用户名: 密码: 验证码:
布匹疵点在线检测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布匹疵点检测是纺织行业生产和质量管理的重要环节之一,目前人工检测速度慢,劳动强度大,受主观因素的影响,缺乏一致性和可靠性。计算机视觉技术随着大规模集成电路和图像处理技术的发展,在工业表面检测领域有了越来越多的应用,基于机器视觉的检测系统已成为布匹检测未来发展的必然趋势。
     文中首先指出单一的方法并不能在实时条件下完成疵点检测所有任务,并首次提出了疵点在线检测系统的三层结构,分别完成疵点判别、疵点分割和疵点分类三个功能,并设计了检测系统与之对应的各部分硬件和软件结构,三层结构大大提高了系统实时性。文中分析造成图像灰度不一致的两个主要因素后,分别提出了光照空间分布不一致和光源波动的在线校正算法。本文提出的校正方法均不需要独立标定,容易实现、准确率高,能大大改善了图像质量。
     本文提出了模糊类别共生矩阵及其特征和基于距离的异常点检测方法作为疵点判别的实时算法,这种方法中色调集合替代了灰度级。文中论述了色调集合的划分、模糊色调集合隶属度函数的拟合和间距参数的选取等问题,并讨论了该算法的实时实现。实践证明该方法在保证了检测准确率的同时,实时性能上远远优于已提出的多数方法。
     本文通过定义分辨力函数,以合成疵点图像为研究对象,提出了在实时应用中对各种不同的纹理图像能快速确定Gabor滤波器组参数的方法:疵点分割中只需用到实Gabor滤波器;方位角只需取水平和垂直方向,径向中心频率和FIR滤波器长度的选取依赖于布面纹理的固有频率。本文提出的方法使得滤波器个数减少到4个,大大提高了算法的实时性的同时,仍能正确地分割出大多数的疵点。且整个疵点分割过程无需离线标定参数,对噪声不敏感。
     本文分别采用基于Blob分析和基于类别行程共生矩阵来恢复疵点全局信息,并提取疵点区域的几何特征和异常行程长度作为疵点评分依据。本文提出的两种方法相比许多监督分类方法而言,不需要事先收集到疵点样本,也不需要离线标定参数,就能成功地将疵点分为三大类进行评分。
     本文还探讨了基于蚁群聚类算法的疵点检测方法,该算法固有的并行分布式计算结构是提高系统实时处理能力的重要手段。受到蚁群聚类算法的启发,疵点可看作是由一些局部不规则点的集合在空间上聚集而成的纹理图像部分,本文详细探讨了蚁群算法的三大要素:蚂蚁环境度量,即局部不一致特征定义,信息素释放与挥发机制和蚂蚁决策。进一步地本文将每只蚂蚁都当作一个独立的模糊推理单元,蚂蚁的环境度量用一组语言变量来描述,并通过模糊推理规则,确定蚂蚁的移动速度和移动方向。
Fabric defect detection is one of most significant procedure for quality control in textile manufacturing industry. The manual detection is time-consuming, labor-intensive and devoid of consistency and reliability due to many subjective factors. As a analog of human vision, computer vision technology has been applied widely in industrial surface detection with the advances of digital integration and digital image processing techniques. It can be confirmed that the computer vision based detection system has bright perspective of the automation of fabric defection detection.
     In this dissertation, initially it is pointed out that the overall task of defect detection can not be accomplished by any single method, and the detection system is divided hierarchically into three levels containing defect judgment, defect segmentation and defect classification. The designs of the hardware and software supporting the corresponding level are discussed respectively. It is also analyzed that the inconsistency in the captured images can be attributed to the spatial variation and noise of the illumination source. The online algorithms are proposed to rectify both inconsistencies to improve the image quality. These algorithms are accurate and facile to be implemented without any additional calibration procedure.
     The Fuzzy Label Co-occurrence Matrix with its features and the distance based outlier detection are proposed as the real-time defect judgment algorithm, which is based on the tonal classes' substitution for gray levels. The texture tone classification, the fitting for membership functions of fuzzy tonal sets and the spacing parameters selection are detailed. The real-time implementation of the algorithm is also discussed. The proposed method has much greater real-time performance than other methods while maintaining high accuracy.
     By defining a discriminability function and utilizing some images with synthetic defects, a parameter selection method is proposed to adapt to various fabric types when the Gabor filter bank is applied in defect segmentation. It is argued that only the real part of Gabor filter works during segmentation; the radial orientation can be limited to horizontal and vertical direction; the radial frequency and the length of the FIR filter should depend on the basic frequency of the fabric texture. Though the number of the filters decreases to four for better real-time performance, the Gabor filter bank can segment most defects accurately. Moreover, the whole defect segmentation is independent of an offline calibration and insensitive to noise.
     The blob analysis based method and the Label-Run Co-occurrence Matrix features are applied to attain the overall area of each defect. The defect is therefore classified into three categories with a certain remark based on the geometric features of the blob area or the exceptional run lengths. Compared to methods based on supervised classification, the proposed methods excel in that they don't need any pre-collected defect samples or any offline calibrations.
     Finally, the ant colony clustering algorithm is introduced into the area of defect detection since the intrinsic parallel distributive computation architecture values in the real-time performance of the system. Inspired by ant colony clustering algorithm, defects are considered to be the gathering of the locally irregular pixels. Three basic elements of ant clustering algorithm are detailed: ants' environment measurement, that is, local irregularity measurement, pheromone release, diffusion and evaporation and the behavior decision of ants are dissertated in details. Further, the ants are considered as fuzzy inference units and the local irregularity features are then transformed to be depicted by some predefined membership functions, and the speed and direction of ants are inferred by fuzzy rules. Finally the defect detection algorithm based on fuzzy ant colony clustering is consequently proposed.
引文
[1] 姚穆,来凯,孙润军.纺织检测技术与仪器的回顾及前瞻[J].棉纺织技术,2003,31(2):16-19.
    [2] 刘建中,王晓红,杨锁廷.国外纺织检测技术的发展现状[J].纱检技术,1999,23(1):73-75.
    [3] 北京晨报.大型纺织服装企业今年频现停产[EB/OL].[2009-02-19].http://finance.sina.com.cn/chanjing/b/20080709/07155070217.shtml.
    [4]贡玉南,唐予远,张明.织物疵点的自动检测方法[J].郑州纺织工学院学报,1997,8(2):21-24.
    [5] Dockery A. Automated fabric inspection: assessing the current state of the art [EB/OL].[2009-02-19].http://www.techexchange.com/thelibrary/FabricScan.html.
    [6] Brzakovic D, Sari-Sarraf H. Automated inspection of nonwoven web materials: A case study[C]. In Proceeding of Machine Vision Application in Industrial Inspection. Bellingham WA: SPIE Press, 1994:214-222.
    [7] Dorrity J, Vachtsevanos G; Jasper W. Real-time Fabric defect detection and dontrol in weaving process[R]. National Textile Center Annual Report. Wilmington, 1996.
    [8] Barco Company. Cyclops[EB/OL]. [2009-02-19] http://www.barco.com/vision/downloads/Cyclops-AutomaticOn-LoomInspection_BRCH_EN_A00511.pdf.
    [9] EVS Corporation. IQ-TEX Introduction[EB/OL]. http://www.evs-sm.com/home/evs/IQ-TEX.aspx.
    [10]Meier R,Leuenberger R.Uster公司的织物质量自动检测检验系统[J].纺织导报,1999,2:41-42.
    [11] Kumar A. Computer-vision-based fabric defect detection: A survey[J]. IEEE Trans. on Industrial Electronics, 2008, 55(1): 348-363.
    [12] 步红刚,黄秀宝.基于计算机视觉的织物疵点检测的近期进展[J].东华大学学报(自然科学版),2006,32(3):128-133.
    [13] 李立轻,黄秀宝.图像处理用于织物疵点自动检测的进展研究[J].东华大学学报(自然科学版),2002,28(4):118-122.
    [14] 尚会超,吴军.织物表面疵点检测算法综述[J].中原工学院学报.2008,19(1):16-18.
    [15] 李立轻.基于计算机视觉的织物疵点自动检测系统研究[D].博士学位论文,上海:东华大学,2003.
    [16] Randen T, Husφy J. Filtering for texture classification: A comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (4): 291-310.
    [17] Conners R, Harlow C. A theoretical comparison of texture algorithms[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1980, 2(3): 204-222.
    [18] Siew LH, Hodgson RM and Wood EJ. Texture measures for carpet wear assessment[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1988, 10(1): 92-105.
    [19] Baykal CI, Jullien GA. In-camera detection of fabric defects[C]. In the International Symposium on Circuits and Systems. New York: IEEE Press, 2004, 3: 933-936.
    [20] Amet AL, Ertuzun A, Ercil A, Texture defect detection using subband domain co-occurrence matrices[C]. In IEEE Southwest Symposium on Image Analysis and Interpretation. New York: IEEE Press, 1998:205-210.
    [21] 邹超,朱德森,肖力.基于类别共生矩阵的纹理疵点检测方法[J].华中科技大学学报(自然科学版),2006,34(6):25-28.
    [22] 邹超,朱德森,肖力.基于模糊类别共生矩阵的纹理疵点检测方法[J].中国图形图像学报,2007,12(1):92-97.
    [23] Conci A, Proenca C. A fractal image analysis system for fabric inspection based on box-counting method[J]. Computer Networks and ISDN Systems, 1998, 30(21): 1887-1875.
    [24] Sari-Sarraf H, Goddard J, Vision system for on-loom fabric inspection[J], IEEE Transactions on Industry Applications, 1999, 35(6): 1252-1259.
    [25] LI Liqing, Huang Xiubao. Fabric defect detection using adaptive wavelet transform [J]. Journal of Donghua University (English Edition), 2002, 19(1): 35-39
    [26] Jasper W, Gamier S, Potlapalli H. Texture characterization and defect detection using adaptive wavelets[J]. Optical Engineering, 35(11): 3140-3149.
    [27] Yang Xuezhi, Pang G, Yung N. Discriminative fabric defect detection using adaptive wavelets [J]. Optical Engineering, 2002, 41 (12): 3116-3126.
    [28] Yang Xuezhi, Pang G, Yung N. Robust fabric defect detection and classification using multiple adaptive wavelets[J]. IEE proceedings Vision, Image and Signal Processing, 2005, 152(6): 715-723.
    [29] Cohen FS, Fan Z, Attali S. Automated inspection of textile fabrics using textural models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8):803-808.
    [30] Brzakovic D, Bakic P, Vujovic N. et al. A generalized development environment for inspection of web materials[C]. In IEEE International Conference on Robotics and Automation. New York: IEEE Press. 1997, 1: 1-8.
    [31] 徐增波,贡玉南,黄秀宝.基于Wold纹理模型和分形理论的织物疵点检测[J].东华大学学报(自然科学版),2000,26(1):6-9
    [32] 贡玉南,华建兴,黄秀宝.基于高斯-马尔可夫随机场模型的织物纹理特征参数提取方法[J].东华大学学报(自然科学版),1999,25(2):1-4
    [33] Chetverikov D. Pattern regularity as a visual key[J]. Image and Vision Computing, 2000, 18(12): 975-985.
    [34] Chetverikov D, Hanbury A. Finding defects in texture using regularity and local orientation[J]. Pattern Recognition, 2002, 35(10): 203-218.
    [35] Hu MC, TSAI IS. Fabric inspection based on best wavelet packet bases[J]. Journal of Textile Research, 2000, 70(8): 662-670.
    [36] Kumar A, Pang G, Identification of surface defects in textured materials using wavelet packets[J]. In IEEE Thirty-Sixth Industry Application Conference Annual Meeting. New York: IEEE Press, 2001,1:247-251.
    [37] Lee CS, Choi CH, Choi JY, et al. Feature extraction algorithm based on adaptive wavelet packet for surface defect classification[C]. In IEEE International Conference on Image Processing, New York: IEEE Press, 1996, 2: 673-676.
    [38] Zhang YF, Bresee RR. Fabric defect detection and classification using image analysis[J]. Journal of Textile Research, 1995, 65(1): 1-9.
    [39] Ciamberlini C, Francini F, Longobardi G, et al. Defect detection in textured materials by optical filtering with structured detectors and self-adaptable masks[J]. Optical Engineering, 1996, 35(3): 835-844.
    [40] Kumar A, Pang G. Defect detection in textured materials using Gabor filters[J]. IEEE Transactions on Industry Applications, 2002, 38(2): 425-440.
    [41] Kumar A, Pang G. Fabric defect segmentation using multichannel blob detectors[J].Optical Engineering, 2000, 39(12): 3176-3190.
    [42] Polzleitner W. Defect detection on wooden surface using Gabor filters with evolutionary algorithm design[C]. In IEEE International Joint Conference on Neural Networks, New York: IEEE Press, 2001,1:750-755
    [43] Bodnarova A, Bennamoun M, Latham S. Optimal Gabor Filters for textile flaw detection[J]. Pattern Recognition, 2002, 35(12): 2973-2991.
    [44] Kumar A, Pang G. Defect detection in textured materials using optimized filters [J]. IEEE Trans. On Systems, Man and Cybernetics Part B, 2002, 32(5): 553-570.
    [45] Meylani R, Ertuzun A, Ercil A. Texture defect detection using the adaptive two-dimensional lattice filter[C]. In IEEE International Conference on Image Processing, New York: IEEE Press, 1996, 3:16-19.
    [46] Conci A, Proenca C. A computer vision approach for textile inspection[J]. Journal of Textile Research, 2000, 70(4): 347-350.
    [47] Lane J. Textile fabric inspection system: US, 5774177[P], 1998.
    [48] Mallick-Goswami B, Datta A, Detecting defects in fabric with laser-based morphological image processing[J]. Journal of Textile Research, 2000, 70(9): 758-762.
    [49] Kumar A. Neural network based detection of local fabric defects. Pattern Recognition[J], 2003, 36(7): 1645-1659.
    [50] Ade F, Lins N, Unser M. Comparison of various filter sets for defect detection in textiles[C]. In IEEE the 7th International Conference on Pattern Recognition, New York: IEEE Press, 1984, 1: 428-431.
    [51] 步红刚,黄秀宝.基于计算机视觉的织物疵点分类的近期进展.东华大学学报(自然科学版),2006,32(4):143-146.
    [52] Jeong SH, Choi HT, Kim SR, et al. Detecting fabric defects with computer vision and fuzzy rule generation Part Ⅰ: Defect classification by image processing[J]. Textile Research Journal, 2001, 71 (6): 518-526.
    [53] Chung-Feng Kuo, Ching-Jeng Lee, A back propagation neural network for recognizing fabric defects[J]. Textile Research Journal, 2003, 73(2): 147-151
    [54] Stojanovic R, Mitropulos P, Koulamas C, et al. Real-time vision-based system for textile fabric inspection[J]. Real-Time Imaging, 2001, 7(6): 507-518.
    [55] Yang XZ, Pang G, Yung N. Discriminative training approaches to fabric defect classification based on wavelet transform[J]. Pattern Recognition, 2004, 37(5): 889-899.
    [56] Rajasekaran S. Training-free counter propagation neural network for pattern recognition of fabric defects[J]. Textile Research Journal, 1997, 67(6): 401-405.
    [57] Kuo CF, Su TL. Gray relation analysis for recognizing fabric defects[J]. Textile Research Journal, 2003, 73(5): 461-465.
    [58] Chan CH, Pang G. Fabric Defect detection by fourier analysis[J]. IEEE Transaction on Industry Applications, 2000, 36(5): 1267-1276.
    [59] 贾云得.机器视觉[M].北京:科学出版社,2000.
    [60] 章毓晋.图像工程:图像理解与计算机视觉[M].北京:清华大学出版社,2000.
    [61] Marr D. Vision[M]. San Francisco: W. H. Freeman & Co Ltd, 1982.
    [62] 龙甫荟,郑南宁.计算机视觉模型的研究与发展[J].信息与控制,1997,26(2):112-116.
    [63] Litwiller D. CCD vs. CMOS [EB/OL]. [2009-01-03]. http://www.dalsa.corn/corp/markets/CCD_vs_CMOS.aspx.
    [64] 毕明德.表面检测图像采集处理卡设计与应用[D].硕士学位论文,武汉:华中科技大学图书馆,2008.
    [65] 邹超.布匹疵点在线检测的算法研究[D].硕士学位论文,武汉:华中科技大学图书馆,2006.
    [66] 宫海涛.基于织疵检测的机器视觉系统研究[D].硕士学位论文,武汉:华中科技大学图书馆,2007.
    [67] 朱均超,刘铁根,刘德瑞等.一种线阵CCD图像灰度分布快速校正方法[J].光电工程,2007,34(12):108-112.
    [68] 王虎,苗兴华,惠彬.短焦距大视场光学系统的畸变校正[J].光子学报,2001,30(11):1409-1412.
    [69] 程耀瑜,李永红,张丕状等.射线数字成像检测系统不均匀性分析与校正[J].光电工程,2005,32(5):42-45.
    [70] 邹超,朱德森,汪秉文.布匹色差在线检测的关键问题研究[C].第13届全国图形图像年会论文集.北京:清华大学出版社,2006:312-315.
    [71] Ham F, Kostanic I. Principles of Neurocomputing for Science and Engineering[M]. New York: McGraw-Hill Science, 2000.
    [72] Rahman M, Arora R, Srivastava S. Classification of partial discharge transient patterns using texture analysis algorithms[C]. In IEEE International Symposium on Electrical Insulating Materials, New York: IEEE Press, 1998, 573-576.
    [73] Baraldi A, Parmiggiani F. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters[J]. IEEE Transaction on Geoscience and Remote Sensing, 1995, 33(2):293-304.
    [74] 李金宗.模式识别导论[M].北京:高等教育出版社,1994年.
    [75] 窦振中.模糊逻辑控制技术及其应用[M].北京:北京航空航天大学出版社,1995.
    [76]L.A.Zadeh著,陈国权译.模糊集合、语言变量及模糊逻辑[M].北京:科学出版社,1982.
    [77] Zou Chao, Wang Bingwen, Sun Zhigang. Detection of fabric defects with fuzzy label co-occurrence matrix set[J], Journal of Donghua University(English Version), 2009, 26(5).
    [78] D Hawkins. Identification of Outliers. London: Chapman and Hall, 1980.
    [79]王占全.基于地理信息系统空间数据挖掘若干关键技术的研究[D].博士学位论文,杭州:浙江大学图书馆,2005.
    [80] Barnett V, Lewis T. Outliers in Statistical Data[M]. New York: John Wiley & Sons, 1994.
    [81] Knorr E, Ng R, Tucakov V. Distance-based outliers: algorithms and applications[J]. Journal of Very Large Database, 2000, 8(3): 237-253.
    [82] Breunig M, Kriegel H, Ng R, et al. LOF: Identifying density based local outliers[J]. ACM SIGMOD Record, 2000, 29(2): 93-104
    [83] Han Jiawei, Kamber M. Data Mining: Concepts and Techniques[M]. New York: Morgan Kaufmann Publisher, 2001.
    [84] Sarawagi S, Agrawal R, Megiddo N. Discovery driven exploration of OLAP data cubes[C]. In the International Conference on Extending Database Technology, Springer-Verlag: London, 1998, 168-182.
    [85] 王念旭.DSP基础与应用系统设计[M].北京:北京航空航天大学出版社,2001.
    [86] 江思敏,刘畅.TMS320C6000 DSP应用开发教程.北京:机械工业出版社,2005.
    [87] Gabor D. Theory of Communication[J]. Journal of IEE, 1946, 93: 429-457.
    [88] Mallat S. A Wavelet Tour of Signal Processing (Second Edition)[M]. San Diego: Academic Press, 1999.
    [89] Daugman J. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[J]. Journal of American Optics Society, 1985, 2(7): 1160-1169.
    [90] Bovik A, Clark M, Geisler W. Multichannel texture analysis using localized spatial filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 55-73.
    [91] Dunn D and Higgins W. Optimal Gabor filters for texture segmentation[J]. IEEE Transaction on Image Processing, 1995, 4(7): 947-963.
    [92] Jain A and Farrokhnia F. Unsupervised texture segmentation using Gabor filters[J]. Pattern Recognition, 1991, 24(12): 1167-1186.
    [93] Kumar A. Automated Defect Detection in Textured Materials[D]. Hong Kong: Department of Electrical and Electronic Engineering, University of Hong Kong, 2001.
    [94] Randen T, Husφy J. Texture segmentation using filters with optimized energy separation[J]. IEEE Transactions on Image Processing, 1999, 8(4): 571-582.
    [95] 宋寅卯,袁端磊.用于织物疵点检测的最优Gabor滤波器设计[J].信息与控制,2006,35(3):374-377.
    [96] 赵英男,杨静宇,孟宪权.一种实用的Gabor滤波器组参数设置方法[J].计算机工程,2006,32(19):173-175.
    [97] 邹超,汪秉文,孙志刚,基于Gabor滤波器组的实时疵点图像分割[J],计算机 工程与应用.
    [98]Escofet J, Navarro R, Millan M, et al. Detection of Local Defects in Textile Webs Using Gabor Filters[J]. Optical Engineering, 1998, 37(8): 2297-2307
    [99] 张振,过念薪.织物检验与整理[M].北京:中国纺织出版社,2000.
    [100] 过念薪,张志林.织疵分析[M].北京:中国纺织出版社,1997.
    [101] Gonzalez R, Woods R. Digital Image Processing(Second Edition)[M]. New Jersy: Prentice Hall, 2002.
    [102] Galloway M. Texture analysis using gray level run lengths[J]. Computer Graphics and Image Processing, 1975, 4:172-199
    [103] 田翔.模型预测控制并行计算系统研究[D].博士学位论文,杭州:浙江大学图书馆,2007.
    [104] Duncan R. A Survey of parallel computer architectures[J]. Computer, 1990, 23(2): 5-16.
    [105] Dorigo M, Maniezzo V, Colorni A. Ant System: optimization by a colony of cooperating agents[J]. IEEE Transaction on Systems, Man and Cybernetics Part B. 1996, 26(1): 1-26.
    [106] Kennedy J, Eberhart R. Swarm Intelligence. San Francisco: Morgan Kaufmann,2001.
    [107] 焦李成,杜海峰,刘芳等.免疫优化计算学习与识别[M].北京:科学出版社,2006.
    [108] Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence: From Natural to Artificial System[M]. New York: Oxford University Press, 1999.
    [109] Deneubourg J, Goss S, Franks N, et al. The dynamics of collective sorting: robot-like ant and ant-like robot[C]. In the First Conference on Simulation of Adaptive Behavior: From Animals to Animates, Cambridge MA: MIT Press, 1991, 356-365.
    [110] 段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005
    [111] 胡小兵.蚁群优化原理、理论及其应用研究[D].博士学位论文,重庆:重庆大学图书馆,2004.
    [112] 杨剑峰.蚁群算法及其应用研究[D].博士学位论文,杭州:浙江大学图书馆,2007.
    [113] Zou Chao, Xiao Li, Wang Bingwen. Textural defect detection using a revised ant colony clustering clgorithm[C]. In Proceedings of SPIE MIPPR07: Pattern Recognition and Computer Vision. Bellingham WA: SPIE, 2007: 67880Q.
    [114] Kanade P., Hall L. Fuzzy ants and clustering[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A. 2007, 37(5): 758-769.
    [115] Rozin V, Margaliot M. The fuzzy ant[J]. IEEE Computational Intelligence Magazine.2007, 2(4): 18-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700