用户名: 密码: 验证码:
分子佐剂通过粘膜免疫途径增强草原兔尾鼠卵透明带3DNA疫苗抗生育效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草原兔尾鼠(Lagurus lagurus)属啮齿目仓鼠科田鼠亚科兔尾鼠属,是新疆荒漠草场的一种野生害鼠,对新疆荒漠草场造成巨大的损害,严重威胁着新疆畜牧业的发展。化学毒杀、诱捕、射杀等传统方法时效短、物种专一性差,对环境造成破坏,不能有效控制害鼠的种群数量。采用免疫不育技术降低有害动物的生育率是一种更人道的、物种专一性更强的防治有害动物的方法。
     免疫不育疫苗主要以精子或卵子蛋白以及在受精和胚胎早期发育过程中发挥重要作用的蛋白或激素为抗原。肌肉和皮下接种等免疫不育疫苗传统接种方式很难在野外施用以控制有害动物种群数量,而口服饵料等粘膜免疫方式可以对有害动物进行大量接种,是切实可行的方法。鼠卵透明带3(Zona pellucida 3)主要由3种糖蛋白(ZP1、ZP2、ZP3)组成, ZP3作为精子的初级受体,诱发顶体反应,其抗体可以阻止精卵结合,在生殖过程中起重要作用,因此成为免疫不育疫苗的理想靶抗原。
     DNA疫苗既能激发体液免疫,又能诱导细胞免疫,且具有制备简单、易于贮存运输等诸多优点,已被广泛地应用于免疫不育疫苗的研究中。由于DNA疫苗存在免疫原性不强,免疫效果不佳等原因,因此需要通过添加佐剂,改变发送途径,优化载体等方式来提高DNA不育疫苗的抗生育效果。
     为了筛选出能有效提高LZP3DNA不育疫苗抗生育效果的分子佐剂,本研究选用小鼠白细胞介素31、白细胞介素15、白细胞介素33和非细胞因子FAI3作为分子佐剂,通过粘膜免疫途径,增强草原兔尾鼠LZP3DNA不育疫苗抗生育效果。并进一步探讨细胞因子和非细胞因子FAI3作为佐剂对草原兔尾鼠卵透明带DNA不育疫苗的免疫调节作用。
     白细胞介素31主要由活化的Th2细胞生成,在T细胞介导的免疫反应中起重要作用,它参与了炎症和变性皮肤疾病。在遗传过敏性皮炎和接触性过敏性皮炎患者中,IL-31表达水平的增高与IL-4和IL-13具有一定的相关性。细胞因子白细胞介素33(interleukin 33,IL-33)是IL-1家族的新成员。IL-33通过IL-1受体ST2发挥其生物学功能,活化NF-kB和MAP激酶,在体外促进TH2细胞产生TH2相关细胞因子。人IL-33的表达仅限于支气管、小气道的上皮细胞、成纤维细胞以及平滑肌细胞,这暗示IL-33有可能参与了黏膜免疫。DC细胞通过ST2直接对IL-33产生应答,被IL-33活化的DC细胞触发了一种非典型的Th2型免疫反应,生成IL-5和IL-13。IL-33与DC细胞的相互作用可能代表了一种引发Th2型免疫反应的新途径。白细胞介素15是一个促炎症细胞因子,通过诱导淋巴细胞的活化、增殖,细胞因子的释放来增强体液和细胞免疫反应。IL-15充当佐剂时,能提高抗体滴度,促进DC细胞成熟。
     FAI(Fbrinogen/ albumin/ IgG,纤维蛋白原/白蛋白/免疫球蛋白G受体)是来自C群链球菌的一种多配基结合蛋白,它能同时结合纤维蛋白原、白蛋白和免疫球蛋白G。位于415bp-702bp处的fai3基因片段具有粘膜佐剂活性。
     首先克隆获得了小鼠细胞因子白细胞介素33基因、白细胞介素31基因和白细胞介素31突变体。成功构建了pcD- mIL-15、pcD- mIL31、pcD- muIL31、pcD- mIL33和pcD- fai3五种重组质粒,这五种质粒均能在真核细胞中表达相应的佐剂分子。用壳聚糖chitosan作为发送载体,chitosan同时或单独包裹DNA疫苗pcD-Lzp3和重组质粒pcD-mIL-15、pcD-mIL31、pcD-muIL31、pcD-mIL33和pcD- fai3形成不同的chitosan-DNA复合物。在第0, 14, 28和42d,分别用不同的chitosan-DNA复合物通过滴鼻免疫途径免疫ICR小鼠。间接ELISA检测血清中抗LZP3特异性IgG、IgG1和IgG2a抗体,以及阴道洗液和粪便中的特异性IgA抗体。
     结果显示:滴鼻共免疫chi-(pcD-Lzp3+pcD-mIL-31)或chi-(pcD-Lzp3+pcD-muIL-31)都能诱导机体产生较高水平的血清IgG,降低了雌鼠的平均窝仔数。这两个共免疫组都产生较强的淋巴细胞增殖活性,激发Th1型免疫反应。共免疫chi-(pcD-Lzp3+pcD- muIL-31)不育小鼠的卵巢形态异常;在chi-(pcD-Lzp3+ pcD-mIL-31)组,不育小鼠卵巢中卵泡数量明显减少。
     Chi-(pcD-Lzp3+pcD-mIL-15)产生较强的淋巴细胞增殖活性。chi-(pcD-Lzp3+pcD-mIL-15)共免疫组小鼠的卵巢组织具有各级形态发育正常的卵泡,无卵巢炎的发生。滴鼻共免疫chi-(pcD-Lzp3+pcD-mIL-33)诱导产生了最高水平的血清IgG和粘膜sIgA,生育率和平均窝仔数显著降低。Chi-(pcD-Lzp3+pcD-mIL-33)共免疫组不育小鼠的卵巢组织出现了卵泡萎缩、卵母细胞丢失等异常现象。这些研究结果表明, mIL-33作为分子佐剂与DNA不育疫苗pcD-Lzp3滴鼻共免疫小鼠,能显著提高DNA不育疫苗抗生育效果,并能够诱导机体产生较强的系统体液免疫反应和粘膜免疫反应。
     Chi-(pcD-Lzp3+pcD-fai3)滴鼻共免疫也诱导机体生成了抗Lzp3特异性血清IgG和黏膜sIgA,生育率和平均窝仔数显著降低。共免疫组小鼠的卵巢组织具有各级形态发育正常的卵泡,无卵巢炎的发生。结果显示,fai3作为分子佐剂与DNA不育疫苗pcD-Lzp3滴鼻共免疫小鼠增强了体液免疫反应和黏膜免疫反应,提高了DNA不育疫苗的抗生育效果。在chi-(pcD-Lzp3+pcD-fai3)和chi-(pcD-Lzp3+pcD-mIL-33)共免疫组,免疫接种后不育小鼠的抗体水平显著高于生育小鼠,小鼠不育与抗体水平之间具有明显的相关性。
     口服免疫是不育疫苗发送的有效途径。本研究进一步探讨了小鼠白细胞介素15和FAI3作为口服粘膜佐剂增强Lzp3 DNA不育疫苗抗生育效果的可行性。将上述chitosan-DNA复合物加入鼠粮中,制成饵料,免疫ICR小鼠。结果显示,口服共免疫chi-(pcD-Lzp3+pcD-fai3)都诱导产生了较高水平的血清IgG和肠粘膜sIgA,生育率和平均窝仔数都有所下降。Chi-(pcD-Lzp3+pcD-mIL-15)免疫组产生了较强的淋巴细胞增殖活性。对卵巢切片进行组织学检测,结果显示,两个共免疫组小鼠的卵巢组织正常。
     综上所述,小鼠细胞因子白细胞介素33作为分子佐剂与草原兔尾鼠DNA不育疫苗pcD-Lzp3滴鼻共免疫小鼠,增强了机体的系统体液免疫反应和粘膜免疫反应,提高了DNA不育疫苗的抗生育率。白细胞介素31、白细胞介素15与草原兔尾鼠DNA不育疫苗pcD-Lzp3滴鼻共免疫小鼠,所产生的抗体水平和抗生育率均低于chi-(pcD-Lzp3+pcD-mIL-33)共免疫组。这些结果说明小鼠细胞因子白细胞介素33与白细胞介素31、白细胞介素15相比较,具有更强的分子佐剂功效。非细胞因子FAI3作为分子佐剂与DNA不育疫苗pcD-Lzp3,通过滴鼻和口服两种黏膜免疫途径共免疫小鼠,不仅增强了体液免疫反应,还激发了机体的粘膜免疫反应。因此,mIL-33和FAI3都可以作为分子佐剂,与DNA不育疫苗pcD-Lzp3共免疫,能够显著提高DNA不育疫苗pcD-Lzp3的抗生育效果。
Lagurus lagurus is a wild pest mouse distributed in desert pasture of northern region in Xingjiang. It destroys the pasture and results in the environmental damages for both ecologically and economically, and severely demolishes the stock raising of Xinjiang. Conventional control ways which rely on poisoning, trapping and shooting can be ineffective in the long term, often lead to losses in non-target species, and cause severely environmental problems. Immunocontraception can block or prevent oocyte fertilization through immunological interference, and it is a more humane, species-specific and effective control method. DNA vaccine is conventionally delivered by muscular or subcutaneous injection, while this is not feasible for the overpopulation control of the widely distributed pest animals. Delivering bait will be feasible ways that control the population of pest mouse through mass vaccination.
     In mice, the oocyte is enveloped by an extracellular matrix termed zona pellucida (ZP), which is composed of three distinct glycoproteins-ZP1, ZP2 and ZP3. ZP3 acts as the primary sperm receptor, which can recognize and combine with sperm and induce acrosome reaction. ZP3 elicits antibodies that can inhibit sperm–oocyte binding and reduce fertility, it has been considered as a promising target antigen in immunocontraceptive vaccines.
     Because DNA vaccine has several advantages such as inducing humour immune response and cell immune response at the same time, simple preparation and cheap cost, it is also used to study the immunocontraceptive vaccine. But, the immunogenicity of DNA vaccine is not high, and its immune effect need be improved. So it is necessary to enhance the immune effect of DNA contraceptive vaccine through some methods such as adding adjuvant, change delivery route and optimizing plasmid vectors.
     To screen an molecule adjuvant that can improve the antifertility effect of DNA immunocontraceptive vaccine. We investigated the feasibility of mouse cytokine IL-31, IL-15, IL-33 and non-cytokine FAI3 as different molecular adjuvant, to enhance systemic and mucosal immune responses and improve antifertility effect of contraceptive DNA vaccine pcD-Lzp3 following the co-immunization. We have expored the immune effect that these three mouse cytokines and non-cytokine regulate the antifertility effects of DNA vaccine pcD-Lzp3.
     Cytokine IL-31 is a new cytokine that is mainly produced by activated CD4+ T helper type 2 (Th2) cells. IL-31 is important in T cell-mediated immune responses; it is involved in inflammation and degenerative skin diseases. In allergic contact dermatitis, IL-31 expression was enhanced and correlated with IL-4 and IL-13. IL-33 is a new member of IL-1-family cytokines. IL-33 mediates its biological effects via IL-1 receptor ST2, activates NFkB and MAP kinases, and drives production of TH2-associated cytokines from in vitro polarized TH2 cells. The expression pattern of human IL-33 appears restricted to epithelial cells from bronchus and small airways, fibroblasts, and smooth muscle cells, suggesting its potential involvement in mucosal immunity. DCs respond directly to IL-33 through the receptor ST2, IL-33-actived DCs trigger an atypical Th2-type response that produce IL-5 and IL-13, The IL-33 and DC interaction may represent a new pathway to initiate Th2-type immune response. IL-15 is a proinflammatory cytokine that enhance humoral and cellular immune responses by inducing proliferation, activation, and cytokine release from lymphocytes. IL-15 has been shown to promote DC maturation, and increased antibody titers when used as adjuvant. However, FAI is a fibrinogen–albumin–IgG receptor from group C streptococci, it is a novel multiple-ligand-binding protein that can bind to fibrinogen, albumin and IgG. The third gene fragment of FAI(415bp-702bp)- fai3 has the activity of mucosal adjuvant.
     At first, mouse IL-33 gene, IL-31 gene and IL-31 mutant gene were amplified by RT-PCR from testis and spleens of Balb/c mice. The recombinant plasmids pcD-mIL-15, pcD-mIL31,pcD-muIL31,pcD-mIL33 and pcD-fai3 were constructed successfully, and were expressed instantaneously in eukaryotic cell. The recombinant plasmids pcD-mIL-15, pcD-mIL31, pcD-muIL31, pcD-mIL33 and pcD-fai3 were encapsulated separately with chitosan to generate the different chitosan-DNA complexes. ICR mice were immunized with these chitosan-DNA complexes by intranasal route or oral route on day 0, 14, 28 and 42, respectively. Indirect ELISA was employed to determine the anti-LZP3 specific IgG, IgG1 and IgG2a antibody in sera, and the anti-LZP3 specific IgA in vaginal secretion and the feces.
     The results showed that the high levels of serum IgG and the low mean litter size were induced in the mice of intranasally co-immunized with chi-(pcD-Lzp3+pcD- muIL-31) or chi-(pcD-Lzp3+pcD-mIL-31). The lymphocyte proliferation results showed that the strong cell immune response was induced in the mice of these two co-immunized groups , and the high IgG2a levels suggested that Th1 immune respone was actived. Histological examinations on the ovaries from the infertile female mice of chi-(pcD-Lzp3+pcD-muIL-31) exhibited abnormal histological structure. In the co-immunized group of chi-(pcD-Lzp3+ pcD-mIL-31), the follicles were lacked in the ovaries of infertile mice, and the number of follicles were decreased markedly.
     The mice of intranasally co-immunized with chi-(pcD-Lzp3+pcD-mIL-33) induced the highest levels of serum IgG , vaginal secreted IgA , fecal IgA and the lowest mean litter size. The lymphocyte proliferation results showed that the strongest cell immune response was induced in the mice of co-immunized with chi-(pcD-Lzp3+pcD-mIL-15). Histological examinations on the ovaries from the female mice of chi-(pcD-Lzp3+pcD-mIL-15) exhibited normal histological structure and normal follicles in different stage of development, without pathological changes specifically. The ovaries from the infertile female mice of chi-(pcD-Lzp3+pcD-mIL-33) showed the atretic follicle and the loss of oocyte . Our work demonstrated that the intranasal delivery of the molecular adjuvant mIL-33 with chi-pcD-Lzp3 could significantly enhance the antifertility effect of the Lzp3 DNA vaccine for contraception by enhancing both the systemic and mucosal immune responses.
     The mice of co-immunized group of chi-(pcD-Lzp3+pcD-fai3) produced the higher levels of serum IgG and fecal secreted IgA , and the low birth rate. Histological examinations on the ovaries from the female mice of chi-(pcD-Lzp3+pcD-fai3) exhibited normal histological structure and normal follicles in different stage of development, without pathological changes specifically. The level of IgG antibody in the infertile mice was significantly higher than in the fertile mice in the co-immunized group of chi-(pcD-Lzp3+pcD-mIL-33),chi-(pcD-Lzp3+pcD-fai3) , thus, there was a direct relationship between the levels of total IgG antibody and the infertility rate of mice among these groups.
     Delivering bait is a feasible, potentially effective way, it will be used as the delivering method of DNA vaccine pcD-Lzp3 in the future. We investigate the feasibility of fai3 and mIL-15 as mucosal adjuvant by oral route, to improve antifertility effect of DNA vaccine pcD-Lzp3. The above-mentioned chitosan-DNA complexes were add to mouse food, and made the food as the bait. Then, these baits were feed ICR mice on day 0, 14, 28 and 42, respectively.
     The ELISA results showed that the higher level of serum IgG and secreted IgA in feces, the lower mean litter size and birth rate were induced in the mice of co-immunized with chi-(pcD-Lzp3+pcD-fai3) through oral route. The level of serum IgG in the mice of chi-(pcD-Lzp3+pcD-mIL-15) was lower than that of chi-(pcD-Lzp3+pcD-fai3) co-immunized group, but the mice of this group induced the strong lymphocyte cell proliferation. Histological examinations also show the ovaries of immunized mice with the normal histological structure.
     In conclusion, mouse cytokine-mIL-33 as the molecular adjuvant co-immunized with pcD-Lzp3 through intranal route, could improve the antifertility effect of the Lzp3 DNA contraceptive vaccine by enhancing both the systemic and mucosal immune responses. Mouse cytokine mIL-31 and mIL-15 as the molecular adjuvant co-immunized with pcD-Lzp3, respectively, produced the lower level of IgG and antifertility effect than that of the co-immunized with chi-(pcD-Lzp3+pcD-mIL-33) . These results suggested that cytokine mIL-33 would have more better efficacy of molecular adjuvant than cytokine mIL-31 and mIL-15.
     Non-cytokine FAI3 as the molecular adjuvant co-immunized with pcD-Lzp3 intranally or orally, not only enhanced the systemic immune response, but also stimulated the mucosal immune response,and also can reduce the birth rate of mice. Thus, both mIL-33and FAI3 could act as molecular adjuvant, to improve the antifertility effect of DNA vaccine pcD-Lzp3 .
引文
[1] Hardy CM, Hinds LA, Kerr PJ, Lloyd ML, Redwood AJ, Shellam GR, Strive T. Biological control of vertebrate pests using virally vectored immunocontraception[J]. Journal of Reproductive Immunology.2006, 71:102–111.
    [2]徐丽,彭景楩.卵透明带ZP3的研究及其应用[J].动物学杂志. 2004 ,39(1):122–126 .
    [3] Hardy CM, Beaton S, Hinds L. Immunocontraception in Mice Using Repeated, Multi-Antigen Peptides: Immunization With Purified Recombinant Antigens [J]. Molecular Reproduction and Development . 2008. 75:126–135.
    [4]李轶杰,张钰,胡俊,王焱冰,张富春.草原兔尾鼠ZP3基因密码子优化及其在酵母中的表达[J].新疆大学学报(自然科学版).2006,23(1):79-83.
    [5] Litscher ES, Williams Z, Wassarman PM. Zona Pellucida Glycoprotein ZP3 and Fertilization in Mammals[J]. Molecular Reproduction & Development. 2009,76:933–941.
    [6] Chakravarty S, Kadunganattil S, Bansal P, Sharma RK, Gupta SK. Relevance of Glycosylation of Human Zona Pellucida Glycoproteins for Their Binding to Capacitated Human Spermatozoa and Subsequent Induction of Acrosomal Exocytosis[J]. Molecular Reproduction and Development. 2008, 75:75–88.
    [7] Harris JD, Hibler DW, Fontenot GK, Hsu KT, Yurewicz EC, Sacco AG. Cloning and characterization of zona pellucida genes and cDNAs from a variety of mammalian species: the ZPA, ZPB and ZPC gene families[J]. DNA Sequence. 1994, 4 (6): 361-93.
    [8]余敏,李大金.免疫避孕疫苗研究进展[J].国外医学妇幼保健分册.2003,14(4):195-198.
    [9] Izquierdo-Rico MJ, Jiménez-Movilla M, Llop E, Pérez-Oliva AB, Ballesta J,Gutiérrez-Gallego R, Jiménez-Cervantes C, Avilés M. Hamster Zona Pellucida Is Formed by Four Glycoproteins: ZP1, ZP2, ZP3, and ZP4[J]. Journal of Proteome Research. 2009, 8: 926–941.
    [10] Swanson WJ, Yang Z, Wolfner MF, Aquadro CF. Positive Dar-winian Selection drives the evolution of several female reproductive proteins in mammals[J]. Proc Natl Acad Sci. 2001,98: 2509-2514.
    [11] Kinoshita M, Mizui K, Ishiguro T, Ohtsuki M, Kansaku N, Ogawa H, Tsukada A, Sato T, SasanamiT. Incorporation of ZP1 into perivitelline membrane after in vivo treatment with exogenous ZP1 in Japanese quail (Coturnix japonica) [J].FEBS Journal .2008,275:580–3589.
    [12] Kanai S, Kitayama T, Yonezawa N, Sawano Y, Tanokura M, Nakano M. Disulfide Linkage Patterns of Pig Zona Pellucida Glycoproteins ZP3 and ZP4 [J]. Molecular Reproduction and Development 2008, 75:847–856.
    [13]李金耀.通过共免疫鼠卵透明带3 DNA和蛋白疫苗技术增强免疫不孕效果及降低卵巢炎症反应的研究[D].新疆大学:新疆大学. 2007.
    [14] Choudhury S, Kakkar V, Suman P,Chakrabarti K, Vrati S, Satish K, Gupta SK. Immunogenicity of zona pellucida glycoprotein-3 and spermatozoa YLP12 peptides presented on Johnson grass mosaic virus-like particles[J]. Vaccine. 2009,27: 2948-2953.
    [15]曹佐武,王自能.透明带避孕疫苗抗原的研究[J].国外医学计划生育分册.2003,22(4):240-242.
    [16] Naz RK, Gupta SK, Gupta JC, Vyas HK ,Talwar GP. Recent advances in contraceptive vaccine development: a mini-review[J]. Human Reproduction. 2005,20(12): 3271-3283.
    [17] Polkinghorne I, Hamerli D, Cowan P, Duckworth J. Plant-based immunocontraceptive control of wildlife—“potentials, limitations, and possums”[J].Vaccine.2005, 23 : 1847–1850.
    [18] Gupta SK, Gupta N, Suman P, Choudhury S, Prakash K, Gupta T, Sriraman R, Nagendrakumar SB, Srinivasan VA. Zona pellucida-based contraceptive vaccines for human and animal utility[J]. Journal of Reproductive Immunology. 2011, 88(2):240–246.
    [19] Hardy CM, Ten Have J F M, Pekin J, Beaton S, Jackson RJ, Clydesdale G. Contraceptive responses of mice immunized with purified recombinant mouse zona pellucida subunit 3 (mZP3) proteins[J]. Reproduction.2003, 126: 49–59.
    [20] Kitchener AL, Harman A, Kay DJ, McCartney CA, Mate KE, Rodger JC. Immunocontraception of eastern grey kangaroos (Macropus giganteus) with recombinant brushtail possum (Trichosurus vulpecula) ZP3 protein[J]. Journal of Reproductive Immunology. 2009 a, 79:156–162.
    [21] Cui X, Duckworth JA, Molinia FC, Cowan PE. Identification and evaluation of an infertility-associated ZP3 epitope from the marsupial brushtail possum (Trichosurus vulpecula)[J].Vaccine.2010,28: 1499–1505.
    [22] Duckworth JA, Wilson K, Cui X., Molinia FC, Cowan PE. Immunogenicity and contraceptive potential of three infertility-relevant zona pellucida 2 epitopes in the marsupial brushtail possum (Trichosurus vulpecula) [J]. Reproduction. 2007, 133:177–186.
    [23] Delves PJ, Lund T, Roitt IM. Antifertility vaccines [J]. TRENDS in Immunology. 2002, 23(4):213-220.
    [24]王昌青,杨兵.DNA疫苗研究进展.中国畜牧兽医.2009,36(12): 143-147.
    [25] Meeusen ENT, Walker J, Peters A, Pastoret PP, Jungersen G. Current Status of Veterinary Vaccines[J].Clinical Microbiology Reviews. 2007, 20(3): 489–510.
    [26] Xiang RL, Zhou F, Yang Y, Peng PJ. Construction of the Plasmid pCMV4-rZPC' DNA Vaccine and Analysis of Its Contraceptive Potential[J]. Biology of Reproduction . 2003, 68: 1518-1524.
    [27]柯琼,潘善培,谢琪璇,肖銮娟,何柳媚,董志炜,高彦茹.重组IL-5质粒pVAX1-mIL-5增强卵透明带DNA避孕疫苗黏膜免疫效能[J].暨南大学学报(医学版).2006,27(2): 157-163 .
    [28]王焱冰,李轶杰,张富春.分子佐剂C3d增强草原兔尾鼠卵透明带3 DNA疫苗的免疫应答.分子细胞生物学报. 2006, 39(4):297-303.
    [29] Li J, Jin H, Zhang A, Li Y, Wang B, Zhang F. Enhanced contraceptive response by co-immunization of DNA and protein vaccines encoding the mouse zona pellucida 3 with minimal oophoritis in mouse ovary[J]. Journal of Gene Medicine. 2007,9: 1095–1103.
    [30] Bradley MP,Eade J, Penhale J, Bird P. Vaccines for fertility regulation of wild and domestic species[J]. Journal of Biotechnology. 1999,73 : 91–101.
    [31] Hardy CM, Hinds LA, Kerr PJ, Lloyd ML, Redwood AJ, Shellam GR, Strive T. Biological control of vertebrate pests using virally vectored immunocontraception[J]. Journal of Reproductive Immunology. 2006,71:102–111 .
    [32] Redwood AJ , Harvey NL , Lloyd M, Lawson MA, Hardy CM, Shellam GR. Viral vectored immunocontraception: Screening of multiple fertility antigens using murine cytomegalovirus as a vaccine vector[J]. Vaccine. 2007, 25: 698–708
    [33] Jackson RJ, Maguire DJ, Hinds LA, Ramshaw IA. Infertility in mice induced by a recombinant ectromelia virus expressing mouse zona pellucida glycoprotein 3[J]. Biology of Reproduction. 1998, 58: 152–159.
    [34] O'Leary S, Lloyd ML, Shellam GR, Robertson SA. Immunization with recombinant murine cytomegalovirus expressing murine zona pellucida 3 causes permanent infertility in BALB/c mice due to follicle depletion and ovulation failure[J]. Biology of Reproduction. 2008, 79:849–860.
    [35] Hardy CM, Braid AL. Vaccines for immunological control of fertility in animals[J]. Revue scientifique et technique (International Office of Epizootics). 2007,26:461–470.
    [36] Zhang X, Lou YH, Koopman M, Doggett T, Tung SK K , Curtiss R . Antibody Responses and Infertility in Mice Following Oral Immunization with Attenuated Salmonella typhimurium Expressing Recombinant Murine ZP3[J]. Biology of Reproduction. 1997,56:33-41
    [37] Ebensen T, Paukner S, Link C, Kudela P, Domenico CD, Lubitz W, Guzmán CA . Bacterial Ghosts Are an Efficient Delivery System for DNA Vaccines[J]. The Journal of Immunology. 2004, 172: 6858–6865.
    [38] Cui X, Duckworth JA, Lubitz P, Molinia FC, Haller C, Lubitz W, Cowan PE. Humoral immune responses in brushtail possums (Trichosurus vulpecula) induced by bacterial ghosts expressing possum zona pellucida 3 protein[J]. Vaccine. 2010 ,28: 4268–4274.
    [39]赵志晶,陈翠萍,曾明.细菌空胞及其免疫学应用[J].中国生物制品学杂志. 2006,19(1) : 102-104
    [40] Walcher P, Cui X, Arrow JA, Scobie S, Molinia FC, Cowan PE, Lubitz W, Duckworth JA. Bacterial ghosts as a delivery system for zona pellucida-2 fertility control vaccines for brushtail possums (Trichosurus vulpecula) [J]. Vaccine. 2008 ,26 :6832–6838.
    [41] Tiwari S, Verma PC, Singh PK, Tuli R. Plants as bioreactors for the production of vaccine antigens[J]. Biotechnology Advances. 2009,27: 449–467
    [42] Fitchen J, Beachy RN, Hein MB. Plant virus expressing hybrid coat protein with added murine epitope elicits autoantibody response[J]. Vaccine. 1995,13: 1051–1057.
    [43] Walmsley AM, Alvarez ML, Jin Y, Kirk DD, Lee SM, Pinkhasov J, Rigano MM, ArntzenCJ,Mason HS. Expression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomato[J]. Plant Cell reports. 2003, 21: 1020–1026.
    [44] Polkinghorne I, Hamerli D, Cowan P, Duckworth J. Plant-based immunocontraceptive control of wildlife—“potentials, limitations, and possums”[J]. Vaccine. 2005, 23: 1847–1850.
    [45]李玉清,梁志清,何畏,史常旭,李玉艳. ISCOMs作为粘膜免疫佐剂在避孕疫苗构建中的作用研究[J].第三军医大学学报. 2004, 26(22):1991-1993.
    [46] Lee MK, Chun SK, Choi WJ, Kim JK, Choi SH, Kim A, Oungbho K, Park JS, Ahn WS, Kim CK. The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer [J]. Biomaterials. 2005, 26: 2147–2156.
    [47] Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA [J]. Advanced Drug Delivery Reviews. 2010, 62: 12–27.
    [48] Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B[J]. International Journal of Pharmaceutics. 2008, 354: 235–241.
    [49] Vander Lubben IM, Coos Verhoef J, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery [J]. European Journal of Pharmaceutical Sciences. 2001, 4: 201–207.
    [50] Seferian PG, Martinez ML. Immune stimulating activity of two new chitosan containing adjuvant formulations [J]. Vaccine. 2001, 19: 661-668.
    [51]董志炜,潘善培,谢琪璇,肖銮娟,孙彩军,余巍,何柳媚.小鼠口服猪卵透明带DNA避孕疫苗pVAX1-pZP3α的抗生育研究[J].暨南大学学报. 2004, 25(6):661-667.
    [52] Zhang AL, Li J, Zhao G, Geng S, Zhuang S, Wang B, Zhang F. Intranasal co-administration with the mouse zona pellucida 3 expressing construct and its coding protein induces contraception in mice[J].Vaccine. 2011, doi:10.1016/j.vaccine.2010.12.061
    [53] Holmgren J, Czerkinsky C. Mucosal immunity and vaccines [J]. Nature Medicine. 2005, 11(4):45-53.
    [54] Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces [J]. Vaccine. 2007,25:5467–5484.
    [55]甘慧泉,吴忠道.黏膜免疫及其在疫苗研制中的应用[J].热带医学杂志.2004, 4(6): 763-765.
    [56]张永振,徐建国.粘膜免疫系统与粘膜免疫应答的诱导[J].细胞生物学杂志.2001, 23(1): 11-16.
    [57] Gebert A, Fassbender S, Werner K, Weissferdt A. The Development of M Cells in Peyer’s Patches Is Restricted to Specialized Dome-Associated Crypts [J]. American Journal of Pathology.1999, 154(5): 1573-1582.
    [58] Mantis NJ, Cheung MC, Chintalacharuvu KR, Rey J, Corthésy B, Neutra MR. Selective Adherence of IgA to Murine Peyer’s Patch M Cells: Evidence for a Novel IgA Receptor [J]. Journal of Immunology. 2002, 169(4): 1844-1851.
    [59] Hase K, Murakami T, Takatsu H, Shimaoka T, Iimura M, Hamura K, Kawano K, Ohshima S, Chihara R, Itoh K, Yonehara S, Ohno H. The Membrane-Bound Chemokine CXCL16 Expressed on Follicle-Associated Epithelium and M Cells Mediates Lympho-Epithelial Interaction in GALT [J]. Journal of Immunology.2006, 176(1): 43–51.
    [60] Corthésy B. Roundtrip Ticket for Secretory IgA: Role in Mucosal Homeostasis? [J]. Journal of Immunology. 2007, 178(1): 27–32.
    [61] Fastad IN, Halxtense TS, Fansa O, Brandtzaeg P. Heterogeneity of M-cell-associated B and T cells in human Peyers patches [J]. Immunology.1994, 83(3):457-464.
    [62] McCluskie MJ, Davis HL. Mucosal immunization with DNA vaccines [J]. Microbes and Infection.1999, 1(9):685?698.
    [63]罗洪林,阳玉彪,夏萌.动物粘膜及其细胞因子的免疫功能研究进展[J].广西农业科学, 2004, 35(5):405-408.
    [64] De Magistris MT,Mucosal delivery of vaccine antigens and its advantages in pediatrics[J]. Advanced Drug Delivery Reviews.2006, 58(1):52-67.
    [65] Stenstad H, Svensson M, Cucak H, Kotarsky K, Agace WW. Differential homing mechanisms regulate regionalized effector CD8αβ+ T cell accumulation within the small intestine [J]. Proc Natl Acad Sci USA. 2007, 104(24):10122–10127.
    [66] Fujihashi K, Koga T, van Ginkel FW, Hagiwara Y, McGhee JR. A dilemma for mucosal vaccination: efficacy versus toxicity using enterotoxin-based adjuvants [J]. Vaccine. 2002,20(19-20):2431–2438.
    [67] Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa [J]. Veterinary Research. 2006, 37(3): 511–539.
    [68]史云,胡小华.霍乱毒素与粘膜免疫[J].中国人兽共患病杂志. 2004, 20(1):56-58.
    [69] Tempesta M , Camero M , Bellacicco AL , Tarsitano E, Lorusso A , Martella V, Decaro N, Del Giudice G, Cassone A, Quaranta A, Buonavoglia C. Caprine herpesvirus 1 vaccine with the LTK63 mutant as a mucosal adjuvant induces strong protection against genital infection in goats[J]. Vaccine. 2007, 25 (46): 7927–7930.
    [70] ?gren LC, Ekman L, L?wenadler B, Lycke NY. Genetically Engineered Nontoxic Vaccine Adjuvant That Combines B Cell Targeting with immunomodulation by Cholera Toxin A1 Subunit [J]. Journal of Immunology. 1997, 158(8): 3936-3946.
    [71] Mowat AM, Donachie AM, J?gewall S, Sch?n K, L?wenadler B, Dalsgaard K, Kaastrup P, Lycke N. CTAI-DD-immune stimulating complexes: a novel, rationally designed combined mucosal vaccine adjuvant effective with nanogram doses of antigen [J]. Journal of Immunology. 2001, 167(6): 3398-3405.
    [72] Helgeby A, Robson NC, Donachie AM, Beackock-Sharp H, L?vgren K, Sch?n K, Mowat A, Lycke NY. The Combined CTA1-DD/ISCOM Adjuvant Vector Promotes Priming of Mucosal and Systemic Immunity to Incorporated Antigens by Specific Targeting of B Cells [J]. Journal of Immunology. 2006, 176(6): 3697–3706.
    [73] Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and growth factors in endometrium related to implantation [J]. Human Reproduction Update.2005, 11(6): 613–630.
    [74] Yu Q, Tang C, Xun S, Yajima T, Takeda K, Yoshikai Y. MyD88-Dependent Signaling for IL-15 Production Plays an Important Role in Maintenance of CD8ααTCRαβand TCRγδIntestinal Intraepithelial Lymphocytes[J]. Journal of Immunology. 2006, 176(10): 6180–6185.
    [75] Hiroi T, Yanagita M, Ohta N, Sakaue G, Kiyono H. IL-15 and IL-15 Receptor Selectively RegulateDifferentiation of Common Mucosal Immune System-Independent B-1 Cells for IgA Responses[J]. Journal of Immunology.2000, 165(8):4329-4337.
    [76] Toka FN, Rouse BT. Mucosal application of plasmid-encoded IL-15 sustains highly protective anti-Herpes simplex virus immunity [J]. Journal of Leukocyte Biology.2005, 78(1): 178–186.
    [77]王福祥孙永涛.细胞因子佐剂对HIV DNA疫苗免疫效果的影响[J].细胞与分子免疫学杂志.2003, 19(6):620-622.
    [78] Zhu YC, Chen L, Huang Z, Alkan S, Bunting KD, Wen R, Wang D, Huang H. Cutting Edge: IL-5 Primes Th2 Cytokine-Producing Capacity in Eosinophils through a STAT5-Dependent Mechanism[J]. Journal of Immunology. 2004, 173(5): 2918–2922.
    [79] Moon BG, Takaki S, Miyake K, Takatsu K. The Role of IL-5 for Mature B-1 Cells in Homeostatic Proliferation, Cell Survival, and Ig Production [J]. Journal of Immunology. 2004, 172(10): 6020–6029.
    [80] Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, Otipoby KL, Yokota A, Takeuchi H, Ricciardi-Castagnoli P, Rajewsky K, Adams DH, Von Andrian UH.Generation of Gut-Homing IgA-Secreting B Cells by Intestinal Dendritic Cells[J].Science. 2006, 314(5802):1156-1160.
    [81] Han TK, Dao ML. Enhancement of salivary IgA response to a DNA vaccine against Streptococcu-smutans wall associated protein A in mice by plasmid-based adjuvants [J].Journal of Medical Microbiology. 2007, 56(Pt 5):675–680.
    [82] Meurens F, Berri M, Whale J, Dybvig T, Strom S, Thompson D, Brownlie R, Townsend HG, Salmon H, Gerdts V. Expression of TECK/CCL25 and MEC/CCL28 chemokines and their respective receptors CCR9 and CCR10 in porcine mucosal tissues[J]. Veterinary Immunology and Immunopathology. 2006, 113(3-4): 313–327.
    [83] Egan MA., Israel ZR. The use of cytokines and chemokines as genetic adjuvants for plasmid DNA vaccines [J]. Clinical and Applied Immunology Reviews. 2002, 2(4):255–287.
    [84] Oh YK, Park JS, Yoon H, Kim CK. Enhanced mucosal and systemic immune responses to a vaginal vaccine co-administered with RANTES-expressing plasmid DNA using in situ-gelling mucoadhesivedelivery system[J]. Vaccine. 2003, 21(17-18): 1980–1988.
    [85]房雪峰窦骏.分子佐剂C3d的研究进展[J].生物技术通讯. 2005,16(4): 426-428.
    [86] Yao XY, Yuan MM, Li DJ. Molecular adjuvant C3d3 improved the anti-hCGβhumoral immune response in vaginal inoculation with live recombinant Lactobacillus expressing hCGβ-C3d3 fusion protein [J].Vaccine. 2007, 25: 6129–6139.
    [1] Gupta SK, Srivastava N, Choudhury S, Rath A, Sivapurapu N, Gahlay GK, Batra D. Update on zona pellucida glycoproteins based contraceptive vaccine[J]. Journal of Reproductive Immunology. 2004,62(1-2):79–89.
    [2] Chakravarty S, Kadunganattil S, Bansal P, Sharma RK, Gupta SK. Relevance of Glycosylation of Human Zona Pellucida Glycoproteins for Their Binding to Capacitated Human Spermatozoa and Subsequent Induction of Acrosomal Exocytosis [J]. Molecular Reproduction and Development. 2008, 75:75–88.
    [3] Chen CH, Wang TL, Hung CF, Yang Y, Young RA, Pardoll DM, Wu TC. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP 70 gene [J].Cancer Research. 2000, 60(4): 1035-1042.
    [4] Donnelly JJ, Martinez D, Jansen KU, Ellis RW, Montgomery DL, Liu MA. Protection against papillomavirus with a polymucleotide vaccine [J]. Journal of Infectious Diseases. 1996, 173(2):314-320.
    [5]徐玉栋,刘天佳.粘膜DNA疫苗研究进展[J].国外医学口腔医学分册,2000,27(5):283-285 .
    [6]房文亮,王永祥,金玉怀,金士香,周雪燕. IL-15基因真核表达质粒的构建及其对CVB3 VP1基因疫苗的免疫增强作用[J].河北医科大学学报.2003, 24(3):129-132.
    [7] Sasaki S, Takeshita F, Xin KQ, Ishii N, Okuda K. Adjuvant formulations and delivery systems for DNA vaccines[J].Methods. 2003, 31: 243–254.
    [8] Hiroi T, Yanagita M, Ohta N, Sakaue G, Kiyono H. IL-15 and IL-15 Receptor Selectively Regulate Differentiation of Common Mucosal Immune System-Independent B-1 Cells for IgA Responses [J]. Journal of Immunology.2000, 165(8):4329-4337.
    [9]杨春艳,苏先狮,李曼妮.白细胞介素-15重组体对HBsAg核酸疫苗的免疫佐剂作用[J].中华肝脏病杂志.2004, 12 (12): 758-759.
    [10]王盛典,张叔人,马文波,周春霞,张友会.人白细胞介素-15cDNA克隆及其在大肠杆菌中表达[J].中国免疫学杂志.1998, 14 (4):247-250.
    [11]李艳佳. HPV16E7DNA疫苗和IL-15表达质粒的联合免疫作用及对树突状细胞表面分子的表达和功能的影响[D].河北医科大学:河北医科大学,2005.
    [12] Rank MA, Kobayashi T, Kozaki H, Bartemes KR, Squillace DL, Kita H. IL-33–activated dendritic cells induce an atypical TH2-type response [J]. Journal of Allergy and Clinical Immunology. 2009, 123(5):1047-54.
    [13] Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Fernando Bazan J, Kastelein RA. IL-33, an Interleukin-1-like Cytokine that Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines [J]. Immunity. 2005, 23: 479–490.
    [14]黄仕和,邹炜.白介素31及其受体[J].生命的化学.2005, 25(1):58-60.
    [15]张青,熊华辉,张大为,唐静,刘全胜. IL-31及其受体研究进展[J].现代生物医学进展. 2008, 8(5):958-964.
    [16] Conti P, Youinou P, Theoharides TC. Modulation of autoimmunity by the latest interleukins (withspecial emphasis on IL-32) [J]. Autoimmunity Reviews. 2007, 6(3): 131-137.
    [17] Talay SR, Grammel MP, Chhatwal GS. Structure of a group C streptococcal protein that binds to fibrinogen, albumin and immunoglobulin G via overlapping modules [J]. Biochemical Journal.1996, 315(Pt 2): 577-582.
    [18] Schulze K, Goldmann O, Medina E, Guzmán CA . The FAI protein of group C streptococci acts as a mucosal adjuvant by the specific targeting and activation of B cells [J]. International Journal of Medical Microbiology. 2008, 298(1-2): 3–10.
    [1] Choudhury S, Kakkar V, Suman P,Chakrabarti K, Vrati S, Satish K, Gupta SK. Immunogenicity of zona pellucida glycoprotein-3 and spermatozoa YLP12 peptides presented on Johnson grass mosaic virus-like particles[J].Vaccine . 2009, 27(22):2948-2953.
    [2] Strive T,Hardy CM , Reubel GH. Prospects for immunocontraception in the European red fox (Vulpes vulpes) [J]. Wildlife Research.2007, 34(7): 523-529.
    [3] Delves PJ, Lund T, Roitt IM. Antifertility vaccines [J]. TRENDS in Immunology. 2002, 23(4):213-220.
    [4] Xiang RL, Zhou F, Yang Y, Peng PJ. Construction of the Plasmid pCMV4-rZPC' DNA Vaccine and Analysis of Its Contraceptive Potential [J]. Biology of Reproduction. 2003, 68(5): 1518-1524.
    [5] Zhang X, Lou YH, Koopman M, Doggett T, Tung SK K , Curtiss R . Antibody Responses and Infertility in Mice Following Oral Immunization with Attenuated Salmonella typhimurium Expressing Recombinant Murine ZP3 [J]. Biology of Reproduction. 1997,56(1):33-41
    [6] Mackenzie SM, McLaughlin EA, Perkins HD, French N, Sutherland T, Jackson RJ, Inglis B, Müller WJ, Van Leeuwen BH, Robinson AJ, Err PJ. Immunocon-traceptive Effects on Female Rabbits Infected with Recombinant Myxoma Virus Expressing Rabbit ZP2 or ZP3 [J]. Biology of Reproduction. 2006, 74(3):511-521.
    [7] Lloyd ML, Shellam GR, Papadimitriou JM, Lawson MA. Immunocontraception Is Induced in BALB/c Mice Inoculated With Murine Cytomegalovirus Expressing Mouse Zona Pellucida 3[J]. Biology of Reproduction. 2003, 68(6):2024-2032.
    [8] Clydesdale G, Pekin J, Beaton S, Jackson RJ, Vignarajan S, Christopher M, Hardy CM. Contraception in mice immunized with recombinant zona pellucida subunit 3 proteins correlates with Th2 responses and the levels of interleukin 4 expressed by CD4+ cells[J]. Reproduction. 2004, 128(6): 737-745.
    [9] Srivastava N, Santhanam R, Sheela P, Mukund S, Thakral SS, Malik BS, Gupta SK. Evaluation of the immunocontraceptive potential of Escherichia coli-expressed recombinant dog ZP2 and ZP3 in a homologous animal model [J]. Reproduction. 2002,123 (6): 847–857.
    [10] Hardy CM,Beaton S, Hinds L. Immunocontraception in Mice Using Repeated, Multi-Antigen Peptides: Immunization with Purified Recombinant Antigens [J]. Molecular Reproduction and Development. 2008. 75(1):126–135.
    [11] Naz RK, Gupta SK, Gupta JC, Vyas HK, Talwar GP. Recent advances in contraceptive vaccine development: a mini-review [J]. Human Reproduction. 2005, 20(12): 3271-3283.
    [12] Rath A, Batra D, Kaur R, Vrati S, Gupta SK. Characterization of immune response in mice to plasmid DNA encoding dog zona pellucida glycoprotein-3[J].Vaccine.2003,21(17-18):1913-1923.
    [13]王焱冰,李轶杰,张富春.分子佐剂C3d增强草原兔尾鼠卵透明带3 DNA疫苗的免疫应答[J].分子细胞生物学报. 2006, 39(4):297-303.
    [14] Van Roosmalen ML, Kanninga R, El Khattabi M, Neef J, Audouy S, Bosma T, Kuipers A, Post E, Steen A, Kok J, Buist G, Kuipers OP. Robillard G, Leenhouts K. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria [J].Methods .2006, 38: 144-149.
    [15] Holmgren J, Czerkinsky C. Mucosal immunity and vaccines [J]. Nature Medicine. 2005, 11(4):45-53.
    [16] Zhang Q, Putheti P, Zhou Q, Liu QS , Gao WD. Structures and biological functions of IL-31 and IL-31 receptors[J].Cytokine &Growth Factor Reviews. 2008, 19(5-6):347–356.
    [17] Ip WK, Wong CK, Li ML, Li PW, Cheung PF, Lam CW. Interleukin-31 induces cytokine and chemokine production from human bronchial epithelial cells through activation of mitogenactivated protein kinase signalling pathways: implications for the allergic response[J]. Immunology. 2007, 122(4): 532-541.
    [18]张青,熊华辉,张大为,唐静,刘全胜.IL-31及其受体研究进展[J].现代生物医学进展. 2008, 8(5):958-964.
    [19] Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M, Presnell SR. Haugen HS,Maurer M, Harder B, Johnston J, Bort S, Mudri S, Kuijper JL, Bukowski T, Shea P, Dong DL, Dasovich M, Grant FJ, Lockwood L, Levin SD, Leciel C, Waggie K, Day H, Topouzis S, Kramer J, Kuestner R, Chen Z, Foster D, Parrish-Novak J, Gross JA. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice [J]. Nature Immunology. 2004, 5 (7):752-760.
    [20] Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, Otipoby KL, Yokota A, Takeuchi H, Ricciardi-Castagnoli P, Rajewsky K, Adams DH, von Andrian UH.Generation of Gut-Homing IgA-Secreting B Cells by Intestinal Dendritic Cells[J].Science. 2006, 314(5802):1156-1160.
    [21] Lee MK, Chun SK, Choi WJ, Kim JK, Choi SH, Kim A, Oungbho K, Park JS, Ahn WS, Kim CK. The use of chitosan as a condensing agent to enhance mulsion-mediated gene transfer [J]. Biomaterials. 2005, 26(14):2147-2156.
    [22] Guèrsel M, Tunca S, Oèzkan M, Oèzcengiz G, Alaeddinoglu G. Immunoadjuvant action of plasmid DNA in liposomes[J]. Vaccine. 1999, 17(11-12):1376-1383.
    [23] He XW, Wang F, Jiang L, Li J, Liu SK, Xiao ZY, Jin XQ, Zhang YN, He Y, Li K, Guo YJ, Sun SH. Induction of mucosal and systemic immune response by single-dose oral immunization with biodegradable microparticles containing DNA encoding HBsAg[J].Journal of General Virology. 2005, 86(Pt 3):601-610.
    [24] Hinkula J, Devito C, Zuber B, Benthin R, Ferreira D, Wahren B,Schr?der U. A novel DNA adjuvant, N3, enhances mucosal and systemic immune responses induced by HIV-1 DNA and peptide immunizations [J]. Vaccine. 2006, 24(21):4494-4497.
    [25] Bivas-Benita M, Van Meijgaarden KE, Franken KL, Junginger HE, Borchard G, Ottenhoff TH, Geluk A. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis[J]. Vaccine. 2004, 22 (13-14): 1609–1615.
    [26] Xu W, Shen Y, Jiang Z, Wang Y, Chu Y, Xiong S. Intranasal delivery of chitosan–DNA vaccine generates mucosal SIgA and anti-CVB3 protection[J].Vaccine.2004,22(27-28):3603-3612.
    [27] Wang X , Zhang XY, Kang YM, Jin HL, Du XG, Zhao G, Yu Y, Li JY, Su BW, Huang C, Wang B.Interleukin-15 enhance DNA vaccine elicited mucosal and systemic immunity gainst foot and mouth disease virus.Vaccine[J].2008,26 (40):5135-5144.
    [28]董志炜,潘善培,谢琪璇,肖銮娟,孙彩军,余巍,何柳媚.小鼠口服猪卵透明带DNA避孕疫苗pVAX1-pZP3α的抗生育研究[J].暨南大学学报.2004,25(6):661-667.
    [29] Simecka JW. Mucosal immunity of the gastrointestinal tract and oral tolerance [J]. Advanced Drug Delivery Reviews. 1998, 34(2-3): 235-259.
    [30] Johansson EL, Wassén L, Holmgren J, Jertborn M, Rudin A. Nasal and Vaginal Vaccinations Have Differential Effects on Antibody Responses in Vaginal and Cervical Secretions in Humans[J]. Infection and Immunity.2001, 69(12):7481-7486.
    [31] Perrigoue JG, Li J, Zaph C, Goldschmidt M, Scott P, De-Sauvage FJ, Pearce EJ, Ghilardi N, Artis D. IL-31-IL-31R interactions negatively regulate type 2 inflammation in the lung[J]. Journal of Experimental Medicine. 2007, 204( 3 ):481-487.
    [32] Perrigoue JG,Zaph C,Guild K, Du YR,Artis D.IL-31-IL-31R Interactions Limit the Magnitude of Th2 Cytokine-Dependent Immunity and Inflammation following Intestinal Helminth Infection[J]. Journal of Immunology. 2009, 182(10):6088-6094.
    [33]孙晓溪,李大金,王明雁,蔡立荣,朱影.自身免疫性卵巢功能损伤与TH1/TH2型细胞因子表达关系的研究[J].中国免疫学杂志. 2001, 17(2):96-98.
    [34] Rhim SH, Millar SE, Robey F, Luo AM, Lou YH, Yule T, Allen P, Dean J, Tung KS. Autoimmune disease of the ovary induced by a ZP3 peptide from the nouse zona pellucida [J]. Journal of Clinical Investigation. 1992, 89(1):28-35.
    [1] Holland OJ, Cowan PE, Gleeson DM, Duckworth JA, Chamley LW. MHC haplotypes and response to immunocontraceptive vaccines in the brushtail possum [J]. Journal of Reproductive Immunology. 2009, 82(1): 57–65.
    [2] Bleil JD, Wassarman PM. Mammalian sperm–egg interaction: identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm [J].Cell 1980, 20 (3):873–82.
    [3] Wassarman PM. Towards molecular mechanisms for gamete adhesion and fusion during mammalian fertilization [J]. Current Opinion in Cell Biology. 1995, 7 (5):658–664.
    [4] Lloyd ML, Papadimitriou JM, O’Leary S, Robertson SA, Shellam GR. Immunoglobulin to zona pellucida 3 mediates ovarian damage and infertility after contraceptive vaccination in mice [J]. Journal of Autoimmunity. 2010, 35(1): 77-85.
    [5] Gupta SK, Gupta N, Suman P, Choudhury S, Prakash K, Gupta T, Sriraman R, Nagendrakumar SB, Srinivasan VA. Zona pellucida-based contraceptive vaccines for human and animal utility [J]. Journal of Reproductive Immunology. 2011, 88(2):240–246.
    [6] Choudhury S , Ganguly A, Chakrabarti K, Sharma RK, Gupta SK. DNA vaccine encoding chimeric protein encompassing epitopes of human ZP3 and ZP4: Immunogenicity and characterization of antibodies[J]. Journal of Reproductive Immunology. 2009, 79(2):137-147.
    [7] Lou Y, Ang J, Thai H, McElveen F, Tung KS. A zona pellucida-3 peptide vaccine induces antibodies and reversible infertility without ovarian pathology [J]. Journal of Immunology. 1995,155(5):2715–2720.
    [8]陈邦党,张富春,孙美玉,李轶杰,马正海.草原兔尾鼠卵透明带3基因重组腺病毒载体的构建及表达[J].细胞与分子免疫学杂志. 2007, 23(8):707-710.
    [9]王焱冰,李轶杰,张富春.分子佐剂C3d增强草原兔尾鼠卵透明带3 DNA疫苗的免疫应答.分子细胞生物学报. 2006, 39(4):297-303.
    [10] Egan MA, Israel ZR. The use of cytokines and chemokines as genetic adjuvants for plasmid DNA vaccines [J].Clinical and Applied Immunology Reviews. 2002, 2: 255–287.
    [11] Ohteki T, Suzue K, Maki C, Ota T, Koyasu S. Critical role of IL-15–IL-15R for antigen-presenting cell functions in the innate immune response [J]. Nature Immunology. 2001, (12):1138-43.
    [12] Xin KQ, Hamajima K, Sasaki S, Tsuji T, Watabe S, Okada E, Okuda K. IL-15 expression plasmid enhances cell-mediated immunity induced by an HIV-1 DNA vaccine[J]. Vaccine. 1999, 17(7-8):858-866.
    [13] Wang X, Zhang XY, Kang YM, Jin HL, Du XG, Zhao G, Yu Y, Li JY, Su BW, Huang C, Wang B. Interleukin-15 enhance DNA vaccine elicited mucosal and systemic immunity against foot and mouth disease virus [J]. Vaccine.2008, 26 (40):5135-5144.
    [14] Li W, Li S, Hu Y, Tang B, Cui L, He W. Efficient augmentation of a long-lasting immune responses in HIV-1 gag DNA vaccination by IL-15 plasmid boosting[J].Vaccine . 2008, 26(26): 3282–3290.
    [15] Ullrich E, Ménard C, Flament C, Terme M, Mignot G, Bonmort M, Plumas J, Chaperot L, Chaput N, Zitvogel L. Dendritic cells and innate defense against tumor cells [J]. Cytokine & Growth Factor Reviews .2008, 19(1):79–92.
    [16] Yasuoka S, Kawanokuchi J, Parajuli B, Jin S, Doi Y, Noda M, Sonobe Y, Takeuchi H, Mizuno T, Suzumura A . Production and functions of IL-33 in the central nervous system [J]. Brains Research. 2011, 1385: 8–17.
    [17] Rank MA, Kobayashi T, Kozaki H, Bartemes KR, Squillace DL, Kita H. IL-33–activated dendritic cells induce an atypical TH2-type response [J]. Journal of Allergy and Clinical Immunology. 2009, 123(5):1047-1054.
    [18] Komai-Koma M, Xu D, Li Y, McKenzie AN, McInnes IB, Liew FY. IL-33 is a chemoattractant for human Th2 cells [J]. European Journal of Immunology. 2007, 37(10): 2779–2786.
    [19] Clydesdale G, Pekin J, Beaton S, Jackson RJ, Vignarajan S, Hardy CM. Contraception in mice immunized with recombinant zona pellucida subunit 3 proteins correlates with Th2 responses and the levels of interleukin 4 expressed by CD4+ cells[J]. Reproduction. 2004, 128(6): 737-745.
    [20] Lloyd CM. IL-33 family members and asthma–bridging innate and adaptive immune responses [J].Current Opinion in Immunology. 2010, 22(6):800–806.
    [21] Cui X, Duckworth JA, Lubitz P, Molinia FC, Haller C, Lubitz W, Cowan PE. Humoral immune responses in brushtail possums (Trichosurus vulpecula) induced by bacterial ghosts expressing possum zona pellucida 3 protein [J]. Vaccine. 2010, 28(26):4268–4274.
    [22]董志炜,潘善培,谢琪璇,肖銮娟,孙彩军,余巍,何柳媚.小鼠口服猪卵透明带DNA避孕疫苗pVAX1-pZP3α的抗生育研究[J].暨南大学学报.2004, 25(6):661-667.
    [23] Zhang AL, Li J, Zhao G, Geng S, Zhuang S, Wang B, Zhang F. Intranasal co-administration with the mouse zona pellucida 3 expressing construct and its coding protein induces contraception in mice [J].Vaccine. 2011, doi:10.1016/j.vaccine.2010.12.061
    [24] Zhang X, Lou YH, Koopman M, Doggett T, Tung SK , Curtiss R . Antibody Responses and Infertility in Mice Following Oral Immunization with Attenuated Salmonella typhimurium Expressing Recombinant Murine ZP3 [J]. Biology of Reproduction. 1997, 56 (1): 33-41.
    [25] Jackson RJ, Maguire DJ, Hinds LA, Ramshaw IA. Infertility in mice induced by a recombinant ectromelia virus expressing mouse zona pellucida glycoprotein 3[J]. Biology of Reproduction. 1998, 58(1): 152–159.
    [26] Hardy CM, Ten-Have JF, Mobbs KJ, Hinds LA. Assessmnt of the immunocon-traceptive effect of a zona pellucida 3 peptide antigen in wild mice [J]. Reproduction, Fertility and Development.2002, 14(3-4):151-155.
    [27] Naz RK, Chauhan SC. Human sperm-specific peptide vaccine that causes long-term reversible contraception [J]. Biology of Reproduction.2002, 67 (2):674–680.
    [1] Choudhury S, Kakkar V, Suman P,Chakrabarti K, Vrati S, Satish K, Gupta SK.Immunogenicity of zona pellucida glycoprotein-3 and spermatozoa YLP12 peptides presented on Johnson grass mosaic virus-like particles[J]. Vaccine .2009, 27 (22): 2948-2953.
    [2] Delves PJ, Lund T, Roitt IM. Antifertility vaccines [J]. TRENDS in Immunology. 2002, 23(4):213-220.
    [3] Zhang X, Lou YH, Koopman M, Doggett T, Tung SK K , Curtiss R. Antibody Responses and Infertility in Mice Following Oral Immunization with Attenuated Salmonella typhimurium Expressing Recombinant Murine ZP3[J]. Biology of Reproduction. 1997, 56 (1): 33-41.
    [4]张钰,李轶杰,刘菲,陈蓉,郭继华,张富春.草原兔尾鼠和昆明白小鼠卵透明带3DNA疫苗免疫不育效果的研究[J].分子细胞生物学报. 2007, 40(5):301-308.
    [5] Mackenzie SM, McLaughlin EA, Perkins HD, French N, Sutherland T, Jackson RJ, Inglis B, Müller WJ, van Leeuwen BH, Robinson AJ, Kerr PJ. Immunocon-traceptive effects on female rabbits infected with recombinant myxoma virus expressing rabbit ZP2 or ZP3 [J]. Biology of Reproduction. 2006, 74(3):511-521.
    [6] Van Roosmalen ML, Kanninga R, El Khattabi M, Neef J, Audouy S, Bosma T, Kuipers A, Post E, Steen A, Kok J, Buist G, Kuipers OP, Robillard G, Leenhouts K. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria[J]. Methods .2006,38(2):144-149.
    [7] Holmgren J, Czerkinsky C. Mucosal immunity and vaccines [J]. Nature Medicine. 2005, 11(4):45-53.
    [8] Lee MK, Chun SK, Choi WJ, Kim JK, Choi SH, Kim A, Oungbho K, Park JS, Ahn WS, Kim CK. The use of chitosan as a condensing agent to enhance mulsion-mediated gene transfer [J]. Biomaterials. 2005, 26(14):2147-2156.
    [9] Talay SR, Grammel MP, Chhatwal GS. Structure of a group C streptococcal protein that Binds to fibrinogen, albumin and immunoglobulin G via overlapping modules [J]. Biochemical Journal. 1996, 315( Pt 2): 577-582 .
    [10] Schulze K, Goldmann O, Medina E, Guzmán CA. The FAI protein of group C streptococci acts as a mucosal adjuvant by the specific targeting and activation of B cells [J]. International Journal of Medical Microbiology. 2008, 298(1-2): 3–10.
    [11] Rappuoli R, Pizza M, Douce G, Dougan G. Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins[J]. Immunology Today.1999,20(11):493-500.
    [12] Schulze K, Goldmann O, Toppel A, Medina E, Guzmán CA . The FAI protein of group C streptococci targets B-cells and exhibits adjuvant activity[J].Vaccine.2005,23 (11):1408-1413.
    [13] Jackson RJ, Maguire DJ, Hinds LA, Ramshaw IA. Infertility in mice induced by a recombinant ectromelia virus expressing mouse zona pellucida glycoprotein 3[J]. Biology of Reproduction. 1998, 58(1): 152–159.
    [14] McNeela EA, Mills KH. Manipulating the immune system: humoral versus cell-mediated immunity [J]. Advanced Drug Delivery Reviews, 2001,51 (1-3):43-54.
    [15] Clydesdale G, Pekin J, Beaton S, Jackson RJ, Vignarajan S, Hardy CM. Contraception in mice immunized with recombinant zona pellucida subunit 3 proteins correlates with Th2 responses and the levels of interleukin 4 expressed by CD4+ cells[J]. Reproduction. 2004, 128(6): 737-745.
    [16] Hardy CM, Beaton S, Hinds LA. Immunocontraception in Mice Using Repeated, Multi-Antigen Peptides:Immunization With Purified Recombinant Antigens [J]. Molecular Reproduction and Development . 2008. 75(1):126–135.
    [1]张富春,张蕴斌,李轶杰,张渝疆,李阔宇,钟哲,马正海,恩特马克.草原兔尾鼠卵透明带3(ZP3)cDNA保守序列的克隆与序列分析[J].地方病通报. 2001, 16(4): 70-73 .
    [2]李轶杰,张富春,张钰,王焱冰.优化密码子提高草原兔尾鼠ZP3融合蛋白的原核表达[J].细胞与分子免疫学杂志.2005, 21(6):700-704.
    [3] Polkinghorne I, Hamerli D, Cowan P, Duckworth J. Plant-based immunocontraceptive control of wildlife—“potentials, limitations, and possums”[J].Vaccine.2005, 23(15): 1847–1850.
    [4]宋洪涛,张倩,郭涛,初阳.口服疫苗传递系统研究进展[J].解放军药学学报.2005, 21(1):47-51.
    [5] Davis SS. The use of soluble polymers and polymer microparticles to provide improved vaccineresponses after parenteral and mucosal delivery [J].Vaccine.2006, 24 Suppl 2:S2-7-10.
    [6] Porporatto C,Bianco ID,Correa SG. Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration [J]. Journal of Leukocyte Biology. 2005, 78(1): 62–69.
    [7] Vander Lubben IM, Kersten G, Fretz MM, Beuvery C, Coos Verhoef J, Junginger HE. Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice [J].Vaccine, 2003, 21(13-14): 1400-1408.
    [8] Yamanaka H, Hoyt T, Yang XH, Golden S, Bosio CM, Crist K. A Nasal Interleukin-12 DNA Vaccine Coexpressing Yersinia pestis F1-V Fusion Protein Confers Protection against Pneumonic Plague [J]. Infection and Immunity. 2008, 76(10):4564–4573.
    [9] Tan B, Wang H, Shang LQ, Yang T. Coadministration of chicken GM-CSF with a DNA vaccine expressing infectious bronchitis virus (IBV) S1 glycoprotein enhances the specific immune response and protects against IBV infection[J]. Archives of Virology. 2009, 154(7):1117–1124.
    [10] Klinman DM, Klaschik S, Sato T, Tross D. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases[J]. Advanced Drug Delivery Reviews.2009, 61(3): 248–255.
    [11] Maksaereekul S, Dubie RA, Shen X, Kieu H, Dean GA, Sparger EE. Vaccination with vif-deleted feline immunodeficiency virus provirus, GM-CSF, and TNF-αplasmids preserves global CD4 T lymphocyte function after challenge with FIV [J]. Vaccine.2009, 27(28):3754–3765 .
    [12] Wang L ,Webster DE ,Wesselingh SL , Coppel RL. Orally delivered malaria vaccines: not too hard to swallow [J]. Expert Opinion Biological Therapy. 2004, 4 (10):1585-1594.
    [13] Zhang X, Lou YH, Koopman M, Doggett T, Tung SK K , Curtiss R . Antibody Responses and Infertility in Mice Following Oral Immunization with Attenuated Salmonella typhimurium Expressing Recombinant Murine ZP3 [J]. Biology of Reproduction. 1997, 56 (1): 33-41
    [14]柯琼,潘善培,谢琪璇,肖銮娟,何柳媚,董志炜,高彦茹.重组IL-5质粒pVAX1-mIL-5增强卵透明带DNA避孕疫苗黏膜免疫效能[J].暨南大学学报(医学版).2006, 27(2): 157-163.
    [15] Clydesdale G, Pekin J, Beaton S, Jackson RJ, Vignarajan S, Hardy CM.Contraception in mice immunized with recombinant zona pellucida subunit 3 proteins correlates with Th2 responses and thelevels of interleukin 4 expressed by CD4+ cells[J]. Reproduction. 2004, 128(6): 737-745.
    [16] Hardy CM, Ten-Have JF, Mobbs KJ, Hinds LA. Assessmnt of the immunocon-traceptive effect of a zona pellucida 3 peptide antigen in wild mice [J]. Reproduction, Fertility and Development.2002, 14(3-4):151-155.
    [17] Sasaki S, Takeshita F, Xin KQ, Ishii N, Okuda K. Adjuvant formulations and delivery systems for DNA vaccines[J].Methods. 2003, 31(3): 243–254.
    [18] Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA [J]. Advanced Drug Delivery Reviews. 2010, 62 (1): 12–27.
    [19] Zeng W, Ghosh S, Lau YE, Brown LE, Jackson DC. Highly Immunogenic and Totally Synthetic Lipopeptides as Self-Adjuvanting Immunocontraceptive Vaccines [J]. The Journal of Immunology. 2002, 169(9): 4905–4912.
    [20] Holmgren J, Czerkinsky C. Mucosal immunity and vaccines [J]. Nature Medicine. 2005, 11(4):45-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700