用户名: 密码: 验证码:
复合材料推力筒设计与整体制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
推力结构是连接发动机与运载器箭(弹)体的主承力构件,其主要作用是将发动机产生的集中推力通过推力结构转变成均布推力,传递给运载器主结构,推动其飞行,是运载器中必不可少的重要组成部分。本文针对软模辅助RTM工艺的技术关键,开展了碳纤维/环氧复合材料推力筒的设计与制备研究,主要进行了复合材料推力筒的结构形状与铺层设计,推力筒纤维预成型体的渗透率测试方法及影响因素分析和树脂充模时间估算,复合材料推力筒的内腔尺寸精度控制方法,结构整体成型时界面纤维铺层局部搭接增强方式,整体成型具有复杂型面的复合材料推力筒的模具设计与制备;最后,本文对复合材料推力筒轴向压缩性能进行了测试与分析。
     复合材料推力筒结构形状与铺层设计方面:采用有限元分析和优化设计相结合的方法,以复合材料推力筒在复杂载荷作用下的承载能力和变形情况为优化设计目标,设计出具有高结构稳定性的复合材料推力筒。最终设计的复合材料推力筒为锥形体结构,其大端直径为1500mm,小端直径为950mm,筒高为590mm,由大小端法兰,12个主承力支柱,1个环向加强筋和带24个大开口的筒壁四部分构成,能够承受1000kN的轴压载荷和87kN的横向载荷的共同作用。
     根据复合材料推力筒的承载特点,复合材料推力筒母线方向采用12k T700碳纤维无纬带铺层,环向采用3k T300碳纤维平纹布,当二者的铺层体积比为4∶1时,结构具有最佳的承载能力。
     复合材料推力筒固化工艺条件方面:比较系统地研究了复合材料推力筒纤维预成型体的渗透率测试方法及其影响因素,测试出了用于估算树脂充模时间的碳纤维预成型体渗透率。为满足RTM工艺树脂注射系统的要求,复合材料推力筒树脂基体采用双酚F型环氧树脂,该树脂的最大特点是室温粘度只有双酚A型环氧树脂(典型的如E-51环氧树脂)的1/4~1/7,且力学性能优良;固化剂采用DETA(反应活性较高)和DEPA(反应活性较低)两种固化剂混合使用,通过调整二者的配比,可以获得不同适用期的树脂配方。在制备半尺寸复合材料推力筒缩比件中,二者的混合比例为2∶4(重量比),其在40℃时的树脂适用期为18min。双酚F型环氧树脂/DETA/DEPA体系浇铸体的拉伸强度为66.0MPa,弯曲强度为102.0MPa,其性能介于双酚F型环氧树脂/DETA浇铸体和双酚F型环氧树脂/DEPA浇铸体之间。经DSC测试分析,双酚F型环氧树脂/DETA/DEPA复合固化剂体系的初始反应温度是22℃,最高放热峰温度为75℃,最高固化温度为116℃,由此确定了复合材料推力筒固化工艺条件是,在模具内的固化温度为75℃,脱模后的后固化温度为120℃。
     复合材料推力筒内径尺寸精度控制方面:在软模辅助RTM工艺中,复合材料推力筒的内径尺寸精度由软模控制。由于软模尺寸变化对温度非常敏感,因此欲获得高精度尺寸的复合材料推力筒,就需要精确控制软模的膨胀量。本文根据成型软模与复合材料推力筒内壁和纤维预成型体间的空间位置关系,结合软模材料的热膨胀压力方程,运用解析方法推导出软模尺寸控制方程。通过该方程来调整软模的尺寸、膨胀压力和膨胀量,从而达到控制推力筒内腔尺寸精度的目的。本文还对软模辅助RTM工艺和普通RTM工艺制备出的复合材料试样进行了性能对比试验,分析了软模对试样的厚度、纤维体积含量和力学性能的影响。结果表明,按照该方程设计的软模尺寸能够满足复合材料推力筒的尺寸精度设计要求,并且发现采用软模辅助RTM工艺成型的复合材料试样不仅纤维体积含量高,而且力学性能也高,对其显微形貌的观察发现,其内部缺陷明显减少,纤维层间结合紧密。
     复合材料推力筒各部位因结构形状和位置不同,在承受外载时,在其界面间将存在剪切应力作用,影响结构的承载能力。通过对复合材料推力筒主承力支柱、环向加强筋与筒壁界面间采用3k T300碳纤维平纹布进行面搭接局部增强后,显著降低了界面的剪切应力。剪切应力由最初的28MPa,下降并稳定在20MPa,其碳纤维平纹布的最小搭接宽度为10mm。
     成型模具设计与制备及推力筒构件制备方面:根据软模辅助RTM工艺制备技术的基本原理和复合材料推力筒的结构特点,设计并制备出了半尺寸复合材料推力筒缩比件成型模具。成型模具主要由两部分组成,成型复合材料推力筒外表面的玻璃钢阴模和成型复杂内表面的组合阳模。其中组合阳模又由热膨胀软模和金属刚性支撑体组成。刚性支撑体一方面起支撑软模形状和辅助脱模的作用,另一方面可在其内部安装电加热装置,用以提供软模膨胀所需要的温度。复合材料推力筒的外表面尺寸精度由刚性阴模控制,内表面的尺寸精度由软模控制。根据此模具成功地制备出了半尺寸碳纤维/环氧复合材料推力筒缩比件。推力筒各部位的结构尺寸精度高,表观性能佳,没有普通RTM工艺在成型复杂复合材料构件时经常出现的表面富树脂层堆积的问题,表明采用软模辅助RTM工艺可以制备出高质量的复合材料结构。
     复合材料推力筒轴向压缩性能考核方面:对制备出的半尺寸复合材料推力筒缩比件进行了轴向压缩性能试验。当测试的轴向压缩载荷达到500kN时,结构并未发生塌陷和失稳破坏,有继续承载能力。通过测量轴向压缩载荷下筒体轴向位移发现,各测试位置的筒体轴向位移不同,表明,推力筒结构局部刚度不均匀;通过测量轴向压缩载荷下主承力支柱纵向形变和环向加强筋周向形变可知,在相同的载荷下,主承力支柱只发生了压缩变形,而环向加强筋的周向形变则比较复杂,既有拉伸形变,又有压缩形变。进一步分析表明,引起主承力支柱和环向加强筋形变不一致的主要原因是主承力支柱的纤维铺层不均匀,这不但影响了推力筒结构局部刚度不均匀,而且还会影响其整体承载效率。
Thrust structure serves as a primary load-bearing component which connects the rocket engine and launch vehicle body. It can transfer the concentrated thrust force from the engine into evenly distributed loads on the primary structure of the launch vehicle which is then pushed forward. Design and fabrication of a carbon/epoxy composite thrust cylinder are investigated. An improved fabricating process which is combined the traditional thermal expansion molding with resin transfer molding, called the TEMARTM in this paper, is developed. The key issues related to the composite thrust cylinder and the TEMARTM are investigated. Attentions are focused on structural design, ply lay-up design and fabrication of the composite thrust cylinder, inner dimension accuracy control method, local fiber overlap strengthening method on the interface, permeability test method and filling mould time calculation for the prepreg of the thrust cylinder, mould design and fabrication for integrally fabricating of the composite thrust cylinder with complex structure and axial compression test of the composite thrust cylinder in this paper.
     Firstly, structural design and lay-up design were determined. Based on the finite element analysis of the composite thrust cylinder, an optimum configuration of the composite thrust cylinder was obtained. The thrust cylinder is composed of a big flange, a small flange, a circumferential rib, twelve primary load-bearing ribs and the cylinder wall with 24 big holes. The diameter of the big flange was 1500mm and that of the small flange was 950mm. The height of the thrust cylinder was 590mm. The thrust cylinder is able to bearing 1000kN axial compressive loads combined with 87kN transverse loads.
     According to the configuration and function of the composite thrust cylinder, 12k T700 carbon unidirectional tapes were chosen and plied along the axial direction of the thrust cylinder, and 3k T300 cloth along the circumferential direction. The ratio of the tapes to the cloth was investigated by a finite element method and the results shown that the thrust cylinder had best load bearing capacity when the volume ratio of the T700 tapes to T300 cloth is 4:1.
     Secondly, mould filling time was evaluated. Permeability test method was established, the effects on the permeability were investigated systematically and the permeability of the prepregs was obtained which was applied to calculate the mould filling time. In order to meet the requirement of the TEMARTM process, the bisphenol-F epoxy resin which has excellent mechanical properties and very low viscosity at room temperature was chosen. The viscosity of the bisphol-F resin is only 1/7~1/4 of that of the bisphol-A resin. A mixture of curing agents which consists of a high active DETA and a low active DEPA was obtained. Different pot life can be obtained by adjusting the proportion of DETA to DEPA. Weight proportion of 2:4 of DETA to DEPA was used to cure the bisphol-F epoxy resin. The tensile strength and bending strength of the bisphol-F/DETA/DEPA resin system are 66.0MPa and 102.0MPa, respectively. Initial reaction temperature, the highest heat releasing peak temperature and the highest curing temperature of the bisphol-F/DETA/DEPA resin system are 22℃, 75℃and 116℃, respectively.
     Thirdly, the dimension accuracy of the fabricated composite thrust cylinder was discussed. The inner dimension of the composite thrust cylinder is determined by the thermal expansion mold. Since the thermal expansion mold is flexure and deformable by heating in nature, the inner dimension of the fabricated composite thrust cylinder is one of the key parameters for the fabricating process. Considering the space between the thermal expansion mould and the wall of the thrust cylinder, a governing equation was developed based on the thermal expansion pressure equation of the thermal expansion mould. The inner dimension of the thrust cylinder can be determined by adjusting the thermal expansion mould size, the expansion pressure and the expansion volume according to the derived governing equation. The specimens fabricated by TEMRTM and traditional RTM process were implemented to analyze the effects of the thermal expansion mould on the thickness, fiber volume content and mechanical properties of the composite specimens. The experimental results show that the dimension calculated by the governing equation reaches the accuracy requirement for the thrust cylinder design. Higher fiber volume and higher mechanical properties of the specimens were obtained from TEMRTM process. Micro morphology observation of the specimens shows that the thermal expansion mould is helpful to reduce the defects and obtain tighter fiber plies.
     Fourthly, in order to reduce the interface shear stress caused by external loads on the thrust cylinder, a method for local fiber overlap strengthening on the interface was developed. The calculated results and experimental data show that the interface shear stress has been decreased significantly by plying the carbon fiber cloth on the interfaces between the primary load bearing rib, the circumferential ribs and the cylinder wall. The shear stress decreased to 20MPa from 28MPa when the overlap dimension is over 10mm.
     Fifthly, the mould fabrication and thrust cylinder fabrication were investigated. The half-scaled thrust cylinder mould which consists of the GFRP female mould and the assembled male mould was designed and fabricated. The outer dimension of the thrust cylinder is determined by the rigid female mould while the inner dimension of the cylinder is dominated by the assembled male mould. The assembled male mould is composed of a thermal expansion mould and a rigid metal structure. On one hand, the rigid metal structure supports the thermal expansion mould, on the other hand, the metal structure contains electricity-heating device to provide the temperature for the thermal expansion mould expanding. A half-scaled thrust cylinder was successfully fabricated via the designed TEMRTM mould. The fabricated composite cylinder by TEMRTM process exhibits much better apparent quality and higher dimension accuracy than those fabricated by traditional RTM process.
     Lastly, the mechanical properties of the thrust cylinder were investigated. Axial compression test for the half-scaled thrust cylinder was conducted. The experiment results show that no crush was happened in the thrust cylinder when the axial compression loads reached 500kN. Curves of axial load on the thrust cylinder to axial displacement of the thrust cylinder showed that the structure stiffness at tested position were different. Curves of axial load on the thrust cylinder to longitudinal deformation of the primary load-bearing rib and circumferential deformation of the circumferential ribs at the same level of loading show only compressive deformation occurred on the primary load-bearing rib while the deformation of the circumferential ribs was quite complex. It is believed that the un-uniform stiffness of the cylinder structure is due to the uneven fiber ply in the primary load-bearing ribs.
引文
[1]李成功,傅恒志,于翘等.航空航天材料[M].北京:国防工业出版社,2002,127.
    [2]卢嘉德.固体火箭发动机复合材料技术的进展及其应用前景[J].固体火箭技术,2001,24(1):46-52.
    [3]陈祥宝,张凤翻.先进树脂基结构复合材料的发展[J].材料工程,1996,(6):5-12.
    [4]孟佩弦,邱惠中.先进复合材料在航天器及其运载工具上的应用[J].宇航材料工艺,1992,(4):14-17.
    [5]陈绍杰.先进复合材料的近期发展趋势[J].材料工程,2004,(9):9-18.
    [6]赵稼祥.先进复合材料的发展与展望[J].材料工程,2000,(10):40-44.
    [7]Marco Caporicci,Luisa Innocenti.Future European launcher plans.IAF-01-V.4.02,2001-10.
    [8]Taniffuchi H,Shibato Y.NASDA RLV concept study.IAF-97-V.3.05.
    [9]Maita M,Kubota H,Morinuchi Y.Japanese spaceplane/RLV programme.IAF-97-V.4.05.
    [10]Immich H,Haeseler D.Rocket propulsion concepts for future reusable launch vehicles investinated in the FESTIP system study.IAF-97-S.1.01.
    [11]Dan Dumbacher.DC-XA—First step to reusable launch vehicle.AIAA 94-4682,1994.
    [12]许达哲.21世纪空间运载工具发展与展望[J].中国航天,1998,(6):10-12.
    [13]杨勇,王小军,唐一华等.重复使用运载器发展趋势及特点[J].导弹与航天运载技术,2002,(5):15-19.
    [14]果琳丽,刘竹生,朱维增等.未来运载火箭重复使用的途径选择及方案设想[J].导弹与航天运载技术,1998,(6):1-7.
    [15]才满瑞.重复使用运载器的近期发展[J].导弹与航天运载技术,1999,(2):56-62.
    [16]才满瑞,王向阳,刘兴武等.国外航天运载器的发展状况、发展趋势及采用的关键技术[J].导弹与航天运载技术,1998,(3):1-10.
    [17]Gene Austin X-33 status & implication for future spaceports[A].Technology 2009 National Conference[C],1999.
    [18]Herand Bedrossian,Michael L Tinker,Homero Hidalgo.Ground vibration test planning and pre-test analysis for the X-33 vehicle[R].AIAA,2000,1586.
    [19]江绍东,韩鸿硕.欧洲可重复使用运载器现行方案概况[J].中国航天,2004,(6):25-31.
    [20]刘竹生,张智.CZ-2 F载人运载火箭[J].导弹与航人运载技术,2004,(1):6-12.
    [21]丁惠梁,沈真,樊发芬等译.空间结构用复合材料设计手册.航空航天部飞机强度研究所,1992:26.
    [22]A Spannoli,A Y Elghazouli,M K Chryssanthopoulos.Numerical simulation of glass-reinforced plastic cylinders trader axial compression[J].Marine Structures.2001,14:353-374.
    [23]I M Robert.Advanced composite structures research in Australia[J].Composite structures,2002,57:3-10.
    [24]D K Darooka,D W Jensen.Advanced space structure concepts and their development.AIAA-2001-1257,2001.
    [25]张登成,唐硕.美国重复使用运载器的发展历史、现状及启示[J].导弹与航天运载技术.2003,(5)20-27.
    [26]赵渠森.材料与工艺在“买得起复合材料”中的作用[J].玻璃钢/复合材料,2000,(6):41-46.
    [27]陈亚莉.低成本复合材料技术的新进展(一)[J].航空工程与维修,2001,(1):17-19.
    [28]孟季菇,赵磊,梁国正.先进复合材料低成本制造技术的研究进展[J].航空工程与维修,2001,(5):15-17.
    [29]张丽华,范玉青.复合材料构件低成本技术发展趋势[J].航空制造技术,2005,(7):61-63.
    [30]陈绍杰.浅谈复合材料的整体成型技术[J].高科技纤维与应用,2005,30(1):6-9.
    [3l]赵渠森,申屠年.先进复合材料制造技术[J].高科技纤维与应用,1999,24(5):10-15.
    [32]赵亮,陈红光.整体成型复合材料弹翼的研制.航天工艺.1999,(6):16.
    [33]王国勇,赵亮,黎玉钦等.多腔室复合材料结构件的气囊整体成型研究[J].宇航材料工艺,2006,(2):60-63.
    [34]王显峰,富宏亚,韩振宇等.复杂形体面片缠绕成型方法的分析与实现[J].宇航材料工艺,2006,(6):39-41.
    [35]刘良森,谢霞,邱冠雄.多向纤维缠绕机缠绕线型及其控制系统的设计[J].玻璃钢/复合材料,2006,(3):36-38.
    [36]高巨龙,于锦生.复合材料发动机壳体在航天运载中的应用[J].纤维复合材料,2005,(3):53-55
    [37]张彦飞,刘亚青,杜瑞奎等.复合材料液体模塑成型技术(LCM)的研究进展[J].塑料,2005,34(2):31-35.
    [38]仲伟虹,梁志勇,张佐光等.RTM工艺及其在我国航空工业的应用前景[J].材料工程,1995,(1):9-11.
    [39]Beckwith S W,Hyand Craig R.Resin transfer molding:a decade of technology advances[C].SAMPE Journal.1998,34(6):7-19.
    [40]段宝,杨亚文,王雅杰.先进复合材料结构RTM技术现状及发展[J].沈阳航空工业学院学报,2000,17(3):18-21.
    [41]邓杰.高性能复合材料树脂传递模塑(RTM)研究[J].纤维复合材料,2005,1:50-53.
    [42]B.Qi,J.Raju,T.Kruckenberg,R.Stanning.A resin Film infusion process for manufacture of advanced composite structures[J],composite structure,1999,47:471-476.
    [43]晏石林,杨梅,谭华.树脂膜熔渗工艺充模过程的模拟与分析[J].材料科学与工艺,2007,15(1):11-14.
    [44]鞠苏,尹昌平,刘均等.RFI用树脂膜的制备与应用研究[J].材料开发与应用,2006,21(5):1-4.
    [45]A380客机后压力舱盖
    [46]李新华,祝颖丹,王继辉等.VIMP成型工艺用不饱和聚酯树脂的研究[J].武汉理工大学学报,2002,24(8):1-4.
    [47]李海晨,王彪,周振功.RTM多孔注射工艺树脂流动过程数值模拟[J].工程力学,2002,19(2):119-123.
    [48]冯武,王继辉,高国强等.RTM多注射口成型的控制研究[J].武汉理工大学学报,2005,27(3):19-22.
    [49]S Walter,A Crements.General look at thermal expansion molding[C].In:21st International SAMPE Symposium,California,1976:635-649.
    [50]肖少伯,复合材料成型新工艺一热胀成型法[J].宇航材料工艺,1996,(6):10-13.
    [51]蒋元兴,朱达通等.碳/环氧复合材料软模法成型工艺研究[C].第九届全国复合材料学术会议论文集.
    [52]翟全胜,刘卫平.硅橡胶模成型复合材料加强肋[C].第九届全国复合材料学术会议论文集.
    [53]董元明.大型复合材料盒形试验件的工艺研究[C].第九届全国复合材料学术会议论文集.
    [54]M Legrand,Q A P Ngoc.A study of the feasibility of a monoblock racing motorcycle rim[J].Composites Science and Technology,2001,61:453-458.
    [55]钱玉林.复合材料热膨胀模塑法成型工艺简介[J].玻璃钢/复合材料增刊,1986,(3):24-27.
    [56]苑玲,甄华生.软模热膨胀法成型发动机燃烧室壳体贴壁内衬[J].宇航材料工艺,1993,(2):38-41.
    [57]鞠金山.碳/环氧复合材料在雷达天线测量杆上的应用研究[J].电讯技术,1998,38(2):45-48.
    [58]靳武刚.复合材料热膨胀成型工艺研究与应用[J].工程塑料应用,2003,31(4):26-28.
    [59]彭超义,曾竟成,肖加余等.基于柔性模辅助技术的整体推力结构的分析与设计.玻璃钢/复合材料,2006,(3):28-30..
    [60]李勇,肖军.复合材料纤维铺放技术及其应用[J].纤维复合材料,2002,(3):39-41.
    [61]艾涛,王汝敏.低成本、高性能复合材料的成型技术[J].纤维复合材料,2004,(2):42-44.
    [62]刘钧,尹昌平,曾竟成等.软模/真空辅助RTM工艺用模具设计与制备.玻璃钢/复合材料,2004,(5):33-35.
    [63]刘钧,尹昌平,曾竟成.软模辅助制备舱段缩比件[J].玻璃钢/复合材料.2006,(1):45-47.
    [64]高国强,薛忠民.RTM工艺过程缺陷产生机理分析[J].玻璃钢/复合材料,2001,(2):26-29.
    [65]邱桂杰.树脂传递模塑工艺中的参数对树脂-纤维界面的影响[J].玻璃钢/复合材料,2002,2:24-27.
    [66]乌云其其格,益小苏.复合材料低成本成型用预成型体的制备[J].高科技纤维与应用,2005,30(1):28-34.
    [67]张建艺,卢嘉德.RTM的编织预成型工艺及其应用展望[J].宇航材料工艺,1996,(2):45-48.
    [68]董孚允,王春敏,董娟.三维纺织复合材料的发展和应用[J].纤维复合材料,2001,(3):37-40.
    [69]焦亚男,李晓久,董孚允.三维缝合复合材料性能研究[J].约织学报,1997,23(2):16-18.
    [70]张广成,赵景丽等.编织/RTM复合材料层合板的力学性能[J].玻璃钢/复合材料,2001,(6):25-27.
    [71]李学明,张国利.缝纫工艺对改善复合材料机械性能的研究[J].纺织学报,2002,23(3):214-216.
    [72]桂良进,程小全,寇长河等.缝纫对复合材料层合板强度和抗冲击性能的影响[J].航空学报,2000,21(4):368-371.
    [73]王瑞,王广峰,郭兴峰.织物增强复合材料层合板层间强度的改善方法[J].天津工业大学学报,2003,22(2):17-20.
    [74]马立.三维编织复合材料及其RTM成型工艺[J].航天返回与遥感,.2000,21(2):50-54.
    [75]高峰,姚穆.织物结构对增强复合材料层间断裂韧性的影响[J].西北纺织工学院学报,2001,15(2):257-259.
    [76]高峰,姚穆.复合材料层问基体铆接与层问剪切强度的关系[J].西北纺织工学院学报,2001,15(2):269-274.
    [77]NASA report,1998.
    [78]余梦伦.两级入轨重复使用运载器的方案探讨[J].装备指挥技术学院学报,2006,17(1):1-5.
    [79]丁丰年,张恩昭,张小平等.论我国重复使用运载器推进系统方案[J].火箭推进,2004,30(3):13-18.
    [80]李周,张朝纲,王山根等.复合材料性能计算机辅助分析与设计的研究及实现[J].材料工程,1993,(8):11-14.
    [81]O H Griffin.Evaluation of finite element software package for stress analysis of laminated composites[J].Composite Technology Review,1982,4:136-141.
    [82]崔维成.复合材料结构破坏过程的计算机模拟[J].复合材料学报,1996,13(4):102-111
    [83]黄传奇.一种结构静力重分析方法及其在层合板逐次失效分析中的应用[J].工程力学,1996,13(3):130-141.
    [84]温卫东,徐惠珍,顾玉明等.纤维增强树脂基复合材料结构的优化设计[J].南京航空航天大学学报,1999,31(4):436-446.
    [85]H T Hu.Influence of shell geometry on buckling optimization of fiber composite laminate shells.AIAA-91-0973-CP,1991.
    [86]G Gendron,Z Guerdal.Optimal design of geodesicall stiffened composite cylindrical shells.PB93-109338,1993.
    [87]H T Hu,C D Juang.Influence of geometry and end condition on optimal fundamental frequency of laminated cured panels.AIAA-96-1585-CP,1996.
    [88]P Kere,M Lyly,J Koski.Using multicriterion optimization for strength design of composite laminates[J].Composite Structures,2003,62:329-333.
    [89]C H Park,W I Lee,W SHan,et al.Weight minimization of composite laminate plates with multiple constraints[J].Composites Science and Technology.2003,63:1015-1026.
    [90]P M Manne,S W Tsai.Design optimization of composite plates:Part Ⅰ—design criteria for strength,stiffness,and manufacturing complexity of composite materials[J].Journal of Composite Materials,1998,32(6):544-571.
    [91]P M Manne,S W Tsai.Design optimization of composite plates:Part Ⅱ—structural optimization by plydrop targeting[J].Journal of Composite Materials,1998,32(6):572-598.
    [92]N Pai,A Kaw,M Weng.Optimization of laminate stacking sequence for failure load maximization using Tab.u search[J].Composites Part B:engineering,2003,405-413.
    [93]彭超义.空间运载器推力支架用复合材料管件轴压性能研究[D].湖南长沙:国防科技大学博士学位论文,2006.
    [94]彭超义,曾竟成,肖加余等.航天器发动机推力支架桁架结构的有限元分析与优化设计[J].宇航材料工艺,2003,(6):21-24.
    [95]C.D.拉德,A.C.朗,K.N.肯德尔等著,王继辉,李新华译.复合材料液体模塑成型技术—树脂传递模塑、结构反应注射贺相关的成型技术[M].化学工业出版社,2004.
    [96][荷]欧洲航天局编,丁惠梁,沈真,樊发芬等译.空间结构用复合材料设计手册.北京:怀柔黄坎印刷厂,1992,pp.34-49.
    [97]阎业海,赵彤,余云照.复合材料树脂传递模塑工艺及适用树脂[J].高分子通报,2001(6):24-35.
    [98]天津市合成材料工业研究所编.环氧树脂与环氧化物[M].天津人民出版社,1974.
    [99]马开顺.国内环氧树脂研究进展[J].环氧树脂,1986(2):13-15.
    [100]郑亚萍,宁荣昌.TDE-85/DDM固化体系性能研究[J].纤维复合材料,2000,17(3):15-17.
    [101]吴晓青,李嘉禄,周清.TDE285~#环氧树脂RTM工艺性研究[J].中国塑料,2003,11(3):44-47.
    [102]刘雄亚,谢怀勤.复合材料工艺及设备[M].武汉工业出版社,1991.
    [103]Becker D W,Tooling for Resin Transfer Moulding[M].Published by the Wichita State University,Wichita,Kansas,USA.
    [104]http://ciks.cbt.nist.gov/~garbocz/jac/node9.html.
    [105]http://www.et.byu.edu/groups/ce547/syuabus/notes/darcy.pdf.
    [106]孔祥言.高等渗流力学[M].中国科学技术大学出版社,1999,36.
    [107]陈萍,李宏运,陈祥宝.铺层方式对增强材料渗透率的影响[J].复合材料学报,2001,18(1):30-33.
    [108]Hammami A,Gauvin R,Trochu F.Modeling the edge effect in liquid composites molding[J].Composites:Part A,1998,29(5):603-609.
    [109]戴福洪,张博明,杜善义.RTM工艺注模过程边缘效应模拟分析[J].复合材 料学报,2004,21(2):161-167.
    [110]Greve B N,Soh S K,Polymer Composites for Structural Automotive Applications[C].in Proc.SAE International Congress Exposition,1990,101-103.
    [111]Z.Cai,Simplified mold filling simulation in resin transfer molding.J.of Composite Materials,1992,26:2606-2630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700