用户名: 密码: 验证码:
表达HBV外膜主蛋白、大蛋白的重组腺相关病毒的构建及其免疫原性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎是一种由乙型肝炎病毒(hepatitis B virus,HBV)感染引起的严重威胁人类健康的传染性疾病,目前全球范围内大约有超过3.5亿人受到HBV危害。大约有15~40%的HBV感染者最终会发展为肝细胞癌(hepatocellular carcinoma,HCC)、肝硬化和肝衰竭。我国是乙型肝炎主要的流行区,现患慢性乙型肝炎的病人已突破1000万。迄今为止,慢性乙型肝炎的治疗仍无良策,因此,研制新型HBV疫苗和寻求有效的治疗乙型肝炎的手段迫在眉睫。2型重组腺相关病毒(adeno-associated vires type 2,rAAV-2)作为一种大有希望的基因转移载体,因能有效转导多种组织和细胞而引起了人们的高度重视。为此,本研究以研制新型HBV疫苗为目的,构建了表达HBV外膜主蛋白、大蛋白基因的rAAV-2,初步研究了其免疫原性,并探讨了表达HBV抗原基因的rAAV-2用于以树突状细胞(dendritic cell,DC)为基础的慢性乙型肝炎免疫治疗的可行性。
     采用PCR法从PTHBV—1质粒中扩增HBV(ayw亚型)外膜主蛋白(HBsAg)、大蛋白(LHBsAg)基因;将PCR扩增产物插入rAAV-2表达质粒pSNAV中,构建重组质粒pSNAV-HBsAg和pSNAV-LHBsAg;用脂质体转染的方法将重组质粒转入BHK—21细胞中,G418筛选得到转入重组质粒并能表达目的基因细胞系BHK-HBsAg和BHK-LHBsAg;用具有rAAV包装功能的重组单纯疱疹病毒(HSV1-rc/ΔUL2)感染BHK-HBsAg和BHK-LHBsAg,纯化后得到rAAV-2-HBsAg和rAAV-2-LHBsAg;用高效液相色谱仪(HPLC)检测和SDS—聚丙稀酰胺凝胶电泳(SDS-PAGE)检测了rAAV-2-HBsAg和rAAV-2-LHBsAg的纯度;以点杂交方法检测重组病毒的物理滴度;ELISA检测混合细胞系
    
    博士论文:,、HB、,卜膜主蛋。、、蛋。、重组腺,关病毒的构减巍免。性研究
    BHK一HBsAg和BHK~LHBsAg中表面抗原(HBsAg)的表达,rAA认HBsAg和
    rA戌认LHBsAg在BHK一21细胞和293细胞中的表达。结果表明,H卫LC分析显
    示主峰为总面积大于99%;SDS一PAGE电泳结果显示3条特征性条带,其间的
    杂蛋白量非常少;点杂交检测rA戌瞬2一HBsAg和rAA认2.LHBsAg的物理滴度分
    别为sxlo,‘和ZxlolZ virusp耐cles/nil(vp翔吐);混合细胞株BHK一HBsAg中
    HBsAg的表达量为28.6士6.7ng乃x ro6eells,BHK~LHBsAg中HBsAg的表达量
    为15.4士5.5 ng zsxl06eeus;rA戌认2~HBs^g和rAAv-2~LHBsAg感染BHK一21
    细胞和293细胞后均能检测到HBsAg的表达,表达量随感染复数(伽ltiplicityof
    infection,MOI)的增加而升高。提示我们已经获得了高滴度、高纯度、在体外能
    有效地感染培养细胞的rAAV-2一HBsAg和rAAv-2.LHBSAg,为下一步工作奠定
    了基础。
     本文首次报道了rA戌认2载体介导HBV抗原基因用于HBV疫苗的研究。通
    过肌肉注射、尾静脉注射、腹腔注射和胃饲给药途径,我们观察了rA入v-2~HBsAg
    和rAA认2.LHBsAg在小鼠体内的转导效率和诱导小鼠产生HBv抗原特异性的体
    液和细胞免疫反应的能力。结果显示,rAAv-2~HBsAg和rAAv-2.LHBsAg通过
    肌肉注射、尾静脉注射、腹腔注射和胃饲途径进入小鼠体内后能有效表达HBsAg,
    同一给药途径,rA戌瞬2.HBsAg和rA入叭2~LHBsAg在小鼠体内HBsAg的表达水
    平无明显差异(p>0 .05);同一重组病毒(rA戌认2一HBsAg或rAAV一2一LHBsAg)
    不同给药途径之间HBsAg的表达水平亦无明显差异(p>0 .05)。重组病毒通过不
    同途径在小鼠体内表达的同时,可在较长时间(80天)诱导小鼠产生HBV抗原
    特异性的体液和细胞免疫反应:不同给药途径之间的免疫效果比较发现,肌肉注
    射、尾静脉注射、腹腔注射和胃饲都能诱发机体产生HBV保护性抗体和激发CTL
    产生,但以尾静脉注射效果最好,腹腔注射、肌肉注射和胃饲三者之间差别不大
     (p>0 .05);在各种给药途径中,免疫反应能否出现、以及免疫反应的强度与剂
    量(给予的重组病毒颗粒数)有关。结果提示,基于rAAV载体的HBV疫苗,
    对于防止HBV感染,尤其是作为慢性乙型肝炎的治疗性疫苗和应用于对现有
    HBV疫苗无反应的患者无疑具有潜在的应用价值,值得做进一步的系统研究。
     近年来,以DC为基础的免疫治疗已成为抗肿瘤和抗感染等研究的热点,本
    文也探讨了表达HBV抗原基因的rAA认2载体用于DC为基础的慢性乙型肝炎免
    疫治疗的可行性。首先,我们用表达报告基因一绿色荧光蛋白(GFP)基因和荧
    光素酶(luciferase,Luc)的rA月认2(分别简称为rAA认GFP和rAAV-Luc)感染
    了人外周血单核细胞来源DC以观测感染效能,在激光共聚焦显微镜观察了F仃C
    
    博士论文:表达HBV外膜主蛋白、大蛋白的重组腺相关病毒的构建及其免疫原性研究
    (fluorescein 150而Ocyanate,FITC,异硫氰酸荧光素)标记的rAA认2进入Dc的
    动态过程;结果显示,激光共聚焦显微镜下观察到了rAAV-2能进入DC;只有
    当Mol(multiplicity of infeetion,感染复数)大于1 X losvp/c ell时,乙AAV-2一lue
    和rA戌认2一GFP才能有效感染DC,需较高的MOI值的重组病毒才能有效感染
    Dc,报告基因的表达水平在MOI值为1 X 105一5 x 106vPlcell之间呈剂量依赖趋
    势,此后再提高MOI值并不能明显提高表达水平,感染后的DC表达水平不高。
    表明rAA认2可以有效感染DC,但转导效率?
Hepatitis B, caused by hepatitis B virus (HBV) infection, is an infectious disease that has been threatening public health and has affected more than 350 million people worldwide. Among which, hepatocirrhosis, liver failure, or hepatocellular carcinoma will be developed eventually in about 15 to 40 percent. HBV is heavily endemic in China as there are approximately 10 million chronically infected patients. It is in urgent need of excogitating new HBV vaccines and searching for effective therapeutic methods since there is no panacea for chronic HBV infection to date.
    Due to its non-pathogenicity, the ability to infect various types of cells and the capability to mediate long-term gene expression, recombinant adeno-associated virus type 2 (rAAV-2) has attracted tremendous interest as a promising vector for gene delivery. In this study we have developed an HBV vaccine and then studied its immunogenicity by using rAAV-2 vector expressing HBV envelope major protein and large protein. Meanwhile, we have probed into the feasibility that rAAV-2 was introduced to dendritic cell (DC)-based immunotherapy of chronic hepatitis B.
    Hepatitis B virus (subtype ayw) envelope major protein (HBsAg) and lager protein (LHBsAg) gene were amplified from PTHBV-1 by PCR and then cloned into the adeno-associated virus vector pSNAV, the recombinant pSNAV-HBsAg and pSNAV- LHBsAg were transfected into BHK-21 cell by using Lipofectamine?2000. Both mixed cell lines, BHK-HBsAg and BHK-LHBsAg which expressing HbsAg, were isolated by using G418 selection and were then infected with recombinant herpes simplex virus (HSVl-rc/AUL2) which can package the rAAV-2. rAAV-2-HBsAg and rAAV-2-LHBsAg were obtained after purification. HPLC and SDS-PAGE were used to monitor the purity of rAAV-2-HBsAg and rAAV-2-LHBsAg,
    
    
    respectively. The blot hybridization was used to determine the physical titers of rAAV-2-HBsAg and rAAV-2-LHBsAg. The results of SDS-PAGE and HPLC showed that the purities of the final rAAV-2 products were higher than 99%. The physical titers of rAAV-2-HBsAg and rAAV-2-LHBsAg were 5 ×1011and 2 × 1012 virus particles/ml(vp/ml), respectively. The expression level of HBsAg in BHK-HbsAg and BHK-LHBsAg, detected by ELISA(enzyme-linked immunosorbent assay), were 28.6 ±6.7 ng/5× 106cells and 15.4±5.8 ng/5×106cells. The expression of HBsAg in BHK-21 cells and 293 cells infected with rAAV-2-HBsAg and rAAV-2-LHBsAg can be detected, and the amounts of HBsAg expression elevated following the increasing of MOI (multiplicity of infection, MOI). These results indicate that rAAV-2-HBsAg and rAAV-2-LHBsAg can transduce various types of cultured cells efficiently in vitro.
    The transduction efficiencies of rAAV-2-HBsAg and rAAV-2-LHBsAg in vivo and their immunogenicities were studied via intramuscular injection (ini), intravenous injection (iv), intraperitoneal injection (ip) and gastric gavage (gg). The results showed that there is no difference of HBsAg expression between rAAV-2-HBsAg and rAAV-2-LHBsAg via the same administration route. Expression levels of HBsAg are about the same after the administration of rAAV-2-HBsAg or rAAV-2-LHBsAg to Balb/c mice via different routes. One single administration (im, iv, ip and gg) of rAAV-2-HBsAg or rAAV-2-LHBsAg can induce both humoral and cellular immune response for a long time. Among the four administration routes, both rAAV-2-HBsAg and rAAV-2-LHBsAg can induce the strongest cytotoxic T lymphocyte (CTL) response via intravenous injection. To our knowledge, this is the first report that rAAV-2-mediated HBV antigen gene expression can induce CTL responses as well as anti-HBsAg antibodies. Thus, the rAAV-2 vector can be used as a promi
    sing candidate for hepatitis B vaccine, particularly as a therapeutic vaccine for chronic hepatitis B and for those patients who have non-responsive to the current HBV vaccine.
    Much attention has been paid to the adjuvanticity of DC in generating antigen-specific immune responses for anti-tumor and anti-infection therapeutics. First, Viral vectors have been introduced succes
引文
1 . Lok ASF. Chronic Hepatitis B. N Engl J Med, 2002, 346: 1682-1683
    2. Degos F. Therapies for Viral Hepatitis. N Engl J Med,1999, 340:1374-1374
    3. 金奇.医学分子病毒学.北京:科学技术出版社,2001,325-326
    4. Torbenson M, Thomas DL. Occult hepatitis B. Lancet Infect Dis 2002,2:479-486
    5. 张波,陈冠军,张兆山.细菌载体疫苗的研究进展.微生物学免疫学研究进展. 2002. 30:86-90
    6. During M J. Adeno-associated virus as a gene delivery system. Advanced Drug Delivery Reviews, 1997, 27:83-94
    7. Koeberl DD, Alexander IE, Halbert CL, et al. Persistent expression of human clotting factor DC from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci USA, 1997, 94: 1426-1431
    8. Afione SA, Conrad CK, Kearns WG, et al. In vivo model of adeno-assoceated virus vector persistence and rescue. J Virol, 1996, 70: 3235-3241
    9. Harrison PT, Dalziel RG, Ditchfield NA, et al. Neuronal-specific and nerve growth factor-inducible expression directed by the preprotachykinin-A promoter delivered by an adeno-associated virus vector. Neuroscience, 1999, 94: 997-1003
    10. Rolling F, Shen WY, Tabarias H, et al. Evaluation of adeno-associated virus-mediated gene transfer into the rat retina by clinical fluorescence photography. Hum Gene Ther, 1999,10: 641-648
    11. Xiao X, Li J, Samulski R. Eficient long term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol, 1996, 70: 8098-8108
    12. Sun L, Li J, Xiao X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med, 2000, 6:599-602
    13. Yan Z, Zhang Y, Duan D, et al. Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci USA, 2000, 97: 6716-6721
    14. Xin KQ, Ooki T, Mizukami H, Hamajima K, et al. Oral administration of recombinant adeno-associated virus elicits human immunodeficiency virus-specific immune responses. Hum Gene Ther 2002,13:1571-1581
    
    
    15. Xin KQ, Urabe M, Yang J, et al. A novel recombinant adeno-associated virus vaccine induces a long-term humoral immune response to human immunodeficiency virus. Hum Gene Ther 2001, 12:1047-1061
    16. 刘雁征,吴小兵,周玲,等.含HIV-1 gag、gag V3基因的重组腺病毒伴随病毒的 构建及其免疫原性的研究.病毒学报.2001,17:328-332
    17. Seeger C, Mason WS. Hepatitis B virus biology. Micro Mol Biol Rev. 2000,64:51-68
    18. Bunnell BA, Morgan RA. Gene therapy for infectious diseases. CM Micro Rev, 1998,11:42-56
    19. Chisari FV. Viruses, immunity, and cancer: lessons from hepatitis B. Am J Pathol, 2000; 156(4) : 1117-1132
    20. Lemon SM, Thomas DL. Drug therapy: vaccines to prevent viral hepatitis. N Engl J Med 1997, 336: 196-204
    21. Pol S, Michel ML, Brechot C. Immune therapy of hepatitis B virus chronic infection. Hepatology, 2000,31:548-549
    22. Soussan P, Pol S, Garreau F, et al. Vaccination of chronic hepatitis B virus carriers with preS2/S envelope protein is not associated with the emergence of envelope escape mutants. J Gen Virol, 2001, 82: 367-371
    23. Marcellin P, Chang TT, Lim SG, et al. Adefovir Dipivoxil for the Treatment of Hepatitis B e Antigen-Positive Chronic Hepatitis B. N Engl J Med ,2003; 348:808-816.
    24. 余传霖,熊思东.分子免疫学.上海:复旦大学出版社,上海医科大学出版社, 2001,864-868
    25. Rehermann B, Fowler P, Sidney J, et al. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. J Exp Med, 1995,181:1047-1058
    26. Nayersina R, Fowler P, Guilhot S ,et al. HLA A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. J Immunol, 1993,150:4659-4671
    27. Rosenberg W. Mechanisms of immune escape in viral hepatitis. Gut, 1999,44:759-764
    28. Sette AD, Oseroff C, Sidney J, et al. Overcoming T Cell Tolerance to the Hepatitis
    
    B Virus Surface Antigen in Hepatitis B Virus-Transgenic Mice. J Immunol 2001 166: 1389-1397
    29. Shimizu Y, Guidotti LG, Fowler P, et al. Dendritic Cell Immunization Breaks Cytotoxic T Lymphocyte Tolerance in Hepatitis B Virus Transgenic Mice. J Immunol 1998 161:4520-4529
    30. Kakimi K, Isogawa M, Chung J, et al. Immunogenicity and Tolerogenicity of Hepatitis B Virus Structural and Nonstructural Proteins: Implications for Immunotherapy of Persistent Viral Infections. J Virol, 2002, 76:8609-8620
    31. Lohr HF, Pingel S, Bocher WO, et al. Reduced virus specific T helper cell induction by autologous dendritic cells in patients with chronic hepatitis B restoration by exogenous interleukin-12. Clin Exp Immunol 2002,130:107-114
    32. Arima S, Akbar SM, Michitaka K, et al. Impaired function of antigen-presenting dendritic cells in patients with chronic hepatitis B: Localization of HBV DNA and HBV RNA in blood DC by in situ hybridization. Int J Mol Med 2003,11:169-174
    33. Wright JF, Qu G, Tang C, et al. Recombinant adeno-associated virus: formulation challenges and strategies for a gene therapy vector. Curr Opin Drug Discov Devel, 2003,6:174-178
    34. Madry H, Cucchiarini M, Terwilliger EF, et al. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum Gene Ther, 2003, 14:393-402
    35. Clemens PR, Duncan FJ. Progress in gene therapy for Duchenne muscular dystrophy. Curr Neurol Neurosci Rep, 2001,1:89-96
    36. Larson PJ, High KA. Gene therapy for hemophilia B: AAV-mediated transfer of the gene for coagulation factor IX to human muscle. Adv Exp Med Biol 2001;489:45-57
    37.J.萨姆布鲁克,E..弗里奇,T.曼尼阿蒂斯著.金冬雁,黎孟枫,译.分子克隆实验指南.北京:科学出版社,1992
    38.吴小兵,董小岩,伍志坚,等.一种快速高效分离和纯化重组腺病毒伴随病毒载体的方法.科学通报,2000;45(19):2071—2075
    39.伍志坚,吴小兵,候云德.具有AAV载体包装功能的重组HSV的产生。科学通报,1999;44(5):506—509
    40. Synder RO, Xiao X, Samulski RJ. Production of recombinant adeno-associated
    
    viral vectors. In: Dracopoli N (ed). Current Protocols in Human Genetics. John Wiley: New York, 1996. 12. 1. 1-12. 1. 20.
    41. 伍志坚,吴小兵,候云德.系列腺病毒伴随病毒载体的构建及表达β-半乳糖苷 酶的研究.病毒学报,2000,16:1-6
    42. Kotin RM, Siniscalco M, Samulski RJ, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA, 1990, 87: 2211-2215
    43. Kotin RM, Menninger JC, Ward DC, et al. Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics, 1991, 10: 831-834
    44. Samulski RJ. Adeno-associated virus: integration at a specific chromosomal locus. Curr Opin Genet Dev, 1993, 3: 74-80
    45. Flotte TR, et al. Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J Biol Chem, 1993, 268: 3781-3790
    46. Simona Urbani, Carolina Boni, Gabriele Missale,et al. Virus-Specific CD8+ Lymphocytes Share the Same Effector-Memory Phenotype but Exhibit Functional Differences in Acute Hepatitis B and C. J Virol, 2002, 76: 12423-12434
    47. Guidotti, LG, Chisari FV. To kill or to cure: options in host defense against viral infection. Curr. Opin. Immunol. 1996, 8:478-483
    48. Kagi D, Lederman B, Burki K, et al. Molecular mechanism of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu Rev Immunol, 1996,14:20-25
    49. Russell DW, Kay MA. Adeno-associated virus vectors and hematology. Blood, 1999; 94:864-874
    50. Miao C, Snyder R, Schowalter D, et al. The kinetics of rAAV integration in the liver. Nat Genet, 1998, 19: 13-15
    51. Duan D, Sharma P, Yang J, et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol, 1998, 72: 8568-8577
    52. Kotin RM. Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther,1994, 5:793-801
    53. WC Manning, X Paliard, S Zhou,et al. Genetic immunization with
    
    adeno-associated virus vectors expressing herpes simplex virus type 2 glycoproteins B and D. J Virol, 1997 71: 7960-7962
    54. During MJ, Symes CW, Lawlor PA, et al. An Oral Vaccine Against NMDAR1 with Efficacy in Experimental Stroke and Epilepsy. Science 2000, 287: 1453-1460
    55. Liu DW, Tsao YP, Kung JT, et al. Recombinant Adeno-Associated Virus Expressing Human Papillomavirus Type 16 E7 Peptide DNA Fused with Heat Shock Protein DNA as a Potential Vaccine for Cervical Cancer. J Virol, 2000,74: 2888-2894
    56. Ponnazhagan S, Mahendra G, Kumar S, et al. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol, 2002,76:12900-12907
    57. Pajusola K, Gruchala M, Joch H, et al. Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells. J Virol, 2002,76(22) 11530-11540
    58. Goncalves MA, van der Velde I, Janssen JM, et al. Efficient generation and amplification of high-capacity adeno-associated virus/adenovirus hybrid vectors. J Virol, 2002,76:10734-10744
    59. Fisher KJ, Gao GP, Weitzman MD, et al. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol, 1996,70: 520-532
    60. Ferrari FK, Samulski T, Shenk T, et al. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol, 1996,70: 3327-3234
    61. Michel ML, Davis HL, Schleef M, el al. DNA-Mediated Immunization to the Hepatitis B Surface Antigen in Mice: Aspects of the Humoral Response Mimic Hepatitis B Viral Infection in Humans. Proc Natl Acad Sci USA, 1995, 92: 5307-5311
    62. Chow YH, Chiang BL, Lee YL, et al. Development of Thl and Th2 Populations and the Nature of Immune Responses to Hepatitis B Virus DNA Vaccines Can Be Modulated by Codelivery of Various Cytokine Genes. J Immunol 1998, 160: 1320-1329
    63. Schirmbeck R, Zheng X, Roggendorf M, et al. Targeting Murine Immune Responses to Selected T Cell-or Antibody-Defined Determinants of the Hepatitis B Surface Antigen by Plasmid DNA Vaccines Encoding Chimeric Antigen.J Immunol
    
    2001, 166: 1405-1413
    64. Mancini M, Hadchouel M, Davis HL, et al. DNA-mediated immunization in a transgenic mouse model of the hepatitis B surface antigen chronic carrier state. Proc Natl Acad Sci USA, 1996,93:12496-12501
    65. Liljeqvist S, Stahl S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotech, 1999, 73:1:1-33
    66. Hasan UA,. Abai AM, Harper DR, et al. Nucleic acid immunization: concepts and techniques associated with third generation vaccines. J Immunol Methods, 1999, 229:1-22
    67. Yim TJ, Tang S, Andino R. Poliovirus recombinants expressing hepatitis B virus antigens elicited a humoral immune response in susceptible mice. Virology 1996, 218:61-70
    68. Tobery TW, Smith JF, Kuklin N, et al. Effect of vaccine delivery system on the induction of HPV16L1-specific humoral and cell-mediated immune responses in immunized rhesus macaques. Vaccine 2003, 21:1539-1547
    69. Shiver JW, Fu TM, Chen L, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002, 415:331-335
    70. Vajdy M, Gardner J, Neidleman J, et al. Human immunodeficiency virus type 1 Gag-specific vaginal immunity and protection after local immunizations with sindbis virus-based replicon particles. J Infect Dis 2001, 184:1613-1616
    71. Colmenero P, Berglund P, Kambayashi T, et al. Recombinant Semliki Forest virus vaccine vectors: the route of injection determines the localization of vector RNA and subsequent T cell response. Gene Ther 2001, 8:1307-1314
    72. Nilsson C, Makitalo B, Berglund P, et al. Enhanced simian immunodeficiency virus-specific immune responses in macaques induced by priming with recombinant Semliki Forest virus and boosting with modified vaccinia virus Ankara. Vaccine 2001,19:3526-3536
    73. Waters JA, Brown SE, Steward MW, et al. Analysis of the antigenic epitopes of hepatitis B surfave antigen involved in the induction of a protective antibody response. Virus Res, 1991,22:1-12
    
    
    74. Schirmbeck R, Reimann J. Enhancing the immunogenicity of exogenous hepatitis B surface antigen-based vaccines for MHC-I-restricted T cells. Biol Chem, 1999, 380:285-291
    75. 吴晓蓉,贾文祥,邝玉,等.缓释微球乙型肝炎疫苗的初步研究.中国生物制 品学杂志.2000,13:89-91
    76. Bohl D, Salvetti A, Moullier P, et al. Control of erythropoietin delivery by doxycych'ne in mice after intramuscular injection of adeno-associated vector. Blood, 1998,92:1512-1517
    77. Haberman RP, McCown TJ, Samulski RJ. Inducible long-term gene expression in brain with adeno-associated virus gene transfer. Gene Ther, 1998,5: 1604-1611
    78. Rivera VM, Ye X, Courage NL, et al. Long-term regulated expression of growth hormone in mice after intramuscular gene transfer. Proc Natl Acad Sci USA, 1999,96: 8657-8662
    79. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998,392:245-252.
    80. Banchereau J, Briere F, Caux C, et al. Lmmunobiology of dendritic cells. Annu Rev Immunol 2000,18:767-781
    81. Timmerman JM, and Levy R. Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 1999,50:507-529
    82. Kruse M, Rosorius O, Kratzer F, et al. Mature dendritic cells infected with herpes simplex virus type I exhibited T-cell stimulatory capacity. J Virol, 2000; 74(15) :7127-7136
    83. Engelmayer J, Larsson M, Subklewe M, et al. Vaccinia virus inhibits the maturation of human denritic cells: a novel mechanism of immune evasion. J Immunol, 1999,163(12) :6762-6768
    84. Jenne L, Hauser C, Arrighi JF, et al. Poxvirus as a vector to transducer human dendritic cell for immuntherapy: abortive infection but reduced APC function. Gene Ther, 2000,7(18) : 1575-1583.
    85. Chiriva-Internati M, Liu Y, Salati E, et al. Efficient generation of cytotoxic T lymphocytes against cervical cancer cells by adeno-associated virus/human papillomavirus type 16E7 antigen gene transduction into dendritic cells. Eur J Immunol, 2002,32(1) :30-381.
    
    
    86. Liu Y, Chiriva-Internati M, Salati E, et al. Rapid induction of cytotoxic T lymphocytes against cervical cancer cells by human papillomavirus type 16E6 antigen gene delivery into human dendritic cells by an adeno-associated virus vector. Cancer Gene Ther, 2001,8(12) :948-957
    87. Sallusto F, Lanzavecchia A. Efficient presentation soluble antigen by cultured dendritic cells is maintained by granulocyte /macrophage colony stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a . J Exp Med, 1994, 179(4) : 1109-1118
    88. 章卫平,曹雪涛,张明徽,等.GM-CSF重组腺病毒扩增的骨髓树突状细胞 体外经肿瘤抗原刺激后诱导抗肿瘤免疫应答.中国免疫学杂志,1997,13(1) :29-33
    89. Summerford C, Samuski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for high-liter recombinant adeno-associated virus type 2 virions. J Virol, 1998,72:1438-1445
    90. Summerford C, Bartlett JS, Samuski RJ. α V β5 integrin: A co-receptor for adeno-associated virus type 2 infection. Nat Med, 1999, 5: 78-81
    91. Qing K, Man C, Hansen J, et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med, 1999, 5: 71-77
    92. Smith AD, Collaco RF, Trempe JP. Enhancement of Recombinant Adeno-Associated Virus Type 2-Mediated Transgene Expression in a Lung Epithelial Cell Line by Inhibition of the Epidermal Growth Factor Receptor. J Virol, 2003, 77: 6394-6404
    93. Tsang KY, Zhu M, Even J, et al. The infection of human dendritic cells with recombinant avipox vectors expressing a costimulatory molecule transgene (CD80) to enhance the activation of antigen-specific cytolytic T cells. Cancer Res, 2001, 61:7568-7576
    94. Rea D, Havenga MJ, van Den Assem M, et al. Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells. J Immunol, 2001, 66:5236-5244
    95. Meyer zum Buschenfelde C, Nicklisch N, et al. Generation of tumor-reactive CTL against the tumor-associated antigen HER2 using retrovirally transduced dendritic cells derived from CD34+ hemopoietic progenitor cells. J Immunol,
    
    2000,165:4133-40
    96. Yang S, Kittiesen D, Slingluff CL Jr, et al. Dendritic cells infected with a vaccinia vector carrying the human gp100 gene simultaneously present multiple specificities and elicit high-affinity T cells reactive to multiple epitopes and restricted by HLA-A2 and-A3. J Immunol, 2000,164:4204-4211
    97. 1Trinchieri G Interleukin-12: a proinflammatory cytokine with immunoregulatory function that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol, 1995,13:251-259
    98. Guidotti LG, Rochford R, Chung J, et al. Viral Clearance Without Destruction of Infected Cells During Acute HBV Infection. Science, 1999, 284: 825-829
    99. Romani N, Gruner S, Brang D, et al. Proliferating dendritic-cell progenitors in human blood. J Exp Med, 1994, 180:83-93
    100. Zhang Y, Mukaida N, Wang J, et al. Induction of dendritic-cell differentiation by granulocyte-macrophage colony-stimulating factor, stem cell factor and tumor necrosis factor a in vitro from lineage-phenotypes-negative c-kit+ murine hematopoietic progenitor cells. Blood, 1997,90:4842-4853.
    101. Miller G Pillarisetty CG Shah AB, et al. Endogenous granulocyte-macrophage colony-stimulating factor overexpression in vivo results in the long-term recruitment of a distinct dendritic cell population with enhanced Iimmunostimulatory function. J Immunol, 2002,169: 2875-2885
    102. Fujimoto Y, Tu L, Miller AS, et al. CD83 expression influences CD4+ T cell development in the thymus. Cell 2002,108: 755-767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700