z, Lee W, Slutsky L, et al. Adverse Effects of Titanium Dioxide Nanoparticles on Human Dermal Fibroblasts and How to Protect Cells [J]. Small, 2009, 5, 511-520.
    [91]Desilvestro J, Graetzel M, Kavan L, et al. Highly efficient sensitization of titanium dioxide [J]. J. Am. Chem. Soc., 1985, 107, 2988-2990.
    [92]Graetzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. J. Photochem. Photobiol. A: Chem., 2004, 164, 3-14.
    [93]Jiang C H, Hosono E, Zhou H S. Nanomaterials for lithium ion batteries [J]. Nanotoday, 2006, 1, 28-33.
    [94]Brousse T, Marchand R, Taberna P L, et al. TiO2(B)/activated carbon non-aqueous hybrid system for energy storage [J]. J. Powder Sources, 2006, 158, 571-577.
    [95]Fu L J, Liu H P, Zhang C, et al. Novel TiO2/C naocomposites for anode materials of lithium ion batteries [J]. J. Powder Sources, 2006, 159, 219-222.
    [96]Anji Reddy M, Satya Kishore M, Prolong V, et al. Lithium intercalation into nanocrystalline brookite TiO2 [J]. Electrochem. Solid-State Lett. 2007, 10, A29-A31.
    [97]Anji Reddy M, Prolong V, Varadaraju U V, et al. Crystallite size constraints on lithium insertion into brookite TiO2 [J]. Electrochem. Solid-State Lett. 2008, 11, A132-A134.
    [98]Armstrong A R, Armstrong G, Canales J, et al. Lithium-ion intercalation into TiO2-B nanowires [J]. Adv. Mater., 2005, 17, 862-865.
    [99]Garzella C, Comini E, Tempesti E, et al. TiO2 thin films by a novel sol processing for gas sensor applications [J]. Sens. Actuators B, 2000, 68, 189-196.
    [100]Hyodo T, Mori T, Kawahara A, et al. Gas sensing properties of semiconductor heterolayer sensors fabricated by slide-off transfer printing [J]. Sens. Actuators B, 2001, 77, 41-47.
    [101]Varghese O K, Mor G K, Grimes C A, et al. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations [J]. J. Nanosci. Nanotech., 2004, 4, 733-737.
    [102]Mor G K, Varghese O K, Paulose M, et al. A self-cleaning, room-temperature titania-nanotube hydrogen gas sensor [J]. Sens. Lett., 2003, 1, 42-46.
    [103]Varghese O K, Gong D W, Paulose M, et al. Hydrogen sensing using titania nanotubes [J]. Sens. Actuators B-Chem., 2003, 93, 338-344.
    [104]任莉,祖庸.超微细粉体TiO2的性能及应用[J].钛工业进展, 1996, 5, 37-39.
    [105]Peng X S, Chen A C. Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone [J]. J. Mater. Chem., 2004, 14, 2542-2548.
    [106]Varghese O K, Gong D, Paulose M, et al. Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone [J]. Adv. Mater., 2003, 15, 624-627.
    [107]Liu S Q, Huang K L. Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate [J]. Sol. Energy Mater. Sol. Cells, 2004, 85, 125-131.
    [108]Wu J M. Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide. J. Cryst. Growth, 2004, 269, 347-355.
    [109]Huang Q, Gao L, A simple route for the synthesis of rutile TiO2 nanorods [J]. Chem. Lett., 2003, 32, 638-639.
    [110]Kaper H, Endres F, Djerdj I, et al. Direct low-temperature synthesis of rutile nanostructures in ionic liquids [J]. Small, 2007, 3, 1753-1756.
    [111]Han W Q, Wu L J, Klie R F, et al. Enhanced optical absorption induced by dense nanocacities inside titania nanorods [J]. Adv. Mater., 2007, 19, 2525-2529.
    [112]Du J M, Zhang J L, Liu Z M, et al. Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route [J]. Langmuir, 2006, 22, 1307-1312.
    [113]Cheng X J, Chen M, Wu L M, et al. Novel and facile method for the preparation of monodispersed titania hollow spheres [J]. Langmuir, 2006, 22, 3858-3863.
    [114]Swamy V, Dubrovinsky L S, Dubrovinskaia N A, et al. Compression behavior of nanocrystalline anatase TiO2 [J]. Solid State Comm., 2003, 125, 111-115.
    [115]Wang Z W, Saxena S K, Pischedda V, et al. X-ray diffraction study on pressure-induced phase transformation in nanocrystalline anatase/rutile(TiO2) [J]. J. Phys.: Condens. Matter, 2001, 13, 8317-8323.
    [116]Swamy V, Kuznetsov A, Dubrovinsky L S, et al. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2 [J]. Phys. Rev. B, 2005, 71, 184302.
    [117]Swamy V, Kuznetsov A, Dubrovinsky L S, et al. Size-dependent pressure-induced amorphization in nanoscale TiO2 [J]. Phys. Rev. Lett., 2006, 96, 135702.
    [118]Pischedda V, Hearne G R, Dawe A M, et al. Ultrastability and enhanced stiffness of ~6 nm TiO2 nanoanatase and eventual pressure-induced disorder on the nanometer scale [J]. Phys. Rev. Lett., 2006, 96, 035509.
    [119]Hearne G R, Zhao J, Dawe A M, et al. Effect of grain size on structural transitions in anatase TiO2: a raman spectroscopy study at high pressure [J]. Phys. Rev. B, 2004, 70, 134102.
    [120]Wang Z W, Saxena S K. Raman spectroscopic study on pressure-induced amorphization in nanocrystalline anatase(TiO2) [J]. Solid State Comm. 2001, 118, 75-78.
    [121]Lagarec K, Desgreniers S. Raman study of single crystal anatase TiO2 up to 70GPa [J]. Solid State Comm., 1995, 94, 519-524.
    [122]Gerward L, Staun Olsen J. Post-rutile high pressure phases in TiO2 [J]. J. Appl. Cryst., 1997, 30, 259-264.
    [123]Dubrovinskaia N A, Dubrovinsky L S, Ahujia R, et al. Experimental and theoretical identification of a new high-pressure TiO2 polymorph [J]. Phys. Rev. Lett., 2001, 87, 275501.
    [124]Flank A M, Lagarde P, Itie J P, et al. Pressure-induced amorphization and a possible polyamorphism transition in nanosized TiO2: an x-ray absorption spectroscopy study [J]. Phys. Rev. B, 2008, 77, 224112.
    [125]Wang Y J, Zhang J Z, Wu J, et al. Phase transition and compressibility in silicon nanowires [J]. Nano Lett., 2008, 8, 2891-2895.
    [126]Wang Z W, Daemen L L, Zhao Y S, et al. Morphology-tuned wurtzite-type ZnS nanobelts [J]. Nature materials, 2005, 4, 922-927.
    [127]Shen L H, Li X F, Ma Y M, et al. Pressure-induced structural transition in AlN naowires [J]. Appl. Phys. Lett., 2006, 89, 141903.
    [128]Wu D, Liu J, Zhao X N, et al. Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts [J]. Chem. Mater., 2006, 18, 547-553.
    [129]Armstrong G, Armstrong A R, Canales J, et al. Nanotubes with the TiO2-B structure [J]. Chem. Comm., 2005, 2454-2456.
    [130]Sun X M, Li Y D. Ag@C Core Shell Structured Nanoparticles Controlled Synthesis Characterization and Assembly [J]. Langmuir, 2005, 21, 6019-6024.
    [131]Orlanducci S, Sessa V, Terranova, M L, Battiston G A, Battiston S, Gerbasi R. Nanocrystalline TiO2 on single walled carbon nanotube arrays: Towards the assembly of organized C/TiO2 nanosystems [J]. Carbon, 2006, 44, 2839-2843.
    [132]Gong J Y, Yu S H, Qian H S, Luo L B, Li T W. PVA-assisted hydrothermal synthesis of copper@carbonceous submicrocables: thermal stability, and their conversion into amorphous submicrotubes [J]. J. Phys. Chem. C, 2007, 111, 2490-2496.
    [133]Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with nobel-metal nanoparticles [J]. Angew. Chem. Int. Ed., 2004, 43, 597-601.
    [134]Sun X M, Liu J F, Li Y D. Oxides@C core-shell nanostructures: one-step synthesis, rational conversion, and Li storage property [J]. Chem. Mater., 2006, 18, 3486-3494.
    [135]Lin L, Lin W, Zhu Y X, et al. Uniform carbon-covered titania and its photocatalytic property [J]. J Mol. Catal. A: Chem., 2005, 236, 46-53.
    [136]Lei Z B, Xiao Y, Dang L Q, et al. Nickel-Catalyzed Fabrication of SiO2, TiO2/Graphitized Carbon, and the Resultant Graphitized Carbon with Periodically Macroporous Structure [J] Chem. Mater., 2007, 19, 477-484.
    [137]Fu L J, Zhang H P, Li C. et al. Novel TiO2/C nanocomposites for anode materials of lithium ion batteries [J]. J. Power Sources, 2006, 159, 219-222.
    [138]Yoshida R, Suzuki Y, Yoshikawa S. Synthesis of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments [J]. J. Solid State Comm., 2005, 178, 2179-2185.
    [139]Li Q J, Zhang J W, Liu B B, et al. Synthesis and electrochemical properties of TiO2-B@C core-shell nanoribbons [J]. Cryst. Growth Des., 2008, 8, 1812-1814.
    [140]Reddy M A, Kishore M S, Pralong V, et al. Room temperature synthesis and Li insertion into nanocrystalline rutile TiO2 [J]. Electrochem. Comm., 2006, 8, 1299-1303.
    [141]MishimaO, CalvertLD, Whalley E. Melting ice’I at 77 K and 10 kbar: a new method of making amorphous solids [J]. Nature, 1984, 310, 393-395.
    [142]Deb S D, Wilding M, Somayazulu M, et al. Pressure-induced amorphization and an amorphous-amorphous transition in densified porous silicon [J]. Nature, 2001, 414, 528-530.
    [143]Perottoni C A, Jornada J A H. Pressure-induced amorphization and negative thermal expansion in ZrW2O8 [J]. Science, 1998, 280, 886-889.
    [144]Mcmillan P F. Polyamorphic transformations in liquids and glasses [J]. J. Mater. Chem., 2004, 14, 1506-1512.
    [145]Mishima O, Calvert L D, Whalley E. An apparently first-order transition between two amorphous phases of ice induced by pressure [J]. Nature, 1985, 314, 76-78.
    [146]Hemley R J, Jephcoat A P, Mao H K, et al. Pressure-induced amorphization of crystalline Silica [J]. Nature, 1988, 334, 52-54.
    [147]Mcmillan P F, Wilson M, Daisenberger D, et al. A density-driven phase transition between semiconducting and metallic polyamorphs of silicon [J]. Nature Materials, 2005, 4, 680-684.
    [148]Marchand R, Brohan L, Tournoux M, et al. TiO2(B) a form of titanium dioxide and the potassium octatitanate K2Ti8O17 [J]. Mat. Res. Bull., 1980, 15, 1129-1133.
    [149]Brohan L, Verbaere A, Tournoux M, et al. La transformation TiO2(B)-anatase [J]. Mat. Res. Bull., 1982, 17, 355-361.
    [150]Jiang X C, Wang Y L, Herricks T, et al. Ethylene glycol-mediated synthesis of metal oxide nanowires [J]. J. Mater. Chem., 2004, 14, 695-703.
    [151]Wei M D, Zhou H S, Konishi Y, et al. Synthesis of tubular titanate via a self-assembly and self-removal process [J]. Inorg. Chem., 2006, 45, 5684-5690.
    [152]Pol V G, Langzam Y, Zaban A. Application of microwave superheating for the synthesis of TiO2 rods [J]. Langmuir, 2007, 23, 11211-11216.
    [153]Tseng Y H, Kuo C S, Huang C H, et al. Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity [J]. Nanotechnology, 2006, 17, 2490-2497.
    [154]Olsen J S, Gerward L, Jiang J Z. High-pressure behavior of nano titanium dioxide [J]. High Pressure Research, 2002, 22, 385-389.
    [155]Guo Q X, Zhao Y S, Mao W L, et al. Cubic to tetragonal phase transformation in cold-comprssed Pd nanocubes [J]. Nano Lett., 2008, 8, 972-975.
    [156]Wickham J N, Herhold A B, Alivisatos A P. Shape change as an indicator of mechanism in the high-pressure structural transformations of CdSe nanocrystals [J]. Phys. Rev. Lett., 2000, 84, 923-926.
    [157]Tolbert S H, Herhold A B, Brus L E, et al. Pressure-induced structuraltransformations in Si nanocrystals: surface and shape effects [J]. Phys. Rev. Lett., 1996, 76, 4384-4387.
    [158]Tolbert S H, Alivisatos A P. The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure [J]. J. Chem. Phys., 1995, 102, 4642-4656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700