用户名: 密码: 验证码:
随机和认知不确定性下的结构可靠性方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构可靠性理论与方法作为保障结构系统可靠性的强有力工具,受到工业界及学术界的广泛关注,是可靠性领域的研究热点与前沿课题。由于结构可靠性理论与方法能有效处理结构各阶段所存在的各种不确定性,并且揭示了不确定性对结构可靠性影响的实质,因此,基于结构可靠性理论与方法所设计出的结构往往具有可靠性高、花费少、鲁棒性及性能好等一系列优点。目前考虑随机不确定性的结构可靠性理论与方法取得了许多理论与应用成果。
     不确定性广泛存在于工程实际中,通常将其分为随机不确定性和认知不确定性两大类。随机不确定性是事物的固有属性,而认知不确定性是由于缺乏数据、信息不完备等因素所引起的。为了掌握两种不确定性对结构可靠性的影响,随机和认知不确定性下的结构可靠性理论已受到国内外众多学者的极大关注。本文基于区间理论、模糊集理论和概率论,研究了变量相关时的结构非概率可靠性问题、随机和认知不确定性下的结构可靠性分析问题、随机和认知不确定性下的结构可靠性灵敏度分析问题,拓展和完善了现有的结构可靠性理论体系。
     本文的研究成果主要体现在如下几个方面:
     (1)区间变量相关时的结构非概率可靠性模型。由于系统中变量间存在一定的约束限制,因此变量之间是相关的。考虑了区间变量的相关性,建立了区间变量相关时的结构非概率可靠性指标模型及优化方法。结合有限差分理论,建立了区间变量相关时的结构非概率可靠性灵敏度分析模型及优化方法。该模型考虑了区间变量的相关性,克服了传统结构非概率可靠性模型的不足,完善了现有基于区间的结构非概率可靠性模型。
     (2)基于均值一阶鞍点近似的统一不确定性分析方法。当系统中的变量和参数同时含有随机和认知不确定性时,分别用随机变量和区间变量进行建模。为了避免搜索极限状态方程的MPP点(Most Probable Point, MPP)和变量非正态到正态的转换,建立了基于均值一阶鞍点近似的统一不确定性分析模型,提出了相应的求解方法,解决了现有方法在随机和认知不确定性同时存在时效率低下的问题。仿真结果验证了所提方法的精度和高效性。
     (3)随机变量和模糊数下的结构可靠性分析方法。当系统中的变量和参数同时含有随机和认知不确定性时,分别用随机变量和模糊数进行建模,建立了随机变量和模糊数同时存在下的结构可靠性统一分析模型。分别基于最大熵理论和鞍点近似法,提出了两种统一不确定性求解方法:方法I和方法II,为系统中同时存在随机变量和模糊数的结构可靠性问题提供了有效的求解方法和理论指导。
     (4)基于通用生成函数的多种混合变量下的结构可靠性分析方法。根据数据量的多少,分别用随机变量、P-Box(Probability Box)变量和区间变量对系统中的变量和参数进行建模。在此基础上,研究了多种混合变量的融合问题,对现有通用生成函数法进行拓展,建立了基于通用生成函数的多种混合变量下的结构可靠性分析模型,研究了相应的求解方法。该研究成果为多种混合变量下的结构可靠性分析提供了切实可行的处理方法。
     (5)随机和认知不确定性下的结构可靠性灵敏度分析模型。针对系统中的变量和参数同时具有随机和认知不确定性,提出了结构可靠性灵敏度建模方法。为了避免搜索极限状态方程的MPP点和提高精度,考虑了不同样本点的权重,采用移动最小二乘法对极限状态方程进行线性化处理,建立了随机和认知不确定性下的结构可靠性灵敏度分析模型,给出了相应的求解方法,克服了现有方法只能有效处理随机不确定性下的可靠性灵敏度分析的局限性。与现有可靠性灵敏度分析方法相比,所提方法鲁棒性好,并且适合极限状态方程为隐函数的情形。
Theory of structural reliability under uncertainty, which has been a foucs of theindustry and academia, is not only a powerful tool for the protection of structuralsystems reliability, but also a hot research topic in reliability engineering. Structuralreliability theory and methods can deal with various uncertainties which come fromdifferent stages of structures effectively as well as the influence of these uncertainties onstructural reliability. Therefore, the advantages of the structures designed usingstructural reliability theory are high reiliability, less costs, more robustness and excellentperformances. Nowadays, lots of theory and application achievements have beenachieved for structural reliability theory under aleatory uncertainty.
     Uncertainty widely exists in engineering practices, and it can be respectivelydivided into aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty arisesfrom inherent variation while epistemic uncertainty comes from insufficient data andincomplete information. In order to grasp the essentials of these uncertainties forstructural reliability, structural reliability theory under both aleatory and epistemicuncertainties has gained increasing attention for many scholars. In this dissertation,based on the interval theory, fuzzy sets theory and probability theory, the followingproblems are studied: non-probabilistic reliability model with dependent intervalvariables; structural relialibty analysis under both aleatory and epistemic uncertainties;structural reliability sensitivity analysis under both aleatory and epistemic uncertainties.Therefore, the researches in this dissertation extend the traditional structural theory tobecomming a more mature theory.
     The contributions of this dissertation are summarized as follows:
     (1) Non-probabilistic reliability model with dependent interval variables. Becauseof the constraints exist in systems for many interval variables, so they often dependenteach other. The non-probabilistic reliability index model and optimization method withdependent interval variables are proposed. Furthermore, based on the finite differencetheory, non-probabilistic reliability sensitivity model and optimization methods withdependent interval variables are also developed. The dependency of interval variables is taken into account in the developed non-probabilistic reliability model to overcome thedeficiencies of the traditional non-probabilistic model, and the research has extended theexisting interval-based non-probabilistic model.
     (2) Unified uncertainty analysis based on the mean value first order saddlepointapproximation (MVFOSPA-UUA). Variables and parameters are modeled by randomand interval variables under the case of systems associated with both aleatory andepistemic uncertainties. In order to avoid MPP search and non-normal to normaltransformations, a novel model, named MVFOSPA-UUA, is proposed. Furthermoer, themethod for solving the model is also developed. The low efficiency problem for theexisting methods under both aleatory and epistemic uncertainties is solved. Theaccuracy and high efficiency of the proposed method are domenstrated by simulation.
     (3) Structural reliability analysis under both random variables and fuzzy numbers.Variables and parameters are modeled by random variables and fuzzy numbers underthe case of systems associated with both aleatory and epistemic uncertainties, and theunified uncertainty analysis model under both random variables and fuzzy numbers isproposed. Two unified uncertainy analysis methods, methods I and II, are developed forsolving the model. This research provides an effective reliability method and theoreticalguidance for structural systems with both random variables and fuzzy numbers.
     (4) Structural reliability analysis method under mixed variables based on theuniversal generation function. Variables and parameters are respectively modeled byrandom variables, P-Box and interval variables according to the amount of data in thesystem. On this basis, the existing universal generating function is extended, and thestructural reliability analysis model under mixed variables based on the universalgenerating function is estabilished. Furthermore, a solution method is also provided.This research provides a practical method for structural reliability analysis undermultiple variables.
     (5) Structural reliability sensitivity analysis model under both aleatory andepistemic uncertainities. An appropriate reliability sensitivity modeling is provided forvariables and parameters when both aleatory and epistemic uncertainties exist in thesystem. In order to avoid MPP search and improve accuracy, the weights of samples areconsidered, and the limit-state function is linearized based on the moving least squares.The reliability sensitivity model under both aleatory and epistemic uncertainties and its corresponding soulution method are estabilished, and it overcomes the limitations forthe existing methods which can only calculate reliability sensitivity under aleatoryuncertainty effectively. The proposed mthod is robustness, when compared with theexisting reliability sensitivity methods, which is suitable for the situation of thelimit-state function is an implicit function.
引文
[1] Nikolaidis E, Ghiocel D M, Singhal S. Engineering design reliability application[M]. NewYork: Taylor&Francis,2007.
    [2] Kiureghian A D. Analysis of structural reliability under parameter uncertainties[J].Probabilistic Engineering Mechanics,2008,23(4):351-358.
    [3] Helton J C, Johnson J D, Oberkampf W L, et al. Representation of analysis results involvingaleatory and epistemic uncertainty[J]. International Journal of General Systems,2004,39(6):605-646.
    [4] Du X. Unified uncertainty analysis by the first order reliability method[J]. Journal ofMechanical Design, Transaction of the ASME,2008,130(9):091401-091410.
    [5] Kiureqhian A D, Ditlevsen O. Aleatory or epistemic? Does it matter?[J]. Structural Safety,2009,31(2):105-112.
    [6] Huang H Z, Zhang X D. Design optimization with discrete and continuous variables ofaleatory and epistemic uncertainties [J]. Journal of Mechanical design, Transaction of theASME,2009,131(3):0310061-0310068.
    [7] Helton J C. Quantification of margins and uncertainties: conceptual and computational basis[J]. Reliability Engineering and System Safety,2011,96(9):976-1013.
    [8]郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型[J].计算力学学报,2001,18(1):56-60.
    [9] Okerkampf W L, Helton J C, Joslyn C A, et al. Challenge problems: Uncertainty in systemresponse given uncertain parameters[J]. Reliability Engineering and System Safety,2004,85(1-3):11-19.
    [10] Freudenthal A M. The safety of structures[J]. ASCE Transactions,1945,112:125-180.
    [11] Cornell C A. A probability-based structural code[J]. Journal of the American ConcreteInstitute,1969,66(12):974-985.
    [12] Hasofer A M, Lind N C. Exact and invariant second-moment code format[J]. Journal of theEngineering Mechanics Division,1974,100(1):111-121.
    [13] Qiu Z P, Yang D, Elishakoff I. Probabilistic interval reliability of structural systems[J].International Journal of Solids and Structures,2008,45(10):2850-2860.
    [14] Du X, Venigella P, Liu D. Robust mechanism synthesis with random and interval variables[J].Mechanism and Machine Theory,2009,44(7):1321-1337.
    [15] Ben-Haim Y. Information-gap decision theory: decisions under severe uncertainty[M].London: Academic Press,2001.
    [16] Bae H R, Grandhi R V, Canfield R A. An approximation approach for uncertaintyquantification using evidence theory[J]. Reliability Engineering and System Safety,2004,86(3):215-225.
    [17] Sharma R K, Kumar D, Kumar P. Fuzzy modeling of system behavior for risk and reliabilityanalysis[J]. International Journal of Systems Science,2008,39(6):563-581.
    [18] Utkin L V, Destercke S. Computing expectations with continuous p-boxes: Univariate case[J].International Journal of Approximate Reasoning,2009,50(5):778-798.
    [19] Aughenbaugh J M, Herrmann J W. Information management for estimating system reliabilityusing imprecise probabilities and precise Bayesian updating[J]. International Journal ofReliability and Safety,2009,3(1-3):35-56.
    [20] Ferson S, Roger B N, Hajagos J, et al. Dependence in probabilistic modeling,Dempster-Shafer theory, and probability bounds analysis[R]. Sandia National Laboratories,SAND2004-3072,2004.
    [21] Ferson S, Tucker W T. Sensitivity in risk analyses with uncertain numbers[R]. Sandia NationalLaboratories, Albuquerque, NM, SAND2006-2801,2006.
    [22] Ferson S, Kreinovich V, Hajagos J, et al. Experimental uncertainty estimation and statistics fordata having interval uncertainty[R]. Sandia National Laboratories, Report SAND2007-0939,2007.
    [23] Ferson S, Tucker W T. Sensitivity analysis using probability bounding[J]. ReliabilityEngineering and System Safety,2006,91(10-11):1435-1442.
    [24] Freudentthal A M. Safety and the probability of structural failure[J]. American Society ofCivil Engineers Transactions,1956,121:1337-1397.
    [25] Rackwitz R, Flessler B. Structural reliability under combined random load sequences[J].Computers and Structures,1978,9(5):489-494.
    [26] Koduru S D, Haukaas T. Feasibility of FORM in finite element reliability analysis[J].Structural Safety,2010,32(1):145-153.
    [27] Melchers R E. Structural reliability analysis and prediction (Second Edition)[M]. New York:Wiley,1999.
    [28] Ditlevsen O, Madsen H O. Structural reliability methods[M]. West Sussex: Wiley,2007.
    [29] Hohenbichler M, Gollwitzer S, Kruse W, et al. New light on first and second order reliabilitymethods[J]. Structural Safety,1987,4(4):267-284.
    [30] Huang B Q, Du X. Probabilistic uncertainty analysis by mean value first order saddlepointapproximation[J]. Reliability Engineering and System Safety,2008,93(2):325-336.
    [31] Du X, Sudjianto A. First order saddlepoint approximation for reliability analysis[J]. AAIAJournal,2004,42(6):1199-1207.
    [32] Zhang J F, Du X P. A second-order reliability method with first-order efficiency[J]. Journal ofMechanical Design, Transaction of the ASME,2010,132(10):1010061-1010068.
    [33] Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integrationin stochastic mechanics[J]. Probabilistic Engineering Mechanics,2004,19(4):393-408.
    [34] Zhao Y G, Ono T. Moment methods for structural reliability[J]. Structural Safety,2001,23(1):47-75.
    [35] Abramov R V. An improved algorithm for the multidimensional moment-constrainedmaximum entropy problem[J]. Journal of Computational Physics,2007,226(1):621-644.
    [36] Li G, Zhang K. A combined reliability analysis approach with dimension reduction methodand maximum entropy method[J]. Structural and Multidisciplinary Optimization,2011,43(1):121-134.
    [37] Xu L, Cheng G D. Discussion on: Moment methods for structural reliability[J]. StructuralSafety,2003,25(2):193-199.
    [38] Rajashekhar M R, Ellingwood B R. A new look at the response surface approach for reliabilityanalysis[J]. Structural Safety,1993,12(3):205-220.
    [39] Gavin H P, Yau S C. High-order limit state functions in the response surface method forstructural reliability analysis[J]. Structural Safety,2008,30(2):162-179.
    [40] Wong F S. Slope reliability and response surface method[J]. Journal of GeotechnicalEngineering,1985,111(1):32-53.
    [41] Bucher C G, Bourgund U. A fast and efficient response surface approach for structuralreliability problems[J]. Structural Safety,1990,7(1):57-66.
    [42] Kaymaz I, Mcmahon C A. A response surface method based on weighted regression forstructural reliability analysis[J]. Probabilistic Engineering Mechanics,2005,20(1):11-17.
    [43] Nquyen X S, Sellier A, Duprat F, et al. Adaptive response surface method based on a doubleweighted regression technique[J]. Probabilistic Engineering Mechanics,2009,24(2):135-143.
    [44] Xi Z M, Youn B D. Reliability-based robust design optimization using the eigenvectordimension reduction (EDR) method[J]. Structural and Multidisciplinary Optimization,2009,37(5):475-492.
    [45] Kaymaz I. Application of kriging method to structural reliability problems[J]. StructuralSafety,2005,27(2):133-151.
    [46] Henriques A A, Veiga J M C, Matos J A C, et al. Uncertainty analysis of structural systems byperturbation techniques[J]. Structural and Multidisciplinary Optimization,2008,35(3):201-212.
    [47] Tu J, Choi K K. A new study on reliability-based design optimization[J]. Journal ofMechanical Design, Transaction of the ASME,1999,121(4):557-564.
    [48] Huang B Q, Du X, Lakshminarayana R E. A saddlepoint approximation based simulationmethod for uncertainty analysis[J]. International Journal of Reliability and Safety,2006,1(1-2):206-224.
    [49] Niederreiter H, Spanier J. Monte Carlo and quasi Monte Carlo methods[M]. Berlin: Springer,2000.
    [50] Melchers R E. Importance sampling in structural systems[J]. Structural Safety,1989,6(1):3-10.
    [51] Helton J C, Davis F J. Latin hypercube sampling and the propagation of uncertainty inanalyses of complex systems[J]. Reliability Engineering and System Safety,2003,81(1):23-69.
    [52] Eamon C D, Thompson M, Liu Z Y. Evaluation of accuracy and efficiency of some simulationand sampling method in structural reliability analysis[J]. Structural Safety,2005,27(4):356-392.
    [53] Cornell C A. Bounds on the reliability of structural systems[J]. Journal of the StructuralDivision, ASCE,1967,93(1):171-200.
    [54] Ditlevsen O. Narrow reliability bounds for structural systems[J]. Journal of structuralmechanics, ASCE,1979,7(4):453-472.
    [55] Song J H, Kiureghian A D. Bounds on system reliability by linear programming[J]. Journal ofEngineering Mechanics,2003,129(6):627-636.
    [56] Song J H, Kang W H. System reliability and sensitivity under statistical dependence bymatrix-based system reliability method[J]. Structural Safety,2009,31(2):148-156.
    [57] Youn B D, Wang P F. Complementary intersection method for system reliability analysis[J].Journal of Mechanical Design, Transaction of the ASME,2009,131(4):0410041-04100415.
    [58] Wang P F, Hu C, Youn B D. A generalized complementary intersection method (GCIM) forsystem reliability analysis[J]. Journal of Mechanical Design, Transaction of the ASME,2011,133(7):0710031-07100312.
    [59] Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structural Safety,1994,14(4):227-245.
    [60] Elishakoff I, Elisseeff P, Glegg-Stewart A L. Non-probabilistic, convex-theoretic modeling ofscatter in material properties[J]. AIAA Journal,1994,32(4):843-849.
    [61] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansionof convex models[J]. Structural Safety,1995,17(2):91-109.
    [62] Takewaki I, Ben-Haim Y. Info-gap robust design with load and model uncertainties[J]. Journalof Sound and Vibration,2005,288(3):551-570.
    [63] Luo Y J, Kang Z, Luo Z, et al. Continuum topology optimization with non-probabilisticreliability constraints based on multi-ellipsoid convex model[J]. Structural andMultidisciplinary Optimization,2009,39(3):297-310.
    [64] Vinot P, Cogan S, Lallement G. A non-probabilistic reliability approach based on convexmodels[J]. Mecanique&Industries,2003,4(1)45-50.
    [65]郭书祥,吕震宙.结构体系的非概率可靠性分析方法[J].计算力学学报,2002,19(3):332-336.
    [66]郭书祥,张陵,李颖.结构非概率可靠性指标的求解方法[J].计算力学学报,2005,22(2):227-232.
    [67]屠义强,王景全,江克斌.基于区间分析的结构系统非概率可靠性分析[J].解放军理工大学学报,2003,4(2):48-51.
    [68]罗阳军,王彦飞,岳珠峰.双材料结构非概率可靠性拓扑优化设计[J].机械工程学报,2011,47(19):116-122.
    [69]邱志平,陈山奇,王晓军.结构非概率鲁棒可靠性准则[J].计算力学学报,2004,21(1):1-6.
    [70]王晓军,邱志平,武哲.结构非概率集合可靠性模型[J].力学学报,2007,39(5):641-646.
    [71]邱志平,陈吉云,王晓军.结构鲁棒优化的非概率集合理论凸方法[J].力学学报,2005,37(3):295-300.
    [72]王晓军,杨海峰,邱志平,等.基于非概率集合可靠性的结构优化设计[J].计算力学学报,2011,(6):827-832.
    [73]李永华,黄洪钟,刘忠贺.结构稳健可靠性分析的凸集模型[J].应用基础与工程科学学报,2004,12(4):383-391.
    [74] Huang H Z, Wang Z L, Huang B, et al. A nonprobabilistic set model of structural reliabilitybased on satisfaction degree of interval[J]. Mechanics,2011,17(1):85-92.
    [75]乔心州.不确定结构可靠性分析与优化设计研究[D].西安:西安电子科技大学,2008.
    [76]李贵杰,吕震宙,王攀.结构非概率可靠性灵敏度分析方法[J].航空学报,2011,32(x):1-7.
    [77]邱志平,王晓军.结构灵敏度分析的区间方法[J].兵工学报,2005,26(6):798-802.
    [78] Adduri P R, Penmetsa R C. System reliability analysis for mixed uncertain variables[J].Structural Safety,2009,31(5):375-382.
    [79] Adduri P R, Penmetsa R C. Bounds on structural system reliability in the presence of intervalvariables[J]. Computers and Structures,2007,85(5-6):320-329.
    [80] Du X P, Sudjianto A, Huang B Q. Reliability-based design with the mixture of random andinterval variables[J]. Journal of Mechanical Design, Transaction of the ASME,2005,127(6):1068-1076.
    [81] Jiang C, Li W X, Han X, et al. Structural reliability analysis based on random distributionswith interval parameters[J]. Computers and Structures,2011,89(23-24):2292-2302.
    [82] Jiang C, Han X, Li W X, et al. A hybrid reliability approach based on probability and intervalfor uncertain structures[J]. Journal of Mechanical Design, Transaction of the ASME,2012,134(3):0310011-03100110.
    [83] Zaman K, Rangavajhala S, McDonald M P, et al. A probabilistic approach for representationof interval uncertainty[J]. Reliability Engineering and System Safety,2011,96(1):117-130.
    [84] Zaman K, McDonald M P, Mahadevan S. Probabilistic framework for uncertainty propagationwith both probabilistic and interval variables[J]. Journal of Mechanical Design, Transaction ofthe ASME,2011,133(2):0210101-02101014.
    [85] Sankararaman S, Mahadevan S. Model validation under epistemic uncertainty[J]. ReliabilityEngineering and System Safety,2011,96(9):1232-1241.
    [86] Zhang H, Mullen R L, Muhanna R L. Interval Monte Carlo methods for structuralreliability[J]. Structural Safety,2010,32(3):183-190.
    [87] Gao W, Song C M, Tin-loi F. Probabilistic interval analysis for structures with uncertainty[J].Structural Safety,2010,32(3):191-199.
    [88] Hass M, Turrin S. A fuzzy-based approach to comprehensive modeling and analysis ofsystems with epistemic uncertainties[J]. Structural Safety,2010,32(6):433-441.
    [89] Tang Y F, Chen J Q, J. Wei H. A sequential algorithm for reliability-based robust designoptimization under epistemic uncertainty[J]. Journal of Mechanical Design, Transaction of theASME,134(1):0145021-0145019.
    [90] Mourelatos Z P, Zhou J. Reliability estimation and design with insufficient data based onpossibility theory[J]. AIAA Journal,2005,43(8):1696-1705.
    [91] Zhou J, Mourelatos Z P. A sequential algorithm for possibility-based design optimization[J].Journal of Mechanical Design, Transaction of the ASME,2008,130(1):0110011-0110010.
    [92] Bae H R, Grandhi R V, Canfield H. Sensitivity analysis of structural response uncertaintypropagation using evidence theory[J]. Structural and Multidisciplinary Optimization,2006,31(4):270-279.
    [93] Guo J, Du X. Sensitivity analysis with mixture of epistemic and aleatory uncertainties[J].AIAA Journal,2007,45(9):2337-2349.
    [94] Zhang X D, Huang H Z, Xu H W. Multidisciplinary design optimization with discrete andcontinuous variables of various uncertainties[J]. Structural and Multidisciplinary Optimization,2010,42(4):605-618.
    [95] Zhang X D, Huang H Z. Sequential optimization and reliability assessment formultidisciplinary design optimization under aleatory and epistemic uncertainties[J]. Structuraland Multidisciplinary Optimization,2010,40(1-6):165-175.
    [96] Qiu Z P, Wang J. The interval estimation of reliability for probabilistic and non-probabilistichybrid structural system[J]. Engineering Failure Analysis,2010,17(5):1142-1154.
    [97] Qiu Z P, Yang D, Elishakoff I. Combination of structural reliability and interval analysis[J].Acta Mechanical Sinica,2008,24(1):61-67.
    [98] Wang Z L, Huang H Z, Li Y F, et al. An approach to system reliability analysis with fuzzyrandom variables[J]. Mechanism and Machine Theory,2012,52:35-46.
    [99]郭书祥,吕震宙.结构可靠性分析的概率和非概率混合模型[J].机械强度,2002,24(4):524-526.
    [100]王军,邱志平.结构的概率-非概率混合可靠性模型[J].航空学报,2009,30(8):1398-1404.
    [101] Liu C L, Lu Z Z, Xu Y L, et al. Reliability analysis for low cycle fatigue life of theaeronautical engine turbine disc structure under random environment[J]. Materials Scienceand Engineering,2005,395(1-2):218-225.
    [102] Calvi A. Uncertainty-based loads analysis for spacecraft: Finite element model validation anddynamic responses[J]. Computers and Structures,2005,83(14):1103-1112.
    [103] Pellissetti M F, Schueller G I, Pradlwarter H J, et al. Reliability analysis of spacecraftstructures under static and dynamic loading[J]. Computers and Structures,2006,84(21):1313-1325.
    [104] Pradlwarter H J, Pellissetti M F, Schenk C A, et al. Realistic and efficient reliability estimationfor aerospace structures[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(12-16):1597-1617.
    [105] Allen M, Maute K. Reliability-based design optimization of aero-elastic structures[J].Structural and Multidisciplinary Optimization,2004,27(4):228-242.
    [106] Xu S Q, Grandhi R V. Multipoint approximation development: thermal structural optimizationcase study[J]. International Journal for Numerical Methods in Engineering,2000,48(8):1151-1164.
    [107] Crocker J, Kumar U D. Age-related maintenance versus reliability centred maintenance: acase study on aero-engines[J]. Reliability Engineering and System Safety,2000,67(2):113-118.
    [108] Scanlan J, Hill T, Marsh R, et al. Cost modeling for aircraft design optimization[J]. Journal ofEngineering Design,2002,13(3):261-269.
    [109] Kim Y, Jeon Y H, Lee D H. Multi-objective and multidisciplinary design optimization ofsupersonic fighter wing[J]. Journal of Aircraft,2006,43(3):817-824.
    [110] Frangopol D M, Maute K. Life-cycle reliability-based optimization of civil and aerospacestructures[J]. Computers and Structures,2003,81(7):397-410.
    [111] Yao W, Chen X Q, Luo W C, et al. Review of uncertainty-based multidisciplinary designoptimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences,2011,47(6):450-479.
    [112] Mahadevan S, Shi P. Corrosion fatigue reliability of aging aircraft structures[J]. Progress inStructural Engineering and Materials,2001,3(2):188-197.
    [113] Yang J S, Nikolaidis E. Design of aircraft wings subjected to gust loads: a safety index basedapproach[J]. AIAA Journal,1991,29(50:908-812.
    [114] Padula S L, Gumbert C R, Li W. Aerospace applications of optimization under uncertainty[J].Optimization and Engineering,2006,7(3):317-328.
    [115]杜丽,肖宁聪,黄洪钟,等.认知不确定性的谐波齿轮减速器可靠性分析研究[J].电子科技大学学报,2011,40(3):471-475.
    [116] Zhu S P, Huang H Z, Li H Q, et al. A new ductility exhaustion model for high temperature lowcycle fatigue life prediction of turbine disk alloys[J]. International Journal of Turbo and JetEngines.2011,28(2):119-131.
    [117]张小玲.复杂系统的目标层解分析法及时变可靠性优化设计研究[D].成都:电子科技大学,2011.
    [118]陈建军,张建国,段宝岩,等.大型星载天线展开机构中同步齿轮防卡滞研究[J].西安电子科技大学学报,2005,32(3):329-334.
    [119]杨周,杜尊令,张义民.某型航空发动机涡轮盘的可靠性灵敏度设计[J].东北大学学报,2011,32(8):1161-1164.
    [120]张建国,陈建军,段宝岩,等.基于非概率模型的星载天线展开机构可靠性分析[J].西安电子科技大学学报,2006,33(5):739-744.
    [121]陈智,白广忱.涡轮盘结构可靠性与稳健性综合优化设计[J].航空发动机,2012,38(1):9-12.
    [122]侯国勇,关富玲,赵孟良.桁架式可展开天线的关节可靠度分析[J].中国机械工程,2008,19(8):959-963
    [123]马洪波,陈建军,张建国,等.随机参数天线结构的概率优化设计[J].应用力学学报,2005,22(3):491-495.
    [124] Kim D H, Lee G, Choi D H, et al. Reliability analysis using an enhanced response surfacemoment method[J]. Journal of Mechanical Science and Technology,2008,22(6):1052-1057.
    [125] Guo J, Du X. Reliability sensitivity analysis with random and interval variables[J].International Journal for Numerical Method in Engineering,2009,78(13):1585-1617.
    [126] Ronold K O, Larsen G C. Reliability-based desing of wind-turbine rotor blades against failurein ultimate loading[J]. Engineering Structures,2004,22(6):565-574.
    [127] Rahman S, Wei D. A univariate approximation at most probable point for higher-orderreliability analysis[J]. International Journal of Solids and Structures,2006,43(9):2820-2839.
    [128] Wang Z L, Du X P, Huang H Z. Optimal design accounting for reliability, maintenance, andwarranty[J]. Journal of Mechanical Design, Transaction of the ASME,2010,132(1):011007-0110015.
    [129] Youn B D, Choi KK, Yang R J, et al. Reliability-based design optimization forcrashworthiness of vehicle side impact[J]. Structural and Multidisciplinary Optimization,2004,26(3-4):272-283.
    [130] Choi J, An D, Won J. Bayesian approach for structural reliability analysis and optimizationusing the kriging dimension reduction method[J]. Journal of Mechanical Design, Transactionof the ASME,2010,132(5):0510031-05100311.
    [131] Tsompanakis Y, Papadrakakis M. Large-scale reliability-based structural optimization[J].Structural and Multidisciplinary Optimization,2004,26(6):429-440.
    [132] Huang B Q, Du X. Uncertainty analysis by dimension reduction integration and saddlepointapproximations[J]. Journal of Mechanical Design, Transaction of the ASME,2006,128(1):26-33.
    [133] Lee O S, Kim D H, Park Y C. Reliability of structures by using probability and fatiguetheories[J]. Journal of Mechanical Science and Technology,2008,22(4):672-682.
    [134] Most T. Efficient structural reliability methods considering incomplete knowledge of randomvariable distributions[J]. Probabilistic Engineering Mechanics,2011,26(2):380-386.
    [135] Togan V, Karadeniz H, Daloglu A T. An integrated framework frame-work including distinctalgorithms for optimization of offshore towers under uncertainties[J]. Reliability Engineeringand System Safety,2010,95(8):847-858.
    [136] Youn B D, Choi K K. An investigation of nonlinearity of reliability-based design optimizationapproaches[J]. Journal of Mechanical Design, Transaction of the ASME,2004,126(3):403-411.
    [137] Ahammed M, Melchers R E. A convenient approach for estimating time-dependent structuralreliability in the load space[J]. Probabilistic Engineering Mechanics,2009,24(3):467-472.
    [138] Zou T, Mahadevan S, Mourelatos Z, et al. Reliability analysis of automotive body-doorsubsystem[J]. Reliability Engineering and System Safety,2002,78(3):315-324.
    [139] Suddret B, Defaux G, Pendola M. Time-variant finite element reliability analysis-applicationto the durability of cooling towers[J]. Structural Safety,2005,27(2):93-112.
    [140]张义民,刘巧伶,闻邦椿.汽车零部件可靠性灵敏度计算和分析[J].中国机械工程,2005,16(11):1026-1029.
    [141]宋述芳,吕震宙,郑春青.结构可靠性灵敏度分析的方向(重要)抽样法[J].固体力学学报,2008,29(3):264-271.
    [142]吕震宙,宋述芳,李洪波,等.结构机构可靠性及可靠性灵敏度分析[M].北京:科学出版社,2009.
    [143] Czarnecki A A, Nowak A S. Time-variant reliability profiles for steel girder bridges[J].Structural Safety,2008,30(1):49-64.
    [144] Naess A, Leira B J, Batsevych O. System reliability analysis by enhanced Monte Carlosimulation[J]. Structural Safety,2009,31(5):349-355.
    [145] Vu K A T, Stewart M G. Structural reliability of concrete bridges including improvedchloride-induced corrosion models [J]. Structural Safety,2000,22(4):313-333.
    [146] Szerszen M M, Nowak A S, Laman J A. Fatigue reliability of steel bridges[J]. Journal ofConstruction Steel Research,1999,52(1):83-92.
    [147] Enright M P, Frangopol D M. Reliability-based condition assessment of deteriorating concretebridges considering load redistribution[J]. Structural Safety,1999,21(2):159-195.
    [148] Ai-Harthy A S, Frangopol D M. Reliability-based design of prestressed concrete beams[J].Journal of Structural Engineering,1994,120(11):3156-3177.
    [149] Paik J K, Frieze P A. Ship structural safety and reliability[J]. Progress in StructuralEngineering and Materials,2001,3(2):198-210.
    [150] Akpan U O, Koko T S, Ayyub B, et al. Risk assessment of aging ship hull structures in thepresence of corrosion and fatigue[J]. Marine Structures,2002,15(3):211-231.
    [151] Melchers R E. Probabilistic models for corrosion in structural reliability assessment-Part1:empirical models[J]. Journal of Offshore Mechanics and Arctic Engineering, Transaction ofthe ASME,2003,125(4):264-271.
    [152] Moan T, Ayala-Uraga E. Reliability-based assessment of deteriorating ship structuresoperating in multiple sea loading climates[J]. Reliability Engineering and System Safety,2008,93(3):433-446.
    [153] Mansour A E, Lin M, Hovem L, et al. Probability-based ship design procedures: ademonstration[R]. Ship Structure Committee report SSC-368, Washington, DC,1993.
    [154]葛耀君,项海帆, Tanaka H.随机风载荷作用下的桥梁颤振可靠性分析[J].土木工程学报,2003,36(6):42-46.
    [155]陈旭勇,樊建平.凸集模型非概率可靠性在桥梁评估中的应用[J].华中科技大学学报,2009,37(12):120-123.
    [156]肖尚勤,郭正松.基于支持向量机的船舶结构可靠性分析[J].计算机与数学工程,2010,38(10):8-10.
    [157]崔维成,周国华,陈瑞章.舰船结构可靠性分析研究现状及发展方向[J].舰船科学技术,1998,(2):1-6.
    [158]张旭东.不确定性下的多学科设计优化研究[D].成都:电子科技大学,2011.
    [159] Chen S H, Wu J, Chen Y D. Interval optimization for uncertain structures[J]. Finite Elementsin Analysis and Design,2004,40(11):1379-1398.
    [160] Sun H L, Yao W X. The basic properties of some typical systems’ reliability in intervalform[J]. Structural Safety,2008,30(4):364-373.
    [161] Nocedal J, Wright S J. Numerical Optimization[M]. New York: Springer,1999.
    [162]刘国梁,陈建军,朱增青[C].伞状天线展开机构的非概率-概率可靠性分析.第19届全国结构工程学术会议,山东济南,2010.
    [163] Daniels H E. Saddlepoint approximations in statistics[J]. Annals of Mathematical Statistics,1954,25(4):631-650.
    [164] Du X P. Saddlepoint approximation for sequential optimization and reliability analysis[J].Journal of Mechanical Design, Transaction of the ASME,2008,130(1):011011-011022.
    [165] Gillespie C S, Renshaw E. An improved saddlepoint approximation[J]. MathematicalBiosciences,2007,208(2):359-374.
    [166] Wood A T A, Booth J G, Butler R W. Saddlepoint approximation to the CDF of some statisticswith non-normal limit distributions[J]. Journal of American Statistical Association,1993,422(8):480-486.
    [167] Yuen K V, Wang J, Au S K. Application of saddlepoint approximation in reliability analysis ofdynamic systems[J]. Earthquake Engineering and Engineering Vibration,2007,6(45):391-400.
    [168] Lugannani R, Rice S O. Saddlepoint approximation for the distribution of the sum ofindependent random variables[J]. Advances in Applied Probability,1980,12(2):475-490.
    [169] Barndorff-Nielsen O E. Inference on full or partial parameters based on the standardizedsigned log likelihood ratio[J]. Biometrika,1986,73(2):307-322.
    [170]石磊.太阳翼驱动机构的可靠性分析[D].成都:电子科技大学,2011.
    [171]孙健.太阳翼驱动机构动态故障树分析[D].成都:电子科技大学,2012.
    [172] Kaufmann A. Introduction to the Fuzzy Subsets[M]. New York: Academic Press,1975.
    [173] Brown C B. The merging of fuzzy and crisp information[J]. Journal of the EngineeringMechanics Division, ASCE,1980,106(1):123-133.
    [174] Ayyub B M, Lai K L. Structural reliability assessment with ambiguity and vagueness infailure[J]. Naval Engineers Journal,1992,104(3):21-35.
    [175] Huang H Z, Zuo M J, Sun Z Q. Bayesian reliability analysis for fuzzy lifetime data[J]. FuzzySets and Systems,2006,157(12):1674-1686.
    [176] Ding Y, Lisnianski A. Fuzzy universal generating function for multi-state system reliabilityassessment[J]. Fuzzy Sets and Systems,2008,159(3):307-324.
    [177] Wu H C. Fuzzy reliability estimation using Bayesian approach[J]. Computers and industrialEngineering,2004,46(3):467-493.
    [178] Taheri S M, Zarei R. Bayesian system reliability assessment under the vague environment[J].Applied Soft Computing,2011,11(2):1614-1622.
    [179] Verma A K, Srividya A, Deka B C. Composite system reliability assessment using fuzzy linearprogramming[J]. Electric Power Systems Research,2005,73(2):143-149.
    [180] M ller B, Graf W, Beer M. Safety assessment of structures in view of fuzzy randomness[J].Computers and Structures,2003,81(15):1567-1582.
    [181] Zadeh L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems,1978,1(1):3-28.
    [182] Jaynes E T. Information theory and statistical mechanics[J]. Physics Review,1957,106(4):620-630.
    [183] Wu X M, Perloff J M. GMM estimation of a maximum entropy distribution with intervaldata[J]. Journal of Econometrics,2007,138(2):532-546.
    [184] Wu X M. Calculation of maximum entropy densities with application to incomedistribution[J]. Journal of Econometrics,2003,115(2):347-354.
    [185] Basu P, Templeman A. An efficient algorithm to generate maximum entropy distributions[J].International Journal for Numerical Methods in Engineering,1984,20(6):1039-1055.
    [186] Ushakov I A. Universal generating function. Soviet Journal of computer and systemssciences[J].1986,24(5):118-129.
    [187] Lisnianski A, Levitin G. Multi-state system reliability: assessment, optimization andapplications[M]. New Jersey: World Scientific,2003.
    [188] Levitin G. The Universal Generating Function in Reliability Analysis and Optimization[M].Springer-Verlag,2005.
    [189]安宗文.基于通用生成函数的离散化应力-强度干涉模型研究[D].成都:电子科技大学,2009.
    [190] Du X. Probabilistic Engineering Design[M]: Chart7,2005.
    [191] De-Lataliade A, Blanco S, Clergent Y, et al. Monte Carlo method and sensitivityestimations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,75(5):529-538.
    [192] Ghosh R, Chakraborty S, Bhattacharyya B. Stochastic sensitivity analysis of structures usingfirst-order perturbation[J]. Meccanica,2001,36(3):291-296.
    [193] Rahman S, Wei D. Design sensitivity and reliability-based structural optimization byunivariate decomposition[J]. Structural and Multidisciplnary Optimization,2008,35(3):245-261.
    [194] Zhao W, Liu J K, Ye J J. A new method for parameter sensitivity estimation in structuralreliability analysis[J]. Applied Mathematics and Computation,2011,217(12):5298-5306.
    [195] Melchers R E, Ahammed M. A fast approximate method for parameter sensitivity estimationin Monte Carlo structural reliability[J]. Computers and Structures,2004,82(1):55-61.
    [196] Au S K. Reliability-based design sensitivity by efficient simulation[J]. Computers andStructures,2005,83(14):1048-1061.
    [197] Wu Y T. Computational methods for efficient structural reliability and reliability sensitivityanalysis[J]. AIAA Journal,1994,32(8):1717-1723.
    [198] Taflanidis A A, Beck J L. Stochastic subset optimization for reliability optimization andsensitivity analysis in system design[J]. Computers and Structures,2009,87(5-6):318-331.
    [199] Singhee A, Rutenbar R A. Extreme statistics in nanoscale memory design[M]. New York:Springer,2010.
    [200]汪忠来.基于模型的不确定性优化设计方法研究[D].成都:电子科技大学,2009.
    [201]王呼佳,陈洪军,包陈,等. ANSYS工程分析进阶实例[M].北京:中国水利水电出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700