用户名: 密码: 验证码:
中国城市典型大气污染物的来源、形成机制及其对大气质量和近海生产力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化、机动化步伐的加快,上海、北京等中国东部发达地区城市的空气质量受到来自本地排放和区域输送的双重影响,工业活动中煤等化石燃料的燃烧以及城市机动车保有量的急剧增加,致使大气污染物含量增加以至大气能见度显著降低是亟待解决的环境问题。大气颗粒物中的非水溶性有机成分,如多环芳烃、脂肪酸等;水溶性有机成分,如二元羧酸中的草酸;硝酸盐、铵盐等含氮营养盐及相关物质以及典型的大气污染气体二氧化氮及二氧化硫是大气中的典型人为污染物。本论文着重于研究这几类大气污染物的理化特性、时空分布、来源、形成机制及对城市空气质量和区域生态环境的可能影响,以期为中国典型城市及地区大气环境管理和东部海岸带近海环境治理提供科学依据。本研究的主要内容及取得的重要成果有:
     1.采集了2004至2005年间春、夏、冬三个季节北京城区(BNU)、北京郊区(MY)以及上海城区(SH)的大气细颗粒物样品,检测和定量分析了其中的10种多环芳烃、7种脂肪酸以及左旋葡聚糖和胆固醇。总PAHs在三个采样点的质量浓度季节变化趋势一致,最高值出现在冬季,最低值出现在夏季。而三个采样点观测到的脂肪酸和左旋葡聚糖浓度均未表现出明显的季节性。各PAH在总PAHs中的质量分布模式、各脂肪酸在总脂肪酸中的质量分布模式反映了不同地域和季节排放源的变化情况。通过比较PAH(4)/PAH(5,61比值和因子分析,揭示了煤燃烧和机动车尾气排放是中国大城市大气污染的两个主要原因,上海城区和北京城区两种来源产生的PAHs对大气PM2.5中PAHs总量的相对贡献比值分别为1:1和l:2。同时,基于上海和北京城区大气颗粒物中相似的C18:1/C18比值以及城区大气PM25中左旋葡聚糖的浓度高于郊区的监测结果,揭示了烹饪活动是北京和上海大气中有机物组分的一个稳定来源。
     2.分析了2007年四个季节于上海城区采集的大气PM2.5和TSP共238个样品,着重探究了颗粒物中草酸组分的浓度、来源及形成机制。C2042-的质量浓度在PM25中为0.07-0.41μg/m3,T-SP中为0.10-0.48μg/m3。C2O42浓度呈现秋季>夏季>冬季>春季的季节变化趋势并且主要分布在PM25甚至更细的大气颗粒物中。以NO2作为来源指示物,通过相关分析,发现了机动车尾气排放虽然作为一次源对上海大气颗粒物中草酸含量的贡献很小,但却是城市中草酸前体物VOCs的一个主要来源。以K+作为生物质燃烧源的指示物,发现生物质燃烧是上海大气颗粒物中草酸除城市工业及交通排放外的另一重要二次源。基于C2O42-与nss-SO42-和NO3二者都具有很高的相关度,且相对湿度和大气云量的同时升高有利于草酸含量的增加,揭示了上海大气颗粒物中草酸的二次形成主要经由“云中过程”,而由于相同氧化自由基的参与,其二次形成与NO3-的形成存在“并行”。发现了草酸作为大气颗粒物中水溶性有机物(WSOC)的代表物,其浓度与大气能见度存在着显著的负相关,从而揭示了水溶性有机物WSOC乃至OC对形成城市灰霾的重大影响。
     3.深入探讨了交通排放源(移动源)对上海城区大气质量的影响。城市机动车保有量增加7.0%,大气TSP中NO3-的平均浓度同比增长56.8%。以水溶性污染物中NO3-/SO42比值反映移动源(如机动车尾气)和固定源(如燃煤)对城市大气污染的相对贡献率,基于监测结果(2007年上海有-70%和-15%的大气PM2.5样品中NO3-/SO42比值分别大于0.5和1,已接近于发达国家大气中该比值的水平。大气TSP样品中则有更高的比值),表明了移动污染源是上海大气污染的主要来源之一,同时也是大气颗粒物中含氮盐的主要来源。根据对上海沙尘日和“无车日”的个案分析发现,大气中NO2向NO3-、SO2向8042-的转化率NOR、SOR在沙尘期间显著大于非沙尘日,且其增加值SOR大于NOR;“无车日”机动车辆的禁行或限行措施削弱了交通排放源对城市大气污染的影响。此外,根据NO3-/PM2.5、SO42-/PM2.5比值及长江三角洲地区大气中NH3的来源与季节分布的比较,揭示了NH3是上海大气细颗粒物中二次无机离子成分形成的主控因子之一
     4.采集了2008年春季亚洲沙尘自西向东长途传输所经过的塔中、榆林、上海及小洋山岛四个特征采样点的大气PM25和TSP,探讨了亚洲沙尘自西向东,由源区至沿海城市、近陆岛屿大气颗粒物中水溶性污染物的变迁及其对沉降水域的生态造成的可能影响。随着工业化、机动车化程度的增高,大气颗粒物中可代表人为污染来源的NO3-、NO2-、NH4+的浓度、细颗粒态中S042-的浓度以及粗颗粒态中MSA的浓度均随之增高。我国的大气污染自西向东总体上逐步加重。根据上海大气PM25中MSA与N02春季日均浓度的变化趋势,揭示了大气氧化性污染物的存在可促进MSA的生成。内陆人为污染物的输送对近陆岛屿大气颗粒物中MSA的浓度水平和其在粗细颗粒态中的分布状况有相当影响。基于小洋山岛的观测值,估算了大气颗粒物中NO3-和NH4+对中国东海的干沉降量。经由干沉降进入水体的N03-和NH4+可创造约为11.8mgCm-2day-1的海洋初级生产力,相当于东中国海新生产力的1.9%至6.6%。大气污染及其传输与沉降对我国东部海岸带的影响不容忽视。
1. Fine aerosol samples were collected throughout spring, summer, and winter in 2004-2005 at a major urban traffic junction (BNU) and a suburban location (MY) in Beijing and at a downtown site (SH) in Shanghai, China. Ten of the 16 EPA priority polycyclic aromatic hydrocarbons (PAHs), seven fatty acids, levoglucosan, and cholesterol were identified and quantified. PAHs showed the same seasonal trend in all sampling sites as the highest in winter and the lowest in summer, while fatty acids and levoglucosan showed no pronounced seasonal variation. The aerosol PAH(4)/PAH(5,6) ratio, C18:1/C18 ratio together with the relative mass distribution patterns of individual PAH in ten PAHs, individual fatty acid in seven fatty acids were used to reflect the change in emission sources of the compounds in different sites and seasons. The relative contributions of coal combustion and vehicle exhaust sources to PAHs in fine aerosols were preliminarily estimated to be 1:2 in Beijing and 1:1 in Shanghai by factor analysis, revealing that the air pollution in these mega-cities in China was mainly the mixing of coal combustion with vehicle exhaust. A significant fraction of levoglucosan from cooking with higher concentrations in urban than in suburban area contributed to the ambient atmosphere. Cooking was a stable source of organic aerosols in both Beijing and Shanghai.
     2. A total of 238 samples of PM2.5 and TSP were analyzed to study the characteristics, sources, and formation pathways of aerosol oxalate (C2O42-) in Shanghai in four seasons of 2007. The mass concentrations of C2O42- in 2007 sampling year were 0.07-0.41μg/m3 in PM2.5 and 0.10-0.48μg/m3 in TSP, respectively. Oxalate concentration displayed a seasonal variation of autumn> summer> winter> spring in both PM2.5 and TSP and was dominantly present in PM2.5 in all samples. A case study was carried out to explore changes in concentration level and coarse/fine particle distribution of oxalate in a dust event. Vehicular emission was found contributing little to the content of oxalate as a primary source, while it was an important secondary source of oxalate in urban atmosphere. Correlation between C2O42- and K+ and high ratio of C2O42-/K+ suggested that biomass burning was also a secondary source of aerosol oxalate in Shanghai, especially in season of autumn. Secondary formation accounted for the majority of aerosol oxalate in Shanghai, which was supported by the high correlation of C2O42- with nss-SO42-, K+ and NO3-, proceeding from different mechanisms. Simultaneous increases in ambient relative humidity and atmospheric cloud cover was found benefiting the secondary formation of aerosol oxalate. The in-cloud process (aqueous-phase oxidation) was suggested to be the major formation pathway of aerosol oxalate in Shanghai. As a major water-soluble organic compound in aerosols, oxalate contributed to the haze pollution and visibility degradation of the local environment. C2O42- concentration showed a distinct negative correlation to the atmospheric visibility, implying that aerosol organic compounds could play an important role in the formation of haze in Shanghai.
     3. Atmospheric TSP and PM2.5 were collected at two urban sites to explore the influence of vehicle exhausts on the urban air quality in Shanghai. On the background of 7.0% increase in vehicle population, an increase of 56.8% in NO3-concentration in TSP was observed. The ratio of NO3- mass concentration to SO42-mass concentration (NO3-/SO42-) in the aerosol was used to evaluate the contributions from the stable sources (such as coal combustion) and from the mobile sources (such as vehicle exhausts) to the water-soluble pollutants in the urban atmosphere. NO3-/SO42- ratio of nearly 70% of the PM2.5 samples were higher than 0.5, while NO3-/SO42- ratio of nearly 15% of the PM2.5 samples were even higher than 1. Both the ratios in TSP samples got higher values. This phenomenon reflected that vehicle exhausts was a major source of atmospheric pollutants and inorganic nitrogen in Shanghai. During a recorded dust event in Shanghai, obvious increases were observed in atmospheric NOR and SOR comparing to non-dust days. Increase in SOR was more distinct than NOR. The concentration levels of four components which had vehicle emission sources in the aerosol all showed decreases during the traffic ban period in autumn 2007. NO3-/PM2.5, SO42-/PM2.5 and characteristics of atmospheric gaseous NH3 in Yangtze River Delta were discussed. NH3 was found to be one of the controlling factors in the secondary formation of inorganic ions in atmospheric fine particulate in Shanghai.
     4. Atmospheric particulate samples were collected at four characteristic sites, Tazhong, Yulin, Shanghai, Xiaoyangshan Isle, from the west to the east China in spring 2008. The spatial variations of water-soluble components NO3-, NO2-, NH4+, SO42- and MSA in atmospheric PM2.5 and TSP and the physical-chemical relationships between them were monitored and analyzed to study the air pollution status in quo of China and evaluate the impact of atmospheric particulate transport and deposition on ecosystem of China's eastern coastal zone. Along the elevation of the industrialization and motorization degree of the sites, increases in concentration levels of particulate NO3-, NO2- and NH4+, SO42- in fine particles and MSA in coarse particles were observed. The severity of air pollution over China was raised gradually from the west to the east. The temporal variation of MSA concentration in PM2.5 in Shanghai site showed a good correlation with the ambient gaseous NO2, proving that existence of atmospheric oxidative pollutants is conducive to the formation of MSA. The input of polluted air mass from the inland area brought substantial influence on the concentration level and fine/coarse particle distribution of MSA over the offshore island XYS isle. NO3- and NH4+ as representative compounds of water-soluble inorganic nutrients in atmospheric particulate, their annual dry deposition flux was estimated based on the observation data on XYS isle. It was found that the marine primary productivity created by the dry deposition of atmospheric NO3- and NH4+ could support 1.9% to 6.6% of East China Sea's new production. Atmospheric dry deposition was an effective pathway of external nitrogen input to the coastal ocean.
引文
[1]Pickle T., Allen D. T., Pratsinis S. E. The sources and size distributions of aliphatic and carbonyl carbon in Los Angeles aerosol [J]. Atmospheric Environment,1990,24A: 2221-2228.
    [2]Mylonas D. T., Allen D. T., Ehrman S. H. The sources and size distributions of organonitrates in Los Angeles aerosol [J]. Atmospheric Environment,1991,25A: 2855-2861.
    [3]谢绍东,于淼,姜明.有机气溶胶的来源与形成研究现状[J].环境科学学报,2006,26(12):1933-1939.
    [4]Hildemann L. M., Markowski G. R., Cass G. R. Chemical composition of emissions from urban sources of fine organic aerosol [J]. Environmental Science and Technology,1991,25:744-759.
    [5]Saxena P., Hildemann L. Water-soluble organics in atmospheric particles:a critical review of the literature and application of thermodynamics to identify candidate compounds [J]. Journal of Atmospheric Chemistry,1996,24:57-109.
    [6]Rogge W. F., Hildemann L. M., Mazurek M. A. Sources of fine organic aerosol.9. Pine, oak and synthetic log combustion in residential fire places [J]. Environmental Science & Technology,1998,32 (1):13-22.
    [7]Rogge W. F., Hildemann L. M., Mazurek M. A. Sources of fine organic aerosol.2. Noncatalyst and catalyst-equipped automobiles and heavy duty diesel trucks [J]. Environmental Science & Technology,1993,27:636-651.
    [8]Schauer J. J., Kleeman M. J., Cass G. R., Simoneit B. R. T.1999. Measurement of emissions from air pollution sources.2. C1 through C30 organic compounds from medium duty diesel trucks [J]. Environmental Science & Technology, 1999,33 (10): 1578-1587.
    [9]Schauer J. J., Kleeman M. J., Cass G. R. Measurement of emissions from air pollution sources.5. C1-C32 organic compounds from gasoline-powered motor vehicles [J]. Environmental Science & Technology,2002,36 (6):1169-1180.
    [10]谢重阁,张月英,孙兰香,等.环境中的苯并[a]芘及其分析技术[M].北京:中国环境科学出版社,1991.
    [11]Rogge, W.F., Hidlemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T. Sources of fine organic aerosol 1. Charbroilers and meat cooking operations [J]. Environmental Science and Technology,1991,25,1112-1125.
    [12]Fang, M., Zheng, M., Wang, F., Chim, K. S., Kot, K. S. The long-range transport of aerosols from northern China to Hong Kong- a multi-technique study [J]. Atmos. Environ.,1999,33,1803-1817.
    [13]He, L., Hu, M., Huang, X., Zhang, Y., Tang X. Seasonal pollution characteristics of organic compounds in atmospheric fine particles in Beijing [J]. Sci. of the Total Environ.,2006,359,167-176.
    [14]Hou, X., Zhuang, G., Lin, Y., Li, J., Jiang, Y., Fu, J. S. Emission of fine organic aerosol from traditional charcoal broiling in China [J]. J. Atmos. Chem.,2008,61, 119-131.
    [15]温梦婷,胡敏.北京餐饮源排放细粒子理化特征及其对有机颗粒物的贡献[J].环境科学,2007,28(11):2620-2625.
    [16]Fine P. M., Cass G. R., Simoneit B. R. T. Chemical characterization of fine particle emissions from fire place combustion of woods grown in the northeastern United States [J]. Environmental Science & Technology,2001,35 (13):2665-2675.
    [17]Fine P. M., Cass G. R., Simoneit B. R. T. Chemical characterization of fine particle emissions from the fire place combustion of woods grown in the southern United States [J]. Environmental Science & Technology,2002,36 (7):1442-1451.
    [18]Schauer J. J., Kleeman M. J., Cass G. R. Measurement of emissions from air pollution sources.3. C1-C29 organic compounds from fire place combustion of wood [J]. Environmental Science & Technology,2001,35 (9):1716-1728.
    [19]Hays M. D., Geron C. D., Linna K. J. Speciation of gas-phase and fine particle emissions from burning of foliar fuels [J]. Environmental Science & Technology,2002, 36 (11):2281-2295.
    [20]Zhang G., Li J., Li X., Xu Y., Guo L., Tang J., Lee C. S. L., Liu X., Chen Y. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China [J]. Environment Pollution,2010,158: 3392-3340.
    [21]Hyer E. J., Chew B. N. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia [J]. Atmospheric Environment,2010,44:1422-1427.
    [22]Taylor D. Biomass burning, humans and climate change in Southeast Asia [J]. Biodivers. Conserv.,2010,19:1025-1042.
    [23]Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., Cass, G. R. Levoglucosan:A tracer for cellulose in biomass burning and atmospheric particles [J]. Atmos. Environ.,1999,33,173-182.
    [24]Wang G., Kawamura, K., Lee, S., Ho, K., Cao, J. Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities [J]. Environ. Sci. Technol.,2006,40,4619-4625.
    [25]Pandis S. N., Harley R. A., Cass G. R. Secondary organic aerosol formation and transport [J]. Atmospheric Environment,1992,26A:2269-2282.
    [26]Pankow J. F. An adsorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol [J]. Atmospheric Environment,1994,28: 189-193.
    [27]Ligocki M. P., Pankow J. F. Measurements of the gas/particle distributions of atmospheric organic compounds [J]. Environmental Science and Technology,1989,23: 75-83.
    [28]Blando, J. D., and B. J. Turpin. Secondary organic aerosol formation in cloud and fog droplets:a literature evaluation of plausibility [J]. Atmos. Environ.,2000,34, 1623-1632.
    [29]Warneck, P. In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere [J]. Atmos. Environ.,2003,37,2423-2427.
    [30]Blando J. D., Porcja R. J., Li T. H. Secondary formation and the Smoky Mountain organic aerosol:An examination of aerosol polarity and functional group composition during SEAVS [J]. Environmental Science & Technology,1998,32 (5):604-613.
    [31]Derwent R. G., Jenkin M. E., Utembe S. R., Shallcross D. E., Murrells T. P., Passant N. R. Secondary organic aerosol formation from a large number of reactive man-made organic compounds [J]. Science of the Total Environment,2010,408, 3374-3381.
    [32]Tie X., Wu D., Brasseur G. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, china [J]. Atmospheric Environment,2009,43: 2375-2377.
    [33]Chameides, W. L., H. Yu, S. C. Liu, M. Bergin, X. Zhou, L. Mearns, G. Wang, C. S. Kiang, R. D. Saylor, C. Luo, Y. Huang, A. Steiner, and F. Giorgi. Case Study of the Effects of Atmospheric Aerosols and Regional Haze on Agriculture:An Opportunity to Enhance Crop Yields in China through Emission Controls? [J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96, (24): 13626-13633.
    [34]Sun, Y. L., G. S. Zhuang, A. H. Tang, Y. Wang, and Z. S. An. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing [J]. Environ. Sci. Technol.,2006,41,3148-3155.
    [35]Fu Q., Zhuang G., Wang J., Chang X., Huang K., Li J., Hou B., Lu T., Streets D. G. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China [J]. Atmospheric Environment,2008,42:2023-2036.
    [36]Jung J., Lee H., Kim Y. J., Liu X., Zhang Y., Gu J., Fan S. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign [J]. Journal of Environmental Management,2009,90:3231-3244.
    [37]张欣,杜丽.灰霾的成因和危害[J].世界环境,2010,5:83-84.
    [38]Watson J. G. Visibility:science and regulation [J]. Journal of the Air and Waste Management Association,2002,52 (6):628-713.
    [39]Stevens R. K., King F., Bell J., Whitfield J.1988. Measurement of the chemical species that contribute to urban haze [A].81st Annual Meeting of Air Pollution Control Association. Dallas, Texas,1988.
    [40]宋宇,唐孝炎,方晨,张远航,胡敏,曾立民,李成才,毛节泰,Michael Bergin.北京市能见度下降与颗粒物污染的关系[J].环境科学学报,2003,23(4):.
    [41]姚剑,王广华,林俊,范雪波,耿彦红,位楠楠,单健,李燕,刘卫.上海市大气颗粒物与能见度的关系[J].气象与环境学报,2010,26(4):17-21.
    [42]Kang C. M., H. S. Lee, B.W. Kang, S. K. Lee, and Y. Sunwoo. Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea [J]. Atmospheric Environment,2004,38:4749-4760.
    [43]段菁春,毕新慧,谭吉华,盛国英,傅家谟.广州灰霾期大气颗粒物中多环芳烃粒径的分布[J].中国环境科学,2006,26(1):6-10.
    [44]Mysliwiec M. J. and Kleeman M. J. Source apportionment of secondary airborne particulate matter in a polluted atmosphere [J]. Environmental Science and Technology, 2002,36,5376-5384.
    [45]Shprentz, D. Breathtaking:Premature mortality due to particulate air pollution in 239 American cities [C]. Natural Resources Defense Council, New York,1996.
    [46]Klemm R. J., Mason R. M., Heilig, C. M., Neas L. M., Dockery, D. W. Is daily mortality associated specifically with fine particles? Data reconstruction and replication of analyses [J]. J. Air Waste Manage. Assoc.,2000,50,1215-1222.
    [47]陈建华,王玮,刘红杰,岳欣,李红,汤大钢.北京市交通路口大气颗粒物污染特征研究(I)——大气颗粒物污染特征及其影响因素[J].环境科学研究,2005,18(2):34-38.
    [48]Bishop G. A., Peddle A. M., Stedman D. H. On-road emission measurements of reactive nitrogen compounds from three California cities [J]. Environmental Science and Technology,2010,44,3616-3620.
    [49]Uherek, E., Halenka T., Borken-Kleefeld J., Balkanski Y., Berntsen T., Borrego C., Gauss M., Hoor P., Juda-Rezler K., Lelieveld J., Melas D., Rypdal K., Schmid S. Transport impacts on atmosphere and climate:Land transport [J]. Atmospheric Environment,2010,44:4772-4816.
    [50]Fulton, L., Eads, G. IEA/SMP Model Documentation and Reference Case Projections [C]. International Energy Agency (IEA)/World Business Council for Sustainable Development (WBCSD),2004,1-92.
    [51]Warneck, P. Chemistry of the Natural Atmosphere [M]. London:Academic Press, 2000.
    [52]Martinelango P. K., P. K. Dasgupta, and R. S. Al-Horr. Atmospheric production of oxalic acid/oxalate and nitric acid/nitrate in the Tampa Bay airshed:Parallel pathways [J]. Atmos. Environ.,2007,41,4258-4269.
    [53]Seinfeld J. H., Pandis S. N. Atmospheric Chemistry and Physics:from Air Pollution to Climate Change [M]. New York:John Wiley and Sons,1998:74-5, 1056-7.
    [54]Goebes M. D., Strader R., Davidson C. An ammonia emission inventory for fertilizer application in the United States [J]. Atmospheric Environment,2003,37: 2539-2550.
    [55]Watson, J. G., Chow, J. C., Lu, Z., Fujita, E. M., Lowenthal, D. H., Lawson, D.R., Ashbaugh, L. L. Chemical mass balance source apportionment of PM10 during the Southern California air quality study [J]. Aerosol Science and Technology,1994,21, 1-36.
    [56]Moeckli M. A., Fierz M., Sigrist M. W. Emission factors for ethene and ammonia from a tunnel study with a photoacoustic trace gas detection system [J]. Environmental Science & Technology,1996,30,2864-2867.
    [57]Fraser M. P., Cass G. R. Detection of excess ammonia emissions from in-use vehicles and the implications for fine particle control [J]. Environmental Science & Technology,1998,32,1053-1057.
    [58]Pierson, W. R., Brachaczek, W. W. Emissions of ammonia and amines from vehicles on the road [J]. Environ. Sci. Technol.,1983,17,757-760.
    [59]Kean A. J., Littlejohn D., Ban-Weiss G. A., Harley R. A., Kirchstetter T. W., Lunden M. M. Trends in on-road vehicle emissions of ammonia [J]. Atmospheric Environment,2009,43,1565-1570.
    [60]EPA. National Air Quality and Emissions Trends Report,2003 [R]. Office of Air Quality Planning and Standards, Research Triangle Park, NC,2003.
    [61]董艳强,陈长虹,黄成,王红丽,李莉,戴璞,贾记红.长江三角洲地区认为源氨排放清单及分布特征[J].环境科学学报,2009,29(8):16lI-1617.
    [62]赵晓光,许振成,王轩,王俊能.北京机动车限行对空气质量的影响分析[J].安全与环境科学,2010,10(4):82-87.
    [63]Zhou Y., Wu Y., Yang L., Fu L., He K., Wang S., Hao J., Chen J., Li C. The impact of transportation control measures on emission reductions during the 2008 Olympic Games in Beijing, China [J]. Atmospheric Environment,2010,44:285-293.
    [64]Galloway, J. N. Acid deposition:Perspectives in time and space [J]. Water Air Soil Pollution,1995,85(1),15-24.
    [65]Prospero, J. M., K. Barrett, T. Church, F. Dentener, R. A. Duce, J. N. Galloway, H. Levy, J. Moody, and P. Quinn. Atmospheric deposition of nutrients to the North Atlantic [J]. Biogeochemistry,1996,35,27-73.
    [66]Costanza R., d'Arge R., de Groot R., Farber S., et al. The value of the world's ecosystem services and natural capital [J]. Nature,1997,387,253-260.
    [67]Jickells T. D. Nutrient biogeochemistry of the coastal zone [J]. Science,1998,281, 217-222.
    [68]Krishnamurthy A., Moore J. K., Zender C. S., and Luo C. Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry [J]. Journal of Geophysical Research,2007,112, G02019.
    [69]Spokes L. J., Jickell T. D. Is the atmosphere really an important source of reactive nitrogen to coastal waters? [J]. Continental Shelf Research,2005,25,2022-2035.
    [70]Asman, W. A.H., Hertel, O., Berkowicz, R., Christensen, J., Runge, E. H., Sorensen, L. L., Granby, K., Nielsen, H., Jensen, B., Gryning, S. E., Sempreviva, A. M., Larsen, S., Hummelshoj, P., Jensen, N. O., Allerup, P., Jorgensen, J., Madsen, H., Overgaard, S., Vejen, F. Atmospheric nitrogen input to the Kattegat [J]. Ophelia,1995, 42,5-28.
    [71]Galloway, J. N., Howarth, R. W., Michaels, A. F., Nixon, S. W., Prospero, J. M., Dentener, F. J. Nitrogen and phosphorus budgets of the North Atlantic Ocean and its watershed [J]. Biogeochemistry,1996,35,3-25.
    [72]Jickells, T. D. Emissions from the oceans to the atmosphere, deposition from the atmosphere to the oceans and the interactions between them [M]. In:Steffen, W., Jager, J., Carson, D.J., Bradshaw, C. (Eds.), Challenges of a Changing Earth. Berlin:Springer, 2002,93-96.
    [73]Paerl, H. W., and D. R. Whitta. Anthropogenically-derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion:Is there a link? [J].Ambio,1999,28,307-311.
    [74]Zhang Y., Qi Y., Ma W., Chen L. Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to marine biogeochemistry [J]. Journal of Geophysical Research,2010,115, D00K10, doi:10.1029/2009JD012814.
    [75]Pryor, S. C., Barthelmie, R. J. Particle dry deposition to water surfaces:processes and consequences [J]. Marine Pollution Bulletin,2000,41,220-231.
    [76]Pryor, S. C., and L. L. Sorensen. Dry deposition of reactive nitrogen to marine environments:Recent advances and remaining uncertainties [J]. Marine Pollution Bulletin,2002,44,1336-1340.
    [77]Brimblecombe, P., Clegg, S. L. The solubility and behaviour of acid gases in the marine aerosol [J]. Journal of Atmospheric Chemistry,1988,7,1-18.
    [78]Dasgupta P. K., Campbell S. W., Al-Horra R. S., Ullah S. M. R., Li J., Amalfitano C., Poor N. D. Conversion of sea salt aerosol to NaNO3 and the production of HCl: Analysis of temporal behavior of aerosol chloride/nitrate and gaseous HCl/HNO3 concentrations with AIM [J]. Atmospheric Environment,2007,41,4242-4257.
    [1]Hou, X., Zhuang, G., Sun, Y., An, Z. Characteristics and sources of polycyclic aromatic hydrocarbons and fatty acids in PM2.5 aerosols in dust season in China [J]. Atmos. Environ.,2006,40,3251-3262.
    [2]Zhuang, G. S., J. H. Guo, H. Yuan, and C. Zhao. The compositions, sources, and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment [J]. Chinese Sci. Bull.,2001,46,895-901.
    [3]Sun, Y. L., G. S. Zhuang, Y. Wang, L. H. Han, J. H. Guo, M. Dan, W. J. Zhang, and Z. F. Wang. The air-borne particulate pollution at Beijing—concentrations, composition, distribution, and sources of Beijing aerosol [J]. Atmos. Environ.,2004, 38,5991-6004.
    [1]Cooke, W. F., Liousse, C., Cachier, H., Feichter, J. Construction of a 1°-1°fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model [J]. J. Geophys. Res.,1999,104 (D18),22137-22162.
    [2]Wang G., Kawamura, K., Lee, S., Ho, K., Cao, J. Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities [J]. Environ. Sci. Technol.,2006,40,4619-4625.
    [3]Zhang, Q., and J. Jimenez. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes [J]. Geophys. Res. Lett.,2007,34, L13801, doi:10.1029/2007GL029979.
    [4]Saxena, P., Hildemann, L. M., McMurry, P. H., Seinfeld J. H. Organics alter hygroscopic behavior of atmospheric particles [J]. J. Geophys. Res.,1995,100, 18755-18770.
    [5]Virkkula, A., Van Dingenen, R., Raes, F., Hjorth, J. Hygroscopic properties of aerosol formed by oxidation of limenene, α-pinene, and β-pinene [J]. J. Geophys. Res.,1999,104,3569-3579.
    [6]Simoneit, B. R. T., Sheng, G., Chen, X., Fu, J., Zhang, J., Xu, Y. Molecular markers of extractable organic matter in aerosols from urban areas of China [J]. Atmos. Environ.,1991,25A,2111-2129.
    [7]He, L., Hu, M., Huang, X., Yu, B., Zhang, Y., Liu, D. Measurement of emissions of fine particulate organic matter from Chinese cooking [J]. Atmos. Environ.,2004,38, 6557-6564.
    [8]Huang, X., He, L., Hu, M., Zhang, Y. Annual variation of particulate organic compounds in PM2.5 in the urban atmosphere of Beijing [J]. Atmos. Environ.,2006,40, 2449-2458.
    [9]Dan, M., Zhuang, G., Li, X., Tao, H., Zhuang, Y. The characteristics of carbonaceous species and their sources in PM2.5 in Beijing [J]. Atmos. Environ.,2004, 38,3443-3452.
    [10]Simoneit, B. R. T., Mazurek, M. A. Organic matter of the troposphere-Ⅱ. Natural background of biogenic lipid matter in aerosols over the rural western United States [J]. Atmos. Environ.,1982,16,2139-2159.
    [11]Simoneit, B. R. T. Characterization of organic constituents in aerosols in relation to their origin and transport:a review [J]. Int. J. Environ. Anal. Chem.,1986,23, 207-237.
    [12]Schauer, J. J., Rogge W. F., Hildemann L. M., Mazurek M. A., Cass G. R., Simoneit B. R. T. Source apportionment of airborne particulate matter using organic compounds as tracers [J]. Atmos. Environ.,1996,30,3837-3855.
    [13]Zheng M., Fang M. Particle-associated polycyclic aromatic hydrocarbons in the atmosphere of Hong Kong [J]. Water, Air, and Soil Pollution,2000b,117,175-189.
    [14]Zheng M., Salmon, L., Schauer, J. J., Zeng, L., Kiang, C., Zhang, Y., Cass, G. R. Seasonal trends in PM2.5 source contributions in Beijing, China [J]. Atmos. Environ., 2005,39,3967-3976.
    [15]Zheng, M., Cass, G., Schauer, J. J., Edgerton, E. S. Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers [J]. Environ. Sci. Technol.,2002,36,2361-2371.
    [16]Zheng M., Fang M., Wang F., To K. L. Characterization of the solvent extractable organic compounds in PM2.5 aerosols in Hong Kong [J]. Atmos. Environ.,2002a,34, 2691-2702.
    [17]Guo, Z., Sheng, L., Feng, J., Fang, M. Seasonal variation of solvent extractable organic compounds in the aerosols in Qingdao, China [J]. Atmos. Environ.,2003,37, 1825-1834.
    [18]Schauer, C., Niessner, R., Poschl, U. Polycyclic Aromatic Hydrocarbons in Urban Air Particulate Matter:Decadal and Seasonal Trends, Chemical Degradation, and Sampling Artifacts [J]. Environ. Sci. Technol.,2003,37,2861-2868.
    [19]Li, C. K., Kamens, R. M. The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling [J]. Atmos. Environ.,1993,27A,523-532.
    [20]Pistikopoulos, P., Masclet, P., Mouvier, G. A receptor model adapted to reactive species:polycyclic aromatic hydrocarbons:evaluation of source contributions in an open urban site -Ⅰ. particle compounds [J]. Atmos. Environ.,1990,24A,1189-1197.
    [21]Stocks, P., Commins, B. T., Aubrey, K. V. A study of polycyclic hydrocarbons and trace elements in smoke in merseyside and other northern localities [J]. Int. J. Air Water Pollut.,1961,4,141-153.
    [22]Harrison, R.M., Smith, D. J. T., Luhana, L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham. UK [J]. Environ. Sci..Technol.,1996,30,825-832.
    [23]Halsall, C.J., Sweetman, A.J., Barrie, L.A., Jones, K.C. Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic [J]. Atmos. Environ., 2001,35,255-267.
    [24]Hung, H., Blanchard, P., Halsall, C. J., Bidleman, T. F., Stern, G. A.., Fellin, P., Muir, D. C. G., Barrie, L. A., Jantunen, L. M., Helm, P. A., Ma, J., Konoplev, A. Temporal and spatial variabilities of atmospheric polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Canadian Arctic:Results from a decade of monitoring [J]. Sci. of the Total Environ., 2005,342,119-144.
    [25]Masclet, P., Bresson, M. A., Mouvier, G. Polycyclic aromatic hydrocarbons emitted by power stations, and influence of combustion conditions [J]. Fuel,1987,66, 556-562.
    [26]Mastral, A. M., Callen, M., Murillo, R. Assessment of PAH emissions as a function of coal combustion variables [J]. Fuel,1996,75,1533-1536.
    [27]Simcik, M. F., Eisenreich, S. J., Lioy, P. J.. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and lake Michigan [J]. Atmos. Environ.,1999,33,5071-5079.
    [28]Duval, M. M., Friedlander, S. K. Source resolution of polycyclic aromatic hydrocarbons in the Los Angeles atmospheres Application of a CMB with First Order Decay [R]. U.S. EPA Report EPA-600/2-81-161,1981, U.S. Government Printing Office:Washington, DC.
    [29]Chen, Y., Sheng, G., Bi, X., Feng, Y., Mai, B., Fu, J. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China [J]. Environ. Sci. Technol.,2005,39,1861-1867.
    [30]Kleinman, M. T., Eisenbudd, M., Lippman, M., Kneip, T. J. The use of tracers to identify sources of airborne particles [J]. Environ. Int.,1980a,4,53-62.
    [31]Kleinman, M. T., Pasternack, B. S., Eisenbud, M., Kneip, T. J. Indentifying and estimating the relative importance of sources of airborne particulates [J]. Environ. Sci. Technol.,1980b,14,62-65.
    [32]Morandi, M. T., Daisey, J. M., Lioy, P. J. Development of a modified factor analysis/multiple regression model to apportion suspended particulate matter in a complex urban airshed [J]. Atmos. Environ.,1987,21,1821-1831.
    [33]Hopke, P.K. Receptor modeling in Environmental Chemistry [M]. New York: Wiley,1985,24A,1189-1197.
    [34]Kawamura, K., Gagosian, R. B. W-Oxocarboxylic acids in the remote marine atmosphere:Implication of photo-oxidation for unsaturated Fatty Acids [J]. Nature, 1987,325,330-332.
    [35]Zheng M., Wan T., Fang M., Wang F. Characterization of the non-volatile organic compounds in the aerosols of Hong Kong-identification, abundance and origin [J]. Atmos. Environ.,1997,31,227-237.
    [36]Fang, M., Zheng, M., Wang, F., Chim, K. S., Kot, K. S. The long-range transport of aerosols from northern China to Hong Kong- a multi-technique study [J]. Atmos. Environ.,1999,33,1803-1817.
    [37]Guo, Z, Feng, J., Fang, M., Chen, H, Lau, K.H. The elemental and organic characteristics of PM2.5 in Asian dust episodes in Qingdao, China,2002 [J]. Atmos. Environ.,2004,38,909-919.
    [38]He, L., Hu, M., Huang, X., Zhang, Y., Tang X. Seasonal pollution characteristics of organic compounds in atmospheric fine particles in Beijing [J]. Sci. of the Total Environ.,2006,359,167-176.
    [39]Schauer, J. J., Kleeman M. J., Cass, G. R., Simoneit, B. T. Measurement of emissions from air pollution sources.1. C1 through C29 organic compounds from meat charbroiling [J]. Environ. Sci. Technol.,1999,33,1566-1577.
    [40]Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V.O., Fraser, M. P., Rogge, W. F., Cass, G. R. Levoglucosan:A tracer for cellulose in biomass burning and atmospheric particles [J]. Atmos. Environ.,1999,33,173-182.
    [41]Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., Simoneit, B. R. T. Sources of fine organic aerosol:1. Charbroilers and meat cooking operations [J]. Environ. Sci. Technol.,1991,25,1112-1125.
    [42]Hou, X., Zhuang, G., Lin, Y., Li, J., Jiang, Y., Fu, J. S. Emission of fine organic aerosol from traditional charcoal broiling in China [J]. J. Atmos. Chem.,2008,61, 119-131.
    [43]Hildemann, L. M., Markowski, G. R., Cass, G. R. Chemical composition of emissions from urban sources of fine organic aerosols [J]. Environ. Sci. Technol.,1991, 25,744-759.
    [1]Kawamura, K., and K. Ikushima. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere [J]. Environ. Sci. Technol.,1993,27, 2227-2235.
    [2]Facchini, M. C., S. Fuzzi, S. Zappoli, A. Andracchio, A. Gelencser, G. Kiss, Z. Kriva'csy, E. Me'sza'ros, H. C. Hansson, T. Alsberg, and Y. Zebu"hr. Partitioning of the organic aerosol component between fog droplets and interstitial air [J]. J. Geophy. Res.,1999a,104(D21),26,821-26,832.
    [3]Mader, B. T., J. Z. Yu, J. H. Xu, Q. F. Li, W. S. Wu, R. C. Flagan, and J. H. Seinfeld. Molecular composition of the water-soluble fraction of atmospheric carbonaceous aerosols collected during ACE-Asia [J]. J. Geophys. Res.,2004,109, D06206, doi:10.1029/2003JD004105.
    [4]Cruz, C. N., and S. N. Pandis. The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol [J]. J. Geophys. Res., 103(D11),1998,13,111-13,123.
    [5]Brooks, S. D., M. E. Wise, M. Cushing, and M. A. Tolbert. Deliquescence behavior of organic/ammonium sulfate aerosol [J]. Geophys. Res. Lett.,2002,29(19),1917, doi: 10.1029/2002GL014733.
    [6]Kumar, P. P., K. Broekhuizen, and J. P. D. Abbatt. Organic acids as cloud condensation nuclei:Laboratory studies of highly soluble and insoluble species [J]. Amos. Chem. Phys.,2003,3,509-520.
    [7]Facchini, M. C., M. Mircea, S. Fuzzi, and R. J. Charlson. Cloud albedo enhancement by surface-active organic solutes in growing droplets [J]. Nature,1999b, 401,257-259.
    [8]Kerminen, V.-M. Relative roles of secondary sulfate and organics in atmospheric cloud condensation nuclei production [J]. J. Geophy. Res.,2001,106(D15), 17,321-17,333.
    [9]Jickells, T. D., Z. S. An, K. K. Andersen, A. R. Baker, G. Bergametti, N. Brooks, J. J. Cao, P. W. Boyd, R. A. Duce, K. A. Hunter, H. Kawahata, N. Kubilay, J. laRoche, P. S. Liss, N. Mahowald, J. M. Prospero, A. J. Ridgwell, I. Tegen, and R. Torres. Global iron connections between desert dust, ocean biogeochemistry, and climate [J]. Science, 2005,308,67-71.
    [10]Deguillaume, L., M. Leriche, K. Desboeufs, G. Mailhot, C. George, and N. Chaumerliac. Transition metals in atmospheric liquid phases:Sources, reactivity, and sensitive parameters [J]. Chem. Rev.,2005,105,3388-3431.
    [11]Kawamura, K., H. Kasukabe and L. A. Barrie. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols:one year of observations [J]. Atmos. Environ.,1995,30,1709-1722.
    [12]Kawamura, K., and F. Sakaguchi. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics [J]. J. Geophy. Res.,1999,104(D3),3501-3509.
    [13]Kerminen, V. M., C. Ojanen, T. Pakkanen, R. Hillamo, M. Aurela, and J. Meril.ainen. Low-molecular weight dicarboxylic acids in an urban and rural atmosphere [J]. J. Aerosol Sci.,2000,31,349-362.
    [14]Yao, X. H., M. Fang, and C. K. Chan. Size distributions and formation of dicarboxylic acids in atmospheric particles [J]. Atmos. Environ.,2002a,36, 2099-2107.
    [15]Warneck, P. The relative importance of various pathways for the oxidation of sulphur dioxide and nitrogen dioxide in sunlit continental fair weather clouds [J]. Phys. Chem. Chem. Phys.,1999,1,5471-5483.
    [16]Carlton, A. G., B. J. Turpin, K. E. Altieri, S. Seitzinger, A. Reff, H. Lim, and B. Ervens. Atmospheric oxalic acid and SOA production from glyoxal:Results of aqueous photooxidation experiments [J]. Atmos. Environ.,2007,41,7588-7602.
    [17]Sullivan R. C., and K. A. Prather. Investigations of the diurnal cycle and mixing state of oxalic acid in individual particles in Asian aerosol outflow [J]. Environ. Sci. Technol.,2007,41,8062-8069.
    [18]Huang, X. F., J. Z. Yu, L. Y. He, and Z. B. Yuan. Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China:Size distribution characteristics, sources, and formation mechanism [J]. J. Geophy. Res.,2006,111, D22212, doi: 10.1029/2006JD007408.
    [19]Seinfeld, J. H., and S. N. Pandis. Atmospheric Chemistry and Physics:from Air Pollution to Climate Change [M]. New York:John Wiley and Sons,1998.
    [20]Blando, J. D., and B. J. Turpin. Secondary organic aerosol formation in cloud and fog droplets:a literature evaluation of plausibility [J]. Atmos. Environ.,2000,34, 1623-1632.
    [21]Yao, X. H., A. P. S. Lau, M. Fang, C. K. Chan, and M. Hu. Size distribution and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 2-dicarboxylic acids [J]. Atmos. Environ.,2003,37,3001-3007.
    [22]Crahan, K. K., D. Hegg, D. S. Covert, and H. Jonsson. An exploration of aqueous oxalic acid production in the coastal marine atmosphere [J]. Atmos. Environ.,2004,38, 3757-3764.
    [23]Yu, J. Z., X. F. Huang, J. H. Xu, and M. Hu. When aerosol sulfate goes up, so does oxalate:implication for the formation mechanisms of oxalate [J]. Environ. Sci. Technol.,2005,39,128-33.
    [24]Sorooshian, A., V. Varutbangkul, F. J. Brechtel, B. Ervens, G. Feingold, R. Bahreini, S. M. Murphy, J. S. Holloway, E. L. Atlas, G. Buzorius, H. Jonsson, R. C. (?)lagan, and J. H. Seinfeld. Oxalic acid in clear and cloudy atmospheres:Analysis of data from International Consortium for Atmospheric Research on Transport and Transformation 2004 [J]. J. Geophys. Res.,2006,111, D23S4, doi: 10.1029/2005 JD006880.
    [25]Martinelango P. K., P. K. Dasgupta, and R. S. Al-Horr. Atmospheric production of oxalic acid/oxalate and nitric acid/nitrate in the Tampa Bay airshed:Parallel pathways, Atmos. Environ.,2007,41,4258-4269.
    [26]Yin, J., and J. Tan. Effect of surface wind direction on air pollutant concentrations in Shanghai [J]. Meteorol. Sci. Technol.,2003,31,366-369 (in Chinese).
    [27]Clegg, S. L., P. Brimblecombe, and I. Khan. The Henry's law constant of oxalic acid and its partitioning into the atmospheric aerosol [M]. Ido" ja'ra's,1996,100, 51-68.
    [28]Souza, S. R., P. C. Vasconcellos, and L. R. F. Carvalho. Low molecular weight carboxylic acids in an urban atmosphere:winter measurements in Sao Paulo City, Brazil [J]. Atmos. Environ.,1999,33,2563-2574.
    [29]Limbeck, A., H. Puxbaum, L. Otter, and M. C. Scholes. Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA) [J]. Atmos. Environ.,2001,35,1853-1862.
    [30]Pathak, R. K., and C. K. Chan. Inter-particle and gas-particle interactions in sampling artifacts of PM2.5 in filter-based samplers [J]. Atmos. Environ.,2005,39, 1597-1607.
    [31]Fu, Q. Y., G. S. Zhuang, J. Wang, C. Xu, K. Huang, J. Li, B. Hou, T. Lu, and D. G. Streets. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China [J]. Atmos. Environ.,2008,42,2023-2036.
    [32]Yao, X. H., C. K. Chan, M. Fang, S. Cadle, T. Chan, P. Mulawa, K. He, and B. Ye. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China [J]. Atmos. Environ.,2002,36,4223-4234.
    [33]Yang, H., J. Z. Yu, S. S. H. Ho, J. Xu, W. Wu, C. H. Wan, X. Wang, X. Wang and L. Wang. The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China [J]. Atmos. Environ.,2005,39,3735-3749.
    [34]Yao, X. H., M. Fang, C. K. Chan, K. F. Ho, and S. C. Lee. Characterization of dicarboxylic acids in PM2.5 in Hong Kong [J]. Atmos. Environ.,2004,38,963-970.
    [35]Wang, Y., G. Z. Zhuang, S. Chen, Z. S. An, A. H. Zheng. Characteristics and sources of formic, acetic and oxalic acids in PM2.5 and PM10 in Beijing, China [J]. Atmos. Res.,2007a,84,169-181.
    [36]Sempere, R. and K. Kawamura. Comparative distribution of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere [J]. Atmos. Environ.,1994,28,449-459.
    [37]Uchiyama, S. The behavior of oxalic acid in atmospheric aerosols [J]. Taiki Kankyo Gakkaishi,1996,31,141-148.
    [38]Kawamura, K., and I. R. Kaplan. Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air [J]. Environ. Sci. Technol.,1987,21, 105-110.
    [39]Dasgupta, P. K., S. W. Campbell, R. S. Al-Horr, S. M. R. Ullah, J. Z. Li, C. Amalfitano, and N. D. Poor. Conversion of sea salt aerosol to and the production of HCl:Analysis of temporal behavior of aerosol chloride/nitrate and gaseous HCl/HNO3 concentrations with AIM [J]. Atmos. Environ.,2007,41,4242-4257.
    [40]Zhuang, H., C. K. Chan, M. Fang, and A. S. Wexler. Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong [J]. Atmos. Environ.,1999,33,843-853.
    [41]Dutton, M. V., and C. S. Evans. Oxalate production by fungi:its role in pathogenicity and ecology in the soil environment [J]. Can. J. Microbiol.,1996,42, 881-895.
    [42]Gadd, G. M. Fungal production of citric and oxalic acid:importance in metal speciation, physiology and biogeochemical processes [J]. Adv. Microb. Physiol.,1999, 41,47-92.
    [43]Kessler, C., and U. Platt. Nitrous acid in polluted air masses-sources and formation pathways. In "Physico-chemical Behaviour of Atmospheric Pollutants" (B. Versino and G. Angeletti, eds.) [C]. Proceedings of the 3rd European Symposium, Varese, Italy,1984, pp.412-421.
    [44]Pitts, J. N., Jr., H. W. Biermann, A. M. Winer, and E. C. Tuazon. Spectroscopic identification and measurement of gaseous nitrous acid in dilute auto exhaust [J]. Atmos. Environ.,1984,18,847-854.
    [45]McHenry, J. N., and R. L. Dennis. The relative importance of oxidation pathways and clouds to atmospheric ambient sulfate production as predicted by the regional acid deposition model [J]. J. Appl. Meteorol.,1994,33,890-905.
    [46]Finlayson-Pitts, B. J., and J. N. Pitts Jr. Chemistry of the Upper and Lower Atmosphere [M]. New York:Academic Press,2000.
    [47]Lefer, B. L., and R. W. Talbot. Summertime measurements of aerosol nitrate and ammonium at northeastern U.S. site [J]. J. Geophy. Res.,2001,106(D17), 20,365-20,378.
    [48]Yamasoe, M. A., P. Artaxo, A. H. Miguel, and A.G. Allen. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water soluble species and trace elements [J]. Atmos. Environ.,2000,34,1641-1653.
    [49]Falkovich, A. H., E. R. Graber, G. Schkolink, Y. Rudich, W. Maenhaut, and P. Artaxo. Low molecular weight organic acids in aerosol particles from Rondonia, Brazil, during the biomass-burning, transition and wet periods [J]. Atmos. Chem. Phys.,2005, 5,781-797.
    [50]Rogers, C. F., G. J. Hudson, B. Zielinska, R. L. Tanner, J. Hallett, and J. G. Watson. Global Biomass Burning:Atmospheric, Climatic and Biopheric Implications [M]. Cambridge:MIT Press,1991, pp.431-438.
    [51]Novakov, T., and C. E. Corrigan. Cloud condensation nucleus activity of the organic component of biomass smoke particles [J]. Geophys. Res. Lett.,1996,23(16), 2141-2144.
    [52]Warneck, P. Chemistry of the Natural Atmosphere [M]. London:Academic Press, 2000.
    [53]Warneck, P. In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere [J]. Atmos. Environ.,2003,37,2423-2427.
    [54]Warneck, P. Multi-Phase Chemistry of C2 and C3 Organic Compounds in the Marine Atmosphere [J]. J. Atmos. Chem.,2005,51,119-159.
    [55]Geng, F. H, X. X. Tie, J. M. Xu, G. Q. Zhou, L. Peng, W. Gao, X. Tang, and C. S. Zhao. Characterizations of ozone, NOx, and VOCs measured in Shanghai, China [J]. Atmos. Environ.,2008,42,6873-6883.
    [56]Okada, K., M. Ikegami, Y. Zaizen, Y. Makino, J. B. Jensen, and J. L. Gras. The mixture state of individual aerosol particles in the 1997 Indonesian haze episode [J]. J. Aerosol Sci.,2001,32,1269-1279.
    [57]Wang, H. B., and D. Shooter. Coarse-fine and day-night differences of water-soluble ions in atmospheric aerosols collected in Christchurch and Auckland, New Zealand [J]. Atmos. Environ.,2002,36,3519-3529.
    [58]Chen, L. W. A., J. C. Chow, B. G. Doddridge, R. R. Dickerson, W. F. Ryan, and P. K. Mueller. Analysis of a summertime PM2.5 and haze episode in the mid-Atlantic region [J]. J. Air Waste Manage. Assoc.,2003,53,946-956.
    [59]Yadav, A. K., K. Kumar, A. Kasim, M. P. Singh, S. K. Parida, and M. Sharan. Visibility and incidence of respiratory diseases during the 1998 haze episode in Brunei Darussalam [J]. Pure Appl. Geophys.,2003,160,265-277.
    [60]Chan, Y. C., R. W. Simpson, G. H. Mctainsh, P. D. Vowles, D. D. Cohen, and G. M. Bailey. Source apportionment of PM2.5 and PM10 aerosols in Brisbane (Australia) by receptor modeling [J]. Atmos. Environ.,1999,33,3251-3268.
    [61]Mysliwiec, M. J., and M. J. Kleeman. Source apportionment of secondary airborne particulate matter in a polluted atmosphere [J]. Environ. Sci. Technol.,2002, 36,5376-5384.
    [62]Sun, Y. L., G. S. Zhuang, A. H. Tang, Y. Wang, and Z. S. An. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing [J]. Environ. Sci. Technol.,2006,41,3148-3155.
    [63]Decesari, S., M. C. Facchini, E. Matta, F. Lettini, M. Mircea, S. Fuzzi, E. Tagliavini, and J. P. Putaud. Chemical features and seasonal variation of water soluble organic compounds in the Po valley fine aerosol [J]. Atmos. Environ.,2001,35, 3691-3699.
    [64]Decesari, S. et al. Characterization of the organic composition of aerosols from Rondo^nia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds [J]. Atmos. Chem. Phys.,2006,6,375-402.
    [65]Saxena, P., and L. M. Hildemann. Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds [J]. J. Atmos. Chem.,1996,24,57-109.
    [66]Lim, H. J., and B. J. Turpin. Origins of primary and secondary organic aerosol in Atlanta:Results'of time-resolved measurements during the Atlanta supersite experiment [J]. Environ. Sci. Technol.,2002,36,4489-4496.
    [67]Hennigan, C. J., M. H. Bergin and R. J. Weber. Correlations between water-soluble organic aerosol and water vapor:a synergistic effect from biogenic emissions [J]. Environ. Sci. Technol.,2008,42,9079-9085.
    [68]Wang, Y., G. S. Zhuang, A. H. Tang, W. J. Zhang, Y. L. Sun, Z. F. Wang, and Z. S. An. The evolution of chemical components of aerosols at five monitoring sites of China during dust storms [J]. Atmos. Environ.,2007b,41,1091-1106.
    [69]Chow, J. C., J. G. Watson, P. Doraiswamy, L. W. A. Chen, D. A. Sodeman, D. H. Lowenthal, K. Park, W. P. Arnott, and N. Motallebi. Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California [J]. Atmos. Res.,2009, 93,874-887.
    [70]Zhang, Q., and J. Jimenez. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes [J]. Geophys. Res. Lett.,2007,34, L13801, doi:10.1029/2007GL029979.
    [71]Zhang, R., I. Suh, J. Zhao, D. Zhang, E. Fortner, X. Tie, L. Molina, and M. Molina. Atmospheric new particle formation enhanced by organic acids [J]. Science, 2004,304,1487-1490.
    [1]陈罕立,王金南.关于我国NOx总量控制的探讨[J].环境科学研究,20058(5):107-110.
    [2]柴发合,陈义珍.区域大气污染总量控制技术与示范研究[J].环境科学研究,2006,19(4):163-171.
    [3]周维,王雪松,张远航,苏杭,陆克定.我国NOx污染状况与环境效应及综合控制策略[J].北京大学学报(自然科学版),2008,44(2):323-330.
    [4]杜柏仁.大气污染防治:近保世博,远虑将来[J].上海人大,2010,6:21-22.
    [5]Sutton, M. A., C. J. Place, M. Eager, et al. Assessment of the magnitude of ammonia emissions in the UK [J]. Atmospheric Environment,1995,29:1393-1411.
    [6]Heeb, N. V., Forss A. M., Brhlmann S., et al. Three-way catalyst-induced formation of ammonia-velocity-and acceleration-dependent emission factors [J]. Atmospheric Environment,2006,40:5986-5997.
    [7]Heeb, N. V., Saxer C. J., Forss A. M., et al. Trends of NO-, NO2-, and NH3-emissions from gasoline-fueled Euro-3- to Euro-4- passenger cars [J]. Atmospheric Environment,2008,42:2543-2554.
    [8]王海鲲,陈长虹,黄成,戴懿,赵静.上海市城区典型道路行驶特征研究[J].交通环保,2005,26(3):35-39.
    [9]Stefano Cemuschi, et al. Model analysis of vehicle emission factors [J]. Science of the Total Environment,1995,169:175-183.
    [10]杜红. 汽车排放测试循环及道路排放特性的研究[D]. 天津:天津大学,2001.
    [11]Gao Y., Arimoto R., Duce R. A., et al. Atmospheric non-sea-salt sulfate, nitrate and methanesulfonate over the China Sea [J]. Journal of Geophysical Research,1996,
    101(D7):2011-2030.
    [12]王淑兰,柴发合,张远航,等.成都市大气颗粒物污染特征及其来源分析[J].地理科学,2004,24(4):488-492.
    [13]庄马展,杨红斌,王坚,等.厦门大气可吸入颗粒物离子成分特征研究[J].现代科学设备,2006,6:92-95.
    [14]Xiao Huanyun, Liu Congqiang. Chemical characteristics of water-soluble components in TSP over Guiyang, SW China,2003 [J]. Atmospheric Environment, 2004,38(37):6297-6306.
    [15]Yao, X. H., Chan C. K., Fang M., et al. The water-soluble ionic composition of PM2.5 in Shanghai and Beijng, China [J]. Atmospheric Environment,2002,36(26): 4223-4234.
    [16]Wang, Y., G. S. Zhuang, Y. L. Sun, Z. S. An. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing [J]. Atmospheric Environment,2006,40():6579-6591.
    [17]Meng, Z., J. H. Seinfeld. On the source of the sub-micrometer droplet mode of urban and regional aerosols [J]. Aerosol Science and Technology,1994,20:253-265.
    [18]Xiu, G., D. Zhang, J. Chen, X. Huang, Z. Chen, H. Guo, J. Pan. Characterization of major water-soluble inorganic ions in size-fractionated particulate matters in Shanghai campus ambient air [J]. Atmospheric Environment,2004,38:227-236.
    [19]Pandis, S. N., J. H. Seinfeld. Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry [J]. Journal of Geophysical Research,1989,94: 1105-1126.
    [20]Goebes, M. D., R. Strader, C. Davidson. An ammonia emission inventory for fertilizer app lication in the United States [J]. Atmospheric Environment,2003,37: 2539-2550.
    [21]董艳强,陈长虹,黄成,王红丽,李莉,戴璞,贾记红.长江三角洲地区认为源氨排放清单及分布特征[J].环境科学学报,2009,29(8):1611-1617.
    [22]Seinfeld, J. H. and S. N. Pandis. Atmospheric Chemistry and Physics:From Air Pollution to Climate Change [M]. San Francisco:Wiley-Interscience,2006:478.
    [23]彭应登,杨明珍,申立贤.北京氨源排放及其对二次粒子生成的影响[J].环境科学,2000,21(6):101一103.
    [24]刘熠,李维亮,周秀骥.夏季华北地区二次气溶胶的模拟研究[J].中国科学(D辑:地球科学),2005,35(增刊I):156-166.
    [1]Xuan, J.; Liu, G.; Du, K., Dust emission inventory in Northern China [J]. Atmospheric Environment,2000,34(26):4565-4570.
    [2]Sun, J. M.; Zhang, M. Y.; Liu, T. S., Spatial and temporal characteristics of dust storms in China and its surrounding regions,1960-1999:Relations to source area and climate [J]. Journal of Geophysical Research-Atmospheres,2001,106(D10):10325-10333.
    [3]李娟.中亚地区沙尘气溶胶的理化特性、来源、长途传输及其对全球变化的可能影响[D].上海:复旦大学,2009.
    [4]Wang Q., Zhuang G., Li J., Huang K., Zhang R., Jiang Y., Lin Y., Fu J. S. Mixing of dust with pollution on the transport path of Asian dust--revealed from the aerosol over Yulin, the north edge of Loess Plateau [J]. Science of the Total Environment, 2010,409(3):573-581.
    [5]贾盛洁,刘锦丽,吕达仁,杜秉玉.小洋山岛大气气溶胶光学厚度的特征分析[J].气候与环境研究,2009,14(4):427-433.
    [6]Laurent, B.; Marticorena, B.; Bergametti, G.; Mei, F., Modeling mineral dust emissions from Chinese and Mongolian deserts [J]. Global and Planetary Change, 2006,52(1-4):121-141.
    [7]Allen D., and J.R. Turner. Transport of atmospheric fine particulate matter:part 1. Findings from recent field programs on the extent of regional transport within North America [J]. J. Air Waste Manage. Assoc.,2008,58,254-264.
    [8]Sun, J. and Liu, T. The Age of the Taklimakan Desert [J]. Science,2006,312, 1621.
    [9]Huebert B. J., Zhuang L., Howell S., Noone K., Noone B. Sulfate, nitrate, methanesulfonate, chloride, ammonium, and sodium measurements from ship, island, and aircraft during the Atlantic stratocumulus transition, experiment/marine aerosol gas exchange [J]. Journal of Geophysical Research, [Atmospheres],1996,101(D2): 4413-4423.
    [10]Saltzman E. S., Savoie D. L., Zika R. G., Prospero J. M. Methane sulfonic acid in the marine atmosphere [J]. Journal of Geophysical Research,1983,88:10897-10902.
    [11]Pakkanen T. A., Kerminen V. M., Korhonen C. H., Hillamo R. E., Aarnio P., Koskentalo T., Maenhaut W. Urban and rural ultrafine (PM0.1) particles in the Helsinki area [J]. Atmospheric Environment,2001,35:4593-4607.
    [12]Gao Y., Arimoto R., Duce R. A., Chen L. Q., Zhou M. Y., Gu D. Y. Atmospheric non-sea-salt sulfate, nitrate and methanesulfonate over the China Sea [J]. Journal of Geophysical Research, [Atmospheres],1996,101(D7):12601-12611.
    [13]Chen G., Davis D. D., Kasibhatla P., Bandy A. R., Thornton D. C., Huebert B. J., Clarke A. D., Blomquist B. W. A study of DMS oxidation in the tropics:comparison of Christmas Island field observations of DMS, SO2, and DMSO with model simulations [J]. Journal of Atmospheric Chemistry,2000,37:137-160.
    [14]Legrand M., Sciare J., Jourdian B., Genthon C. Subdaily variations of atmos-pheric dimethylsulfide, dimethylsulfoxide, methanesulfonate, and non- sea-salt sulfate aerosols in the atmospheric boundary layer at Dumont d'Urvile (coastal Antarctica) during summer [J]. Journal of Geophysical Research,2001,106(D13): 14409-14422.
    [15]Park S. J., Yoon T. I., Bae J. H., Seo H. J., Park H. J. Biological treatment of waste-water containing dimethyl sulphoxide from the semiconductor industry [J]. Process Biochemistry,2001,36 (6):579-589.
    [16]Cornell, S., A. Rendell, and T. Jickells. Atmospheric inputs of dissolved organic nitrogen to the oceans [J]. Nature,1995,376,243-246.
    [17]Paerl, H. W., and D. R. Whittal. Anthropogenically-derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion:Is there a link? [J].Ambio,1999,28,307-311.
    [18]Hameed, S., and J. Dignon. Changes in the geographical distributions of global emissions of NOx and SOX from fossil-fuel combustion between 1966 and 1980 [J]. Atmos. Environ.,1988,22,441-449.
    [19]Warneck, P. Chemistry of the Natural Atmosphere [M]. New York:Elsevier,1988: 757.
    [20]Costanza R., d'Arge R., de Groot R., Farberk S., Monica Grasso M., Hannon B., Limburg K., Naeem S., O'Neill R. V., Paruelo J., Robert G. Raskin R. G., Suttonkk P., van den Belt M. The Value of the world's ecosystem services and natural capital [J]. Nature,1997,387:253-260.
    [21]Moore, J. K., and S. C. Doney. Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation [J]. Global Biogeochem. Cycles,2007,21, GB2001, doi:10.1029/2006GB002762.
    [22]Nakamura T., Matsumoto K., Uematsu M. Chemical characteristics of aerosols transported from Asia to the East China Sea:an evaluation of anthropogenic combined nitrogen deposition in autumn [J]. Atmospheric Environment,2005,39:1749-1758.
    [23]袁蕙,王瑛,庄国顺.北京气溶胶中的甲基磺酸[J].科学通报,2004,49(8):744-749.
    [24]Yin F., Grosjean D., Seinfeld J. H. Photooxidation of dimethyl sulfide and dimethyl disulfide. Ⅰ:mechanism development [J]. Journal of Atmospheric Chemistry, 1990,11:309-364.
    [25]Yin F., Grosjean D., Flagan R. C., Seinfeld J. H. Photooxidation of dimethyl sulfide and dimethyl disulfide. Ⅱ:mechanism evaluation [J]. Journal of Atmospheric Chemistry,1990,11:365-399.
    [26]Jassby, A. D., J. E. Reuter, R. P. Axler, C. R. Goldman, and S. H. Hackley. Atmospheric deposition of nitrogen and phosphorus in the annual nutrient load of Lake Tahoe (California-Nevada) [J]. Water Resour. Res.,1994,30(7):2207-2216.
    [27]Paerl, H. W. Coastal eutrophication in relation to atmospheric nitrogen deposition —Current perspectives [J]. Ophelia,1995,41:237-259.
    [28]Jickells, T. D. Nutrient biogeochemistry of the coastal zone [J]. Science,1998, 281:217-222.
    [29]De Leeuw, G., et al. Atmospheric input of nitrogen into the North Sea:ANICE project overview [J]. Cont. Shelf Res.,2001,21:2073-2094.
    [30]Pryor, S. C., and L. L. Sorensen. Dry deposition of reactive nitrogen to marine environments:Recent advances and remaining uncertainties [J]. Mar. Pollut. Bull., 2002,44:1336-1340.
    [31]Zhang Y., Qi Y., Ma W., Chen L. Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to marine biogeochemistry [J]. Journal of Geophysical Research,2010,115, D00K10, doi:10.1029/2009JD012814.
    [32]Gao, Y., Arimoto, R., Zhou, M.Y., Merrill, J.T., Duce, R.A. Relationships between the dust concentrations over eastern Asia and the remote North Pacific [J]. Journal of Geophysical Research,1992,97:9867-9872.
    [33]Chen, Y. L., and H. Y. Chen. Nitrate-based new production and its relationship to primary production and chemical hydrography in spring and fall in the East China Sea [J]. Deep Sea Res., Part Ⅱ,2003,50,1249-1264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700