用户名: 密码: 验证码:
水库水源地水质模拟预测与不确定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是人类赖以生存和发展的物质基础,饮用水安全更是影响人体健康和国计民生的重大问题。在我国南方地区,伴随着社会经济的快速发展和城市化进程的迅速推进,许多河流的中下游河段由于点源和面源污染加剧而丧失了饮用水功能,河源区段的水库已经成为目前最重要的城市集中式饮用水供水水源。因此,对水库水源地的保护展开系统研究,具有深远而现实的意义。
     水库水源地的水质变化规律的研究是水源地保护的基础,而水质模拟和预测是研究水库水源地的水质变化规律的重要途径,也是建立科学合理的水源地污染物排放控制方案的主要理论依据。本文在总结国内外相关研究的基础上,以浙江省湖州市老虎潭水库流域为研究对象,通过对流域内河流进行周年的水文水质监测,协同当地自然、经济和社会状况的调查统计,围绕水源地水质模拟预测的关键问题,对老虎潭水库水源地现状水环境质量进行分段、分期评价,分析主要污染物的形态组成和各污染指标的时空变异规律;利用SWAT2002对整个老虎潭水库集水区进行子流域分区,分类统计各子流域主要污染物的投(排)放量:在综合考虑点源、面源和环境背景值对水源地河流水质影响的基础上,建立了适合于水库水源地的源头溪流一维水质模型,并利用NSGA-Ⅱ多目标遗传算法率定模型的关键参数-面源污染各污染源不同污染物的入河系数;同时,选择合适的水库水质模型,对不同水文和排污条件组合下的河流-水库系统的水质进行联合模拟预测;最后,利用Monte-Carlo法对源头溪流一维水质模型进行不确定性和敏感性分析,研究模型的输出结果与输入参数之间的响应关系,识别模型不确定性的主要影响因素,为模型的改进和完善提供理论依据。通过本项目的研究,建立了较为完整的水库水源地水质模拟预测和模型不确定性分析的基本理论和方法体系,并对湖州市老虎潭水库源头区河流-水库系统的水质进行了模拟预测分析,为水库和水源地水质保护提供科学的依据和可靠的基础。
     本文的工作成果和主要结论如下:
     1)通过对老虎潭水库流域内不同区域河流12个监测断面逐月连续的水文水质监测(2007年1月至12月),协同当地的自然、经济和社会条件的调查统计,采用单因子评价和基于熵权模糊综合评价相结合的方法,对河流水质进行分段、分期的分析和评价,结果表明:老虎潭水库流域河流水质总体情况良好且水质浓度相对稳定,目前流域内所有河流断面都符合或优于Ⅲ类水质标准,符合集中式生活饮用水地表水水源地二级保护区标准。
     2)流域河流水质的主要污染因子是总氮(TN)、总磷(TP)、氨氮(NH_3-N)和有机物污染综合指标高锰酸钾指数(COD_(Mn)),营养物质污染和有机污染是该流域应重点关注的问题。农村生活、畜禽养殖和农业面源等面源污染源是该流域的主要污染源,来自面源污染源的污染物投(排)放量量占污染物总投(排)放量95%以上。其中,农田施肥和畜禽养殖是总氮总磷前二位的污染来源,两者占到总氮总磷排放量的80%以上;畜禽养殖、农村生活源是氨氮最主要的污染来源,两者分别占到氨氮总排放量的45.52%,30.70%;有机物污染的主要来源则是畜禽养殖和农业面源,两者分别占总排放量的36.57%,34.98%。
     3)根据源头溪流的污染特点和河流特征,在国内外河流水质模型和面源污染研究的基础上,综合考虑点源、面源和环境值对河流水质的共同影响,建立了源头溪流一维水质模型:
     4)系统研究了河流污染物综合降解系数、污染物环境背景值、不同污染源月入河量分配等源头溪流水质模型关键参数的取值和率定方法;建立了针对求解面源污染各污染源不同污染物的入河系数的多目标优化模型,基于Matlab利用NSGA-Ⅱ多目标遗传算法求解多目标优化模型的Pareto解集,提出了根据各污染源的产物特点和不同流域之间的差异对Pareto解集进行选择的基本原则和方法。应用这一套方法,对老虎潭水库各子流域的面源污染各污染源不同污染物的入河系数进行了实际求解,取得了令人满意的结果。
     5)应用本文所建立的源头溪流一维水质模型和参数确定的系统方法,对老虎潭水库流域河流水质进行了模拟验证,结果表明模拟值与实测值吻合良好,平均误差基本控制在±20%之内。
     6)综合应用源头溪流一维水质模型、完全混合湖库水质模型和Dillon模型对河流-水库系统进行了不同水文条件和排污状况组合下的水质模拟预测。模拟预测结果表明,在现状排污条件下,河流和水库的氨氮和COD_(Mn)浓度均为Ⅰ-Ⅱ类水质;在点源污染和面源各增加一倍的排污条件下,除大陈水和埭溪两个子流域在枯水年部分的枯水月COD_(Mn)浓度达到了Ⅳ类水质外,其余时期为Ⅰ-Ⅲ类水质,而水库的氨氮和COD_(Mn)浓度可保持在Ⅰ-Ⅱ类水质水平。在现状条件下,河流TP浓度能保证Ⅱ-Ⅲ类水质水平,但由于水库氮磷水质标准严于河流相应标准,水库的TN和TP浓度在丰水年和平水年为Ⅲ类水质,而在枯水年将达到Ⅳ类水质标准水平。如果能同时削减50%的点源污染负荷和26%的面源污染负荷,水库的TN和TP浓度在各典型水文年条件下都能达到Ⅲ类水质水平。
     7)利用Monte-Carlo法对源头溪流一维水质模型在埭溪2007年各水期TN的模拟结果进行了不确定分析,结果表明综合降解系数k和点源污染负荷q_i对模型输出结果的不确定性影响较小,河流流量Q_e和污染物环境背景值C_b对模型输出结果的不确定性影响相对较大,而模型结构不确定性对模型输出结果的不确定性影响最大。鉴于模型结构不确定性是源头溪流一维水质模型最大的不确定性来源,为了降低模型输出结果的不确定性应重点加强面源污染月入河量分配的研究。在现状条件下,埭溪2007年各水期的TN模拟输出结果呈正态分布,其90%的输出结果基本落在均值±20%范围之内。通过降低模型各方面不确定性因素,可以有效降低模型模拟结果的不确定性,如果能将现有条件下模型各不确定性因素降低50%,那么模型90%输出结果的相对误差将从<±20%降低到<±10%。
     本文的主要创新点为:
     1)将信息学中“熵”的概念应用于模糊综合水质评价中权重的确定,改进了水质模糊综合评价方法。基于熵权模糊综合评价法,一方面避免了单因子水质评价的片面性,利用模糊数学隶属度的概念体现了不同评价因子对水质的综合影响,另一方面引入“熵”的概念使得权重的设计更为科学合理同时,体现了多个评价对象之间的相互联系。
     2)根据源头溪流的污染特点和河流特征,在国内外河流水质模型和面源污染研究的基础上,综合考虑点源、面源和环境背景值对河流水质的共同影响,提出并建立了源头溪流一维水质模型。该模型克服了简单河流水质模型单纯考虑点源污染影响和大型流域综合水质模型需要大量基础数据与参数的缺点,为以面源污染为主的水源地河流的水质模拟预测提供了新的理论体系和方法。
     3)通过在同一流域不同时段建立针对求解不同面源污染入河系数的多目标优化模型,利用NSGA-Ⅱ多目标遗传算法求解得到模型的Pareto解集,并提出了根据各污染源的产污特点和不同流域之间的差异对Pareto解集进行入河系数选择的基本原则和方法。此方法克服了面源污染入河系数难以确定的瓶颈问题,为面源污染的研究提供了新思路和新方法。
     4)结合源头溪流一维水质模型,完全混合湖库水质模型和Dillon模型,实现了不同水文条件和不同排污条件组合下河流-水库系统水质的联合模拟预测,并提出了相对合理的流域污染物控制对策和方案。
     5)将模型不确定性来源分为参数不确定性、输入数据不确定性和模型结构不确定性的基础上,利用Monte-Carlo法对建立的源头溪流一维水质模型进行了不确定性分析研究,分析了输出结果的取值范围与概率分布,并利用”龙卷风图”识别模型不确定性的主要因素,为模型的进一步改进提供理论依据。
Water is the material foundation of mankind's survival and development, and thesafety of drinking water is even more important to people's health and livelihood. Insouthern China, with rapid socio-economic development and urbanization, water inthe middle and lower reaches of many rivers has lost its function for drinking due toincreasing point-source pollution and non-point-source (NPS) pollution, andreservoirs became the most important municipal centralized water supply sources.Therefore, systematically research on protection of headwater area of reservoir hasprofound and significant meanings.
     Variation of water quality is the foundation for the water quality protection inheadwater area of reservoir. Modeling and prediction of water quality is key approachfor the protection research, and the predicted results are also the main theoretical basisfor creating scientific and reasonable emission control project. The aims of the presentstudy were to establish a methodological and technical system for modeling andprediction of water quality in headwater area of Laohutan reservoir watershed inHuzhou, Zhejiang Province, Southern China. Water quality throughout the Laohutanreservoir watershed were monthly measured continuously for the whole year, whichcombined with investigation of natural, social and economic conditions. Based on theanalysis of overall datum, water environmental quality in Laohutan reservoirwatershed was evaluated in each reach and period, and spatio-temporal variations andthe composition analysis of main pollutants were also studied. Sub-watersheds wereseparated by means of SWAT2002 in Laohutan reservoir, and each produce flux ofmain pollutant were gained in each sub-watershed. Based on integrative considerationof the effects of point-source pollution, NPS pollution and environmental backgroundvalues on river water quality in headwater area, and one-dimensional river waterquality model for headwater area (1-D RWQHA model) was founded, and the keycoefficient (export coefficient of NPS pollution) in the model was calibrated usingmulti-objective genetic algorithm (MOGA) based on NSGA-Ⅱ. As a case study, 1-DRWQHA model, Vollenweider model and Dillon model were used to predict the variations of water quality in the river-reservoir system in Laohutan reservoirwatershed. Finally, based on the response relations between input parameters andoutputs, uncertainty and sensitivity on 1-D RWQHA mode was analyzed by usingMonte-Carlo method, and the main uncertainty factors were identified.
     The main conclusions of the dissertation included:
     1) Water quality at 12 sampling sites throughout the Laohutan reservoir watershedwere monthly measured continuously for the whole year from Jan 2007 to Dec 2007,which combined with investigation of natural, social and economic conditions. Basedon single index method and fuzzy synthetic method, river water quality wereevaluated, and the results showed that the water quality in all sampling sites were orbetter than GradeⅢI.
     2) Total nitrogen (TN), total phosphorus (TP), ammonia-nitrogen (NH_3-N) andCOD_(Mn) were the main pollution factors in this watershed, and organic and nutrientpollution was the main pollution problem in this headwaters area. Pollutant produceflux from NPS pollution (rural domestic waste pollution, livestock-poultry wastepollution, agricultural NPS pollution) was the main pollution source, and the produceflux from NPS pollution occupied above 95% in total amount. In all pollution sources,agricultural NPS pollution and livestock- poultry waste pollution were the mainsources of TN and TP, which occupied 80% of total produce flux of TN and TP.Livestock- poultry waste pollution and rural domestic waste pollution were the mainsources of NH_3-N, which occupied 45.52%, 30.70% of total produce flux of NH_3-N,respectively. Livestock-poultry waste pollution and agricultural non-point pollutionwere the main sources of organic matter, which occupied 36.57%, 34.98% of totalproduce flux of organic matter, respectively.
     3) According to the pollution characteristics and river feature in headwater area ofreservoir, 1-D RWQHA model was founded. The model integrative considered theeffects of point-source pollution, NPS pollution, and environmental backgroundvalues on river water quality. The denotation of 1-D RWQHA model as follow:
     4) Pollutant degradation coefficients, pollutant environmental background values,and the distribution of monthly pollutant export amount from different pollutionsources were calibrated and validated. Multi-objective optimization model wasestablished to solve export coefficient in each sub-watershed based on 1-D RWQHAmodel. Using Matlab the Pareto solution set of multi-objective optimization modelwas solved by means of NSGA-Ⅱ. According to the difference of sub-watershedcharacteristics and the pollution sources feature, proper export coefficients were chosein the Pareto solution set.
     5) After the calibration of all parameters and input data of 1-D RWQHA model,the model was validated. The validation result showed that the predicted valuesagreed well with the measured values, and the average errors basically within±20%.
     6) Combining with 1-D RWQHA model, Vollenweider model and Dillon model,water quality of river-reservoir system was synchronized predicted under differenthydrology and emission conditions. The results showed that, in current emissioncondition, the predicted concentrations of NH_3-N and COD_(Mn) in rivers and reservoirwere all between gradeⅠ-Ⅱwater quality levels. If the emission of point-sourcepollution and NPS pollution were doubled, the predicted concentrations of COD_(Mn)were in gradeⅣwater quality for some tributaries in dry hydrologic year, theremainders were in gradeⅠ-Ⅲwater quality, while the predicted concentrations ofNH_3-N and COD_(Mn) in reservoir maintained gradeⅠ-Ⅱwater quality. In currentemission condition, the predicted concentrations of TP in river s were in gradeⅡ-Ⅲwater quality, and the predicted concentrations of TN and TP in reservoir would be ingradeⅢin flooding and average hydrologic year, but would be in gradeⅣin dryhydrologic year due to the water quality standard of nutrient in reservoir is morerigorous than that in river. If 50% point-source pollution emission and 26% NPSpollution emission were reduced, the predicted concentrations of TN and TP inreservoir would or better than gradeⅢwater quality in all hydrologic years.
     7) Uncertainty on predicted concentrations of TN in Daixi river in each hydrologic period in 2007 was analyzed by using Monte-Carlo method based on 1-D RWQHAmodel. The results showed that the effects of degradation coefficient k andpoint-source pollution load q_i on model's outputs were minor, the effects of river flowQ_e and environmental background value C_b on model's outputs were medium, and theeffect of structural uncertainty on model's outputs was major. Thus, to diminish theuncertainty of 1-D RWQHA model's outputs, the research about allocation of monthlynon-point transport flux should strengthen. In current condition, the predicted valuesshowed normal distribution, and the approximately 90% of values within the range of±20% of mean value. The model's output uncertainty could diminish via decreasedthe uncertainty of model's uncertainty sources. If the uncertainty of each sourcedecreased 50%, the approximately 90% of values would within the range of±10% ofmean value.
     The innovated progress of this dissertation included:
     1) The concept of "entropy" in informatics was applied in the determination of theweight for evaluating indicators in fuzzy synthetic water quality evaluation. Usingfuzzy synthetic evaluation based on entropy not only avoided the one-sidedness ofsingle index method, but also considered the correlation of different evaluatedsubjects. Thus, the results of fuzzy synthetic evaluation based on entropy were morescientific and reasonable.
     2) According to the pollution characteristics and river feature in headwater area ofreservoir, and combined with current studies about river water quality model and NPSpollution, 1-D RWQHA model integrative considered the effects of point-sourcepollution, NPS pollution, and environmental background values on river water qualitywas founded. Thus, a methodological and technical system for modeling andprediction of river water quality in headwater area of reservoir which dominated byNPS pollution was created.
     3) Multi-objective optimization model was created to solve export coefficients ineach sub-watershed, and solved by MOGA based on NSGA-Ⅱ. Proper exportcoefficients were solved according to the difference of sub-watershed characteristic and the pollution sources feature. The export coefficients identification methodprovided new idea and new approach for NPS pollution research.
     4) Combining with 1-D RWQHA model, Vollenweider model and Dillon model,water quality of river-reservoir system was synchronized predicted under differenthydrology and emission conditions, and reasonable emission control project for wholewatershed was founded.
     5) Sources of model uncertainty include parameter uncertainty, input datauncertainty and structural uncertainty, and the uncertainty of 1-D RWQHA model wasstudied by using Monte-Carlo method. The range and distribution of outputs wereanalyzed, and the main uncertainty factors were identified using "tornado graphs".The results of uncertainty analysis provided theoretical basis for model furtherimprovement.
引文
Abbott M B, Bathurst J C, Cunge J A, O'Connell P E, and Rasmussen J. An introduction to the European Hydrological System - Systeme Hydrologique Europeen,"SHE", l:History and philosophy of a physically based,distributed modeling system. Journal of Hydrology. 1986a, 87(1-2): 45-59.
    Abbott M B, Bathurst J C, Cunge J A, O'Connell P E, and Rasmussen J. An introduction to the European Hydrological System - Systeme Hydrologique Europeen, "SHE", 2: Structure of a physically based distributed modeling system. Journal of Hydrology. 1986b, 87(1-2): 61-77.
    Ahearn D S, Sheibley R W, Dahlgren R A, Keller K E.Temporal dynamics of stream water chemistry in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology. 2004, 295: 47-63.
    Alexander, R. B.Elliott, A. H. Shankar, U. Mcbride, G. B. Estimating the sources and transport of nutrients in the Waikato River Basin, New Zealand.Water Resources Research. 2002, 38(12):182-194.
    Arnold J G, Williams J R, Maidment D R.Continuous-time water and sediment-routing model for large basins. Journal of Hydraulic Engineering. 1995, 121(2):171-183.
    Arnold J G, Srinivasan R, Muttiah R S, Williams J R. Large-area hydrologic modeling and assessment: Part Ⅰ .Model development. Journal of the American Water Resources Association .1998, 34(1):73-89.
    Ascough J C, Baffaut C, Nearing M A, Liu BY. The WEPP watershed model: Ⅰ. Hydrology and erosion. Transactions of the ASAE.1997,40(6):921-933.
    Beasley DB, Huggins L F, Monke E J. ANSWERS: A model for watershed planning. Transactions of the ASAE. 1980,23(4):938-944.
    Bekele E G, Nicklow J W. Multi-objective automatic calibration of SWAT using NSGA- Ⅱ. Journal of Hydrology.2007,341:165-176.
    Bhangu Ⅰ, Whitefiled P H. Seasonal and long-term variations in water quality of the Skeena river at USK, british Columbia. Water Research. 1997, 31(9):2187-2194.
    Bhore R N. Uncertainty analysis in large models. PhD theis, University of Delaware, 1996.
    Bingner R L, and Theurer F D. AnnAGNPS Technical Processes: Documentation Version 2. 2001,Available atwww.sedlab.olemiss.edu/AGNPS.html. Accessed 3 October 2002.
    Bouraoui F, Dillaha T A.ANSWERS-2000: Runoff and sediment transport model. Journal of Environmental Engineering. 1996,122(6):493-502.
    Bouraoui F I Braud, and Dillaha T A. ANSWERS: A nonpoint-source pollution model for water, sediment, and nutrient losses. Chapter 22 in Mathematical Models of Small Watershed Hydrology and Applications, 2002, 833-882. V. P. Singh and D. K. Frevert, eds. Highlands Ranch, Colo.: WaterResources Publications.
    Bouraoui F, Benabdallah S, Jrad A, Bidoglio G. Application of the SWAT model on the Medjerda river basin (Tunisia). Physics and Chemistry of the Earth.2005, 30(8-10):497-507.
    Carpenter S R, Caraco N F, Correll DL, Howarth R W, Sharpley A N, Smith V H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Application. 1998, 8(3):559-568.
    Chen L D, Lu J, Yuan S F, Jin S Q, Shen Y N. Seasonal variation of nitrogen-concentration in the surface water and its relationship with land use in a catchment of northern China. Journal of Environmental Sciences. 2005, 17: 224-231.
    Chou W S, Lee T C, Lin J Y,Yu SL. Phosphorus load reduction goals for feitsui reservoir watershed, Taiwan. Environmental Monitoring and Assessment. 2007,131(1-3):395-408.
    Cohn, T., Caulder, D.L., Gilroy, E.J., Zynjuk, L.D., Summers, R.M., The Validity of a Simple Statistical Model for Estimating Fluvial Constituent Loads: An Empirical Study Involving Nutrient Loads Entering Chesapeake Bay. Water Resources Research. 1992, 28(9), 2353-2364.
    Crawford N H, Linsley R K. Digital simulation onhydrology: Stanford Watershed Model Ⅳ. Stanford University Tech. Rep. 1966 No. 39. Palo Alto, Cal: Stanford University.
    Deb K, Pratap A, Agrawal S. A fast and elitist multiobjective genetic algorithm- NSGA Ⅱ. IEEE transactions on evolutionary computation. 2002,6(2): 182-207.
    Donigian, A S Jr, and. Davis H H. User' s Manual forAgricultural Runoff Management (ARM) Model. 1978, Report No.EPA-600/3-78-080. Athens, Ga.: U.S. EPA Environmental Research Lab.
    DonigianA S, Jr, and Crawford N H. User' s Manual forthe Nonpoint Source (NPS) Model. 1979, Unpublished Report. Athens,Ga.: U.S. EPA Environmental Research Lab.
    Donigian A S Jr,. Bicknell B R, Imhoff J C. Hydrological simulation program - Fortran (HSPF). Chapter 12in Computer Models of Watershed Hydrology, 1995, 395-442. V. P.Singh, ed. Highlands Ranch, Colo.: Water Resources Publications.
    Engeland K, Xu C Y, Gottschalk L. Assessing uncertainties in a conceptual water balance model using Bayesian methodology. Hydrological Sciences Journal. 2005,50(1):45-63.
    Fu G T, Butler D, Khu S T. Multiple objective optimal control of integrated urban wastewater systems. Environmental Modelling and Software.2008, 23:225-234.
    Haag D,Kaupenjohann M.Landscape fate of nitrate fluxes and emissions in Central Europe: A critical review of concepts, data, and models for transport and retention. Agriculture, Ecosystems and Environment.2001, 86(1): 1-21.
    Haith D A, Tubbs L J, Pickering N B. Simulation of pollution by soil erosion and soil nutrient loss. Wageningen, Netherlands:Pudoc, 1984.77.
    Hollister J W, August P V, Paul J F. Effects of spatial extent on landscape structure and sediment metal concentration relationships in small estuarine systems of the United States' Mid-Atlantic Coast. Landscape Ecology..2008, 23: 91-106.
    Horn J , Nafpliotis N , Goldberg D E. A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In : Proceedings of t he First IEEE Conference on Evolutionary Computation , IEEE World Congress on Computational Intelligence , voll I Piscat2away , New Jersey , June 1994.82-87.
    Huggins L F , E JMonke . The mathematical solution of the hydrology of small watersheds[R]. Technical Report No. 1, W est Lafayette: W ater Resources Research Center, Purdue University, 1996. 130.
    Hydrocomp. Hydrocomp Water Quality Operations Manual.1977, Palo Alto, Cal.: Hydrocomp, Inc.
    Jakeman A J, Hornberger G M. How much complexityis warranted in a rainfall-runoff model. Water Resources Research. 1993, 29, 2637-2649.
    Jeon J H,Yoon C G, Donigian A S, Jung K W. Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions. Agricultural Water Management. 2007,90(1-2):75-86.
    Johnes P J.evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficientmodelling approach. Journal of Hydrology. 1996, 183:323-349.
    Knisel W G. CREAMS: A field-scale model for chemical, runoff, and erosion from agricultural management system. 1980. Conservation Research Report No.26.Washington, D.C.:USDA-SEA.
    Knowles J D , Corne D W. Approximating t he NondominatedFront Using t he Pareto Archived Evolution St rategy. Evolutionary Computation , 2000 , 8 (2):149-172.
    Korfali S I.Davies BE.Speciation of metals in sediment and water in a river underlain by limestone: role of carbonate species for purification capacity of rivers.Advances in Environmental Research.2004,8(3-4):599-612.
    Leonard R A, Knisel W G, Still D A. GLEAMS: Groundwater loading effects on agricultural management systems. Transactions of the AS AE. 1987, 30(5): 1403-1428.
    Lester J M, Bradley D E. Nitrogen and phosphorus budgets for the sub-tropical Richmond River catchment, Australia. Biogeochemistry, 2000,50: 207-239.
    Letcher R A, Jakeman A J , Merritt,W. S., McKee, L. J., Eyre, B. D.,and Baginska,B. 1999,Reviewof techniques to estimate catchmentexports. Environmental Protection Authority, Sydney.
    Lewis MA, Wang W (1999) Biomonitoring Using Aquatic Vegetation. In: Biomonitoring of Polluted Waters - Reviews on Actual Topics. Environmental Research Forum, vol. 9. A. Gerhardt Editor. Trans Tech Publications, Uetikon-Zuerich, Switzerland. Pp. 243-274.
    Licciardello, F. Zema, D. A. Zimbone, S. A. Bingner, R. L. Runoff and soil erosion evaluation by the AnnAGNPS model in a small Mediterranean watershed. Transactions of the Asabe.2007,50(5):1585-1593.
    Lindenschmidt, K. E., Fleischbein K, Baborowski. Structural uncertainty in a river water quality modelling system.Ecological Modelling. 2007, 204(3-4): 289-300.
    Line D E, Jennings G D, McLaughlin R A, Osmond D L, Harman W A, Lombardo L A, Tweedy K L, Spooner J. 1999,71(5): 1054-1069.
    McMichael, C. E.Hope, A. S. Predicting streamflow response to fire-induced landcover change: Implications of parameter uncertainty in the MIKE SHE model. Journal of Environmental Management. 2007 , 84(3):245-256.
    Merritt, W. S., Letcher, R. A., and Jakeman, A. J. A review of erosion and sediment transport models. Environmental Modelling and Software. 2003, 18, 761-799.
    Metcalfe C D, Miao X S, Koenig B G. Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environmental Toxicology and Chemistry.2003, 22(12):2881-2889.
    Mishra A, Kar S, Singh V P. Determination of runoff and sediment yield from a small watershed in sub-humid subtropics using the HSPF model. Hydrological Processes.2007, 21(22): 3035-3045.
    Neal C, Jarvie H P, Love A, Neal M, Wickham H, Harman S. Water quality along a river continuum subject to point and diffuse sources. Journal of Hydrology.2008, 350:154-160.
    Pieterse N M, Bleuten W, Jorgensen S E.Contribution of point sources and diffuse sources to nitrogen and phosphorus loads in lowland river tributaries. Journal of Hydrology, 2003, 271:213-225.
    Polyakov, V.Fares, A. Kubo, D. Jacobi, J. Smith, C. Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed. Environmental Modelling and Software. 2007,22(11):1617-1627.
    Radwan M, Willems P, Berlamont J. Sensitivity and uncertainty analysis for river quality modelling. Journal of Hydroinformatics.2004,6(2): 83-99.
    Rahman, S, Hossain, F. Spatial assessment of water quality in peripheral rivers of Dhaka city for optimal relocation of water intake point. Water Resources Management.2008, 22(3)377-391.
    Reddy M J, Kumar D N. Optimal reservior operation using multi-objective evolutionary algorithm. Water Resources Management.2006, 20:861-878.
    Refsgaard J C, and Storm B. MIKE SHE. Chapter 23 in Computer Models of Watershed Hydrology, 1995,809-846.
     V. P. Singh, ed. Highlands Ranch, Colo.: Water Resources Publications.
    Refsgaard J C, van der Sluijs J P, Brown J, van der keur P. A framework for dealing with uncertainty due to model structure error. Advances in Water Resources. 2006,29:1586-1597.
    Refsgaard J C, van der Sluijs J P, H(?)jberg PA, Vanrolleghem. Uncertainty in the environmental modelling process - A framework and guidance. Environmental Modelling and Software. 2007,22(11): 1543-1556.
    Reichert P, Omlin M. On the usefulness of overparameterized ecological models. Ecological Modelling. 1997,95:289-299.
    Roberta S, Arianna A, Renato V. Diffuse source apportionment of the Po river eutrophying to the Adriatic sea: Assessment of Lombardy contribution to Po river nutrient load apportionment by means of an integrated modeling approach. Chemosphere, 2006, 65(2):2168-2177.
    Sahoo G B,Ray C D,Carlo E H. Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream. Journal of Hydrology. 2006, 327(1-2):94-109.
    Santhi C,Arnold J G, Williams J R, Hauck L M, Dugas W A. Application of a watershed model to evaluate management effects on point and nonpoint source pollution. Transactions of the ASAE, 2001,44(6): 1559-1570.
    SignorinoC S. Structure and Uncertainty in Discrete Choice Models, SPM-PMSAPSA. 2003, 11: 316-344.
    Thierfelder T. The role of catchment hydrology in the characterization of water quality in glacial/boreal lakes. Journal of Hydrology. 1999, 216: 1-16.
    Thomas D J, Beasley D B.A physically based forest hydrology model Ⅱ: evaluation undEr natural conditions.Transactions of the ASAE .1986, 29(4):973- 981.
    Thompson J R, Sorenson H R, Gavin H, Refsgaard A. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England. Journal of Hydrology. 2004, 293(1-4):151-179.
    Williams J R, Jones C A, Dyke P T. A modeling approach to determine the relationship between erosion and soil productivity. Transactions of the ASAE. 1984,27(1): 129-144.
    Wilson B N, Barfield B J, Ward A D. A hydrology and sedimentology watershed model, Part Ⅱ: Sedimentology Component. Transactions of the ASAE.1984,27(5):1378-1384.
    Young R A, Onstad C A, Bosch D D,Anderson W P. AGNPS, Agricultural nonpoint-source pollution model:A watershed analytical tool. 1987. Conservation Research Report No.35. Washington, D.C.: USDA.
    Zhu Z X,Nordin R, Mazumder. A.Soil and vegetation as the determinants of lake nitrogen concentrations in forested watersheds in British Columbia, Canada. Ecological Indicators.2008, 8(5):431-444.
    鲍全盛.密云水库非点源污染负荷评价研究.水资源保护,1997,15(1):8-11.
    蔡建安,张文艺,周志鹏,吴超.Streeter-Phelps模型的缺陷及其改进研究,2003,20(4):295-298.
    蔡明,李怀恩,庄咏涛,王清华.改进的输出系数法在流域非点源污染负荷估算中的应用.水利学报,2004,7:40-45.
    陈丁江.流域非点源污染物输移通量与总量控制研究.杭州:浙江大学博士论文,2007.
    陈建能,赵雄,张国凤,赵匀.基于改进NSGA-Ⅱ算法的新型引纬机构的参数优化.纺织学报,2008,29(1):110-113.
    陈能江,张珞平,洪华生,刘建昌.九龙江流域农村生活污水污染定量研究.厦门大学学报(自然科学版),2004,43:249-153.
    陈友媛,惠二青,金春姬,邱汉学,吴德星.非点源污染负荷的水文估算方法.环境科学研究,2003,16(1):10-13.
    戴晓燕,过仲阳,石纯,吴健平.上海市青浦区农业非点源污染的流域分配研究.环境污染与防治,2004,26(4):278-280.
    丁晓雯,沈珍瑶,刘瑞民.长江上游非点源氮素负荷时空变化特征研究.农业环境科学学报,2007,26(3):836-841.
    丁训静,姚琪,阮晓红.太湖流域污染负荷模型研究.水科学进展,2002,53(7):9-11.
    郭红岩,王晓蓉,朱建国.太湖一级保护区非点源磷污染的定量化研究.应用生态学报,2004,15(1):136-140.
    郭劲松,李胜海,龙腾锐.水质模型及其应用研究进展.重庆建筑大学学报,2002,2(7):109-115.
    何桂芳,袁国明.用模糊数学对珠江口近20a来水质进行综合评价.海洋环境科学,2007,26(1):53-57.
    和丽萍,张秀敏,王志芸.珠江流域云南片区水污染负荷调查及计算方法研究.云南环境科学,2006,25(2):30-32.
    贺俐,徐孝平.河流水质灾害的Thomas修正式的稳态分析和临界氧亏计算.灾害学,1998,13(2):17-21.
    洪华生,黄金良,张珞平,杜鹏飞.AnnAGNPS模型在九龙江流域农业非点源污染模拟应用.环境科学,2005,26(4):63-69.
    胡康萍,许振成.水体污染物允许排放总量分配方法研究.中国环境科学,11(6):447-452.
    胡连伍,王学军,罗定贵,蒋颖.基于SWAT 2000模型的流域氮营养素环境自净效率模拟--以杭埠-丰乐河流域为例.地理与地理信息科学,2006,22(2):35-38.
    姜云超.不确定性耦合水质模型的研究与应用.兰州:兰州大学,博士学位论文,2007.
    金春久,李环,蔡宇.松花江流域非点源污染调查方法初探.东北水利水电,2004,22(239):54-60.
    李崇明,黄真理.三峡水库入库污染负荷研究(Ⅰ)--蓄水前污染负荷现状.长江流域资源与环境,2005,14(5):611-622.
    李宏明.淮河蚌埠段水质现状评价及水环境容量的研究.合肥:合肥工业大学硕士论文,2006.
    李怀恩.估算非点源污染负荷的平均浓度法及其应用.环境科学学报,2000,20(4):397-400.
    李怀恩,庄咏涛.预测非点源营养负荷的输出系数法进展与应用.西安理工大学学报,2003,19(4):307-312.
    李荣刚,夏源陵,吴安之,钱一声.江苏太湖地区水污染物及其向水体排放的排放量.湖泊科学,2000,12(2):147-152.
    梁博,王晓燕,曹利平.我国水环境非点源污染负荷估算方法研究.吉林师范大学学报(自然科学版),2004,3:58-61.
    梁新强,田光明,李华,陈英旭,朱松.天然降雨条件下水稻田氮磷径流流失特征研究.水土保持学报,2005,19(1):59-63.
    刘昌明,李道峰,田英.基于DEM的分布式水文模型在大尺度流域应用研究.地理科学进展,2003,22(5):437-445.
    刘坤,刘贤赵,李希国,孟翠玲.模糊概率神经网络模型在水质评价中的应用.水文,2007,27(1):36-40.
    罗定贵,王学军,郭青.基于Matlab实现 的ANN方法在地下水质评价中的应用.北京大学学报(自然科学版).2004,40(2):296-302.
    罗士心,毛红梅,陶守耀.水质评价方法综述.水资源研究,2002,23(3):15-20.
    梅立永,赵智杰,黄钱,尹璇.小流域非点源污染模拟与仿真研究-以HSPF模型在西丽水库流域应用为例.农业环境科学学报,2007,26(1):64-70.
    牛志明,解明曙.ANSWER2000在小流域土壤侵蚀过程模拟中的应用研究.水土保持学报,2001,15(3):56-60.
    潘江峰,钟约先,袁朝龙.板料拉深成形工艺参数的多目标遗传算法优化.清华大学学报(自然科学版).2007,47(8):1267-1269.
    裴洪平,汪勇.杭州西湖富营养化模型的不确定性分析.生物数学学报,2004,19(1):117-122.
    彭泽洲,杨天行,梁秀娟,谷照升.水环境数学模型及其应用.北京:化学工业出版社,2007,134.
    史晓新,朱党生,张建永.现代水资源保护规划.北京:化学工业出版社,2005,169-171.
    万超,张思聪.基于GIS的潘家口水库非点源污染负荷计算.水力发电学报,2003,81:62-68.
    王飞儿,吕唤春,陈英旭,王栋.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测.农业工程学报,2003,19(6):281-284.
    王少平,俞立中 许世远,程声通.基于GIS的苏州河非点源污染的总量控制.中国环境科学,2002,22(6):520-524.
    王少平,俞立中,许世远,程声通.苏州河非点源污染负荷研究.环境科学研究,2002,15(6):20-27.
    王文兴,卢筱风.中国氨的排放强度地理分布.环境科学学报,1997,17(1):2-7.
    王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究.地理科学进展,2003,22(1):79-86.
    谢更新.水环境中的不确定性理论与方法研究-以三峡水库为例.长沙:湖南大学博士论文,2004.
    刑可霞,郭怀成,孙延枫,贺彬,黄永泰.基于HSPF模型的滇池流域非点源污染模拟.中国环境科学,2004,24(2):229-232.
    刑可霞,郭怀成.环境模型不确定性分析方法综述.环境科学与技术,2006,29(5):112-114.
    幸治国,钟成华,王圃,蒋良维.长江、嘉陵江重庆段排污负荷研究.重庆环境科学,1994,16(3):4-12.
    徐敏.基于复杂性理论的河湖环境系统模型研究.长沙:湖南大学,博士学位论文,2007.
    徐晓民,李畅游,刘延玺,彭淑娟.灰色关联分析在湖泊水环境评价中的应用研究.内蒙古 农业大学学报,2006,27(4):118-121.
    许刚.给水管网水力模型校正研究.杭州:浙江大学博士论文,2005.
    曾永,樊引琴,王丽伟,刁立芳,李姬.水质模糊综合评价法与单因子指数评价法比较.人民黄河,2007,29(2):45,62.
    张大弟,张晓红,章家骐,沈根祥.上海市郊区非点源污染综合调查评价.上海农业学报,1997,13(1):31-36.
    郑向伟,刘弘.多目标进化算法研究进展.计算机科学,2007,1(34):187-192.
    周维博,郭小砾.塔里木河水质模糊模式识别评价.水资源保护,2007,23(4):33-36.
    周正东.放射治疗方案的优化方法研究.南京:东南大学博士论文,2005.
    朱新开,盛海君,夏小燕,王亚飞.稻麦轮作田氮素径流流失特征初步研究.生态与农村环境学报,2006,22(1):38-41,66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700