用户名: 密码: 验证码:
以减毒沙门氏菌携带HPV16 L1和siRNA-E6共表达质粒防治子宫颈癌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子宫颈癌是妇女最常见的恶性肿瘤之一,全球每年约有50万新诊断病例,每年约20万人死于子宫颈癌。子宫颈癌的治疗主要以手术和放疗为主、化疗为辅,但可产生严重的不良反应。寻找防治子宫颈癌的新方法仍是重要而迫切的课题。
     流行病学研究发现,人乳头瘤病毒(HPV)与子宫颈癌的发生密切相关,99.7%的子宫颈癌组织中可检测到HPV,其中57.4%为HPV l6。HPV的L1衣壳蛋白是病毒的结构蛋白,具有较强的免疫原性,E6和E7蛋白是癌蛋白,与宿主细胞的恶性转化有关。因此,针对HPV制备疫苗对于防治子宫颈癌具有重要意义。
     目前,虽然Merck和GlaxoSmithKline两大公司已发展了两种HPV疫苗,但是对发病后的患者无效,只能用于早期或未发病人群的预防性接种;而且该类疫苗必须使用佐剂,价格昂贵。
     本课题着手于发展预防兼早期治疗性HPV疫苗,并以减毒沙门氏菌为运载体,以期实现通过局部粘膜途径对子宫颈癌进行防治的目的。(1)构建pET28a-HPV16-L1质粒,在大肠杆菌BL21(DE3)中经IPTG诱导表达HPV16-L1蛋白,免疫小鼠后在小鼠血清中检测到抗HPV16-L1抗体。(2)构建pcDNA3.1-HPV16-L1质粒,电转化至减毒沙门氏菌PhoP/PhoQ株和Ty21a中,滴鼻免疫小鼠,在小鼠血清及阴道冲洗液中检测到抗HPV16-L1抗体,且小鼠血清中IL-2和IFN-γ水平升高。(3)构建pGC-siRNA-E6和pGC-siRNA-E7质粒,转染至人子宫颈癌细胞系Siha细胞,发现HPV16 E6和E7的转录与表达水平降低,细胞出现凋亡,凋亡机制与激活线粒体凋亡通路有关。建立子宫颈癌裸鼠皮下移植瘤模型,电转染pGC-siRNA-E6质粒后,肿瘤生长受到抑制,其基因变化与体外实验一致。(4)构建pcDNA3.1-HPV16-L1-U6-siRNA-E6质粒,电转化至减毒沙门氏菌PhoP/PhoQ株,滴鼻接种于子宫颈癌裸鼠皮下移植瘤模型,结果显示HPV16-L1与siRNA-E6具有协同抑瘤作用,亦说明通过粘膜接种途径可达到对异位靶部位的生物学效应。
     本文在国内外首次构建了HPV16-L1和siRNA-E6共表达质粒,并以减毒沙门氏菌为运载体,用于子宫颈癌的防治,为发展新型防治子宫颈癌疫苗提供了实验依据。
Cervical cancer is one of the most globally common cancers in women, just second to breast cancer in morbidity. Worldwide, 27 million patients each year die from cervical cancer. Currently, surgery, radiotherapy and chemotherapy still be dominant in cervical cancer treatments, but these therapys also show serious untoward reaction in patients. Study on biologic agent will be imminent in preventing and treating cervical cancer.
     Epidemiological and virological data show that human papillomavirus(HPV) infection is the major etiological factor of cervical cancer. HPV DNA can be found within 99.7% of the malignant cells of cervical cancers, of which, 57.4% was HPV l6 type. The discovery indicate that cervical cancer vaccines is expected to be the first human cancer vaccines.
     HPV is a small, nonenveloped virus. The genome consisit a single copy of circular double-stranded DNA including early region (E), late region (L) and upstream regulatory region (URR). E6 and E7 protein of High-risk HPV is viral oncoprotein which can lead to immortalization by interruptting the cell growth-regulatory pathways. L1 major capsid protein of HPV can self-assemble into VLPs (virus-like particles) and show good immunogenicity.
     The current HPV prophylactic vaccine candidates are based on VLPs. HPV-L1 VLPs are morphologically and antigenically similar to authentic virions without infectious and carcinogenic. However, the VLPs are mainly obtained from insect cells infected by recombinant baculovirus vector or yeast with recombinant vector. The process is cumbersome, and expensive for VLPs application in developing countries.
     Currently, most of therapeutic HPV vaccines optimize HPV E6 and E7 target antigen to induce cellular immune response and inhibit cancer growth. However, they are potential carcinogens, may lead to cell abnormal proliferation and other adverse reactions. RNA interference is a new gene therapy technology. Some researchers have succeed in silencing HPV-E6 and/or E7 gene of cervical cancer by RNA interference. However, siRNA molecules enter target cells and maintain stability limit its application in vivo.
     Attenuated Salmonella is the first recombinant bacteria used to delivery antigen for 25 years. More and more evidence support that alive attenuated Salmonella can induce humoral and cellular immune responses in vivo. Attenuated Salmonella can induce mucosal immune response by non-injection at less than 3 times. In tumor tissue, the attenuated Salmonella can make best use of the hypoxic microenvironment of tumor, nutrients and local immunosuppressive microenvironment. It is the biology advantage of the attenuated Salmonella that make it to be a vaccine vector used for the cervical cancer prevention and therapy.
     The purpose of this study is to construct pcDNA3.1-HPV16-L1-siRNA-E6 plasmid, transform it into attenuated Salmonella, vaccinate mice by intranasal, and observe the prevention and treatment effect of cervical cancer.
     The result proved, attenuated Salmonella carrying pcDNA3.1-HPV16-L1 induced anti-HPV16-L1 antibodies in mice successfully after vaccinate intranasally. siRNA-E6 designed by the sequence of HPV16-E6E7, and plasmid carrier attenuated Salmonella was innovative applicated in the cervical cancer treatment and result in significant antitumor effect. The recombinant attenuated Salmonella with pcDNA3.1-HPV16-L1-siRNA-E6 plasmid also success contribute to cervical cancer prevention and treatment.
     1. Attenuated Salmonella carrying pcDNA3.1-HPV16-L1 as DNA vaccine
     As the purification process of recombinant protein is complicated, protein vaccine is expensive. Further more, the multivalent protein vaccine is available. One of main purpose of this study is to develop preventive DNA vaccine. In this study, HPV16-L1 gene was amplified from fresh human cervical cancer genom, prokaryotic expression recombinant plasmid pET28a-HPV16-L1 was constructed and transfered into E. coli BL21(DE3) to express HPV16-L1 protein.
     After denatured and purified, virus-like particles of 50nm diameter could be observed by transmission electron microscope. Anti-HPV16-L1 antibody could be detected in the serum fluid of mice, after mice be vaccined with emulsified VLPs and Freund adjuvant.
     Further more, the eukaryotic expression plasmid pcDNA3.1-HPV16-L1 was construced and transfected into hamster kidney cell line BHK with liposome. After 48h, target protein was detected. The pcDNA3.1-HPV16-L1 was transformed into attenuated Salmonella Ty21a and PhoP/PhoQ used to vaccined model mice by intranasal immunization. Anti-HPV16-L1 antibodies can be found in serum and vaginal fluid of mice. The antibody levels in serum and vaginal fluid was increased with time, reached a peak in the 15th day and maintain a high level to the end of the experiment. In this study, the serum content of IL-2 and INF-γincreased in the group of attenuated Salmonella carrying pcDNA3.1-HPV16-L1, compared with the control group.
     2. siRNA-HPV16-E6 inhibit the proliferation of cervical cancer
     At present, most of therapeutic HPV vaccine induce cellular immune response by HPV E6 and E7 proteins. E6 and E7 proteins may lead to cell abnormal proliferation for its potential carcinogens. In this study, siRNAs were emploied to silence HPV E6 and E7 oncogene and inhibit the growth of cervical cancer.
     HPV E6 and E7 gene sequences was used to design siRNA-E6A, siRNA-E6B and siRNA-E7 for constructing pGC-siRNA plasmid. After transfected into cervical cancer Siha cells, pGC-siRNA in siE6A group and siE7 group down-regulat the E6 and E7 transcription and expression, inhibit cell growth, promote cell apoptosis, and up-regulate the p53, bax, caspase-9 and caspase-3 expression.
     After the cervical cancer model mice was established, pGCsi-E6A plasmid was transfected into tumor tissue. The E6 and E7 expression were dowm-regulated, tumor growth was inhibited, the apoptosis-related genes expression were up-regulated in the experimental group compared with control group. All datum support pGCsi-E6A plasmid has antitumor effect in vivo.
     3. Cervical cancer prevention and therapy by attenuated Salmonella carrying pcDNA3.1-HPV16-L1-siRNA-E6
     In this study, pcDNA3.1-HPV16-L1-siRNA-E6 was constructed for the first time, transformed into attenuated Salmonella PhoP/PhoQ to observe the treatment effect of tumor model mice. RT-PCR, western blotting and immunohistochemistry assay showed that L1 expression is upregulated in tumor tissues, whereas E6 and E7 expression are downregulated. The results indicating that attenuated Salmonella could carry the plasmid to tumor tissue and realize HPV16-L1 protein expression and E6E7 gene silenc successfully. Attenuated Salmonella with empty vector, pGC-siE6, pcDNA3.1-HPV16-L1, and pcDNA3.1-HPV16-L1-siRNA-E6 can inhibit tumor growth compared with the control group, suggesting that attenuated Salmonella has antitumor effect. Compared with pcDNA3.1-HPV16-L1 and pGC-siE6, co-expression plasmid can further reduce tumor size, suggesting that HPV16-L1 expression and E6E7 silencing in tumor have synergistic effect by immune regulation and RNA interference in cervical cancer.prevention and treatment.
     For the cervical cancer prevention and therapy, this study will contribute to a new productive thinking.
引文
[1] Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world[J]. J Clin Oncol, 2006;24:2137–2150.
    [2]顾晓梅.宫颈癌流行病学高危因素研究进展.中国妇幼保健杂志,2007,35:5073-5075.
    [3] Helen T, Ann NB.Epidemiology of Mucosal Human Papillomavirus Infection and Associated Diseases[J]. Publ Hea Gen, 2009;12:291-307
    [4] Fields BN, Knipe DM, Howley PM. Virology[M]. Philadelphia: Lippincott-Raven Publishers, 1996:947-978.
    [5] McCance D. Progress in Medical Virology[M]. Amsterdam: Elsevier, 2002:31-52.
    [6] Pattison S, Skalnik D, Roman A. CCAAT displacement protein, a regulator of differentiation specific gene expression, binds a negative regulatory element at the 5' end of the HPV 6 long control region[J]. J Virol, 1997;71:2013-2022.
    [7] Frattini M, Lim B, Laimins LA. In vitro synthesis of oncogenic human papillomaviruses requires episomal genomes for differentiation-dependent late expression[J]. Proc Natl Acad Sci USA, 1996;93:3062-3067.
    [8] del Mar Pena L, Laimins LA. Differentiation-dependent chromatin-rearrangement coincides with activation of HPV 31 late gene expression[J]. J Virol, 2001;75:10005-10013.
    [9] McCance DJ. Human Tumor Viruses[M]. Washington DC: American Society for Microbiology, 1998:201-223.
    [10] Ustav M, Stenlund A. Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames[J]. EMBO J, 1991;10:449-457.
    [11] Straight S, Herman WB, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes[J]. J Virol, 1995;69: 3185-3192.
    [12] Fehrman F, Laimins LA. The E5 protein of HPV 31 acts to augment cell proliferation and activation of differentiation-dependent late viral functions[J]. J Virol, 2003;77:2819-2831.
    [13] Doorbar J, Elston RC, Napthine K, et al. The E1E4 protein of HPV 16 associates with a putative RNA helicase through sequences in its C terminus[J]. J Virol, 2000;74:10081-10095.
    [14] Stanley M. Human papillomavirus and cervical cancer[J]. Best Practice & Res Clin Obstet Gynecol, 2001;15:663-676.
    [15] Ali M, Bradley JM. Challenges vaccines against Human Papillomavirus and cervical cancer: promises and challenges[J]. Oncologist, 2005;10:528-538
    [16] Munoz N, Bosch FX, de Sanjose S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer[J]. N Engl J Med, 2003;348:518-527.
    [17] Li X, Coffino P. High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation[J]. J Virol, 1996;70: 4509-4516.
    [18] Di Lorenzo T, Steinberg B. Differential regulation of HPV type 6 and 11 early promoters in cultured cells derived from laryngeal papillomas[J]. J Virol, 1995;69:6865-6872.
    [19] Jones DL, Thompson DA, Munger K. Destabilization of the Rb tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis[J]. Virology, 1997;239: 97-107.
    [20] Lukas J, Bartkova J, Bartek J. Convergence of mitogenic signalling cascades from diverse classes of receptors at the cyclin D-cyclin-dependent-kinase-pRb-controlled G1 checkpoint[J]. Mol Cell Biol, 1996;16:6917-6925.
    [21] Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18[J]. EMBO J, 1991;10: 4129-4135.
    [22] Oh S, Kyo S, Laimins LA. Telomerase activation by human papillomavirus 16 E6 protein: induction of telomerase reverse transcriptase expression through Myc and Sp1 sites[J]. J Virol, 2001;75:5559-5566.
    [23] Flores E, Allen-Hoffman L, Lee D, et al. The HPV16 E7 oncogene is required for the productive stage of life cycle[J]. J Virol, 2000;74:6622-6633.
    [24] Chen JJ, Reid CE, Band V, et al. Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein[J]. Science, 1995;269:529-530.
    [25] Gardiol D, Kuhne B, Glausinger S, et al. Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation[J]. Oncogene, 1999; 18:283-289.
    [26] Patel D, Huang S, Baglia L, et al. The E6 protein of HPV 16 binds to and inhibits coactivation by CBP and p300[J]. EMBO J, 1999;18:5061-5072.
    [27] Jones DL, Munger K. Interactions of the human papillomavirus E7 protein with cell cycle regulators[J]. Sem Canc Biol, 1996;7:327-337.
    [28] Perea S, Massimi P, Banks L. HPV16 E7 impairs the activation of the interferon regulatory factor-1[J]. Int J Mol Med, 2000;5: 661-666.
    [29] Nees M, Geoghegan T, Hyman S, et al. Papillomavirus type 16oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated NFkappaB responsive genes in cervical keratinocytes[J]. J Virol, 2001;75:4283-4296.
    [30] Schlecht NF, Kulaga S, Robitaille J, et al. Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia[J]. JAMA, 2001;286:3106-3114.
    [31] Kalantari M, Blennow E, Hagmar B, et al. Physical state of HPV16 and chromosomal mapping of the integrated form in cervical carcinomas[J]. Diagn Mol Pathol, 2001;10:46-54.
    [32] van Duin M, Snijders PJ, Schrijnemakers HF, et al. Human papillomavirus 16 load in normal and abnormal cervical scrapes: an indicator of CIN II/III and viral clearance[J]. Int J Cancer, 2002;98:590-595.
    [33] Bory JP, Cucherousset J, Lorenzato M, et al. Recurrent human papillomavirus infection detected with the hybrid capture II assay selects women with normal cervical smears at risk for developing high grade cervical lesions: a longitudinal study of 3,091 women[J]. Int J Cancer, 2002;102:519-25.
    [34] Burk R, Schiffman M, Herrero R, et al. HPV 18 variants are associated with decreased risk of CIN 2/3 and cervical cancer[C]. Florianopolis: 19th International Papillomavirus Conference, 2001.
    [35] Magnusson PKE, Lichtenstein P, Gyllensten UB. Heritability of cervical tumors[J]. Int J Cancer, 2000;88:698-701.
    [36] Wang SS, Wheeler CM, Hildesheim A, et al. Human leukocyte antigen class I and II alleles and risk of cervical neoplasia: results from a population-based study in Costa Rica[J]. J Infect Dis, 2001;184:1310-1314.
    [37] Munoz N, Franceschi S, Bosetti C, et al. Role of parity and human papillomavirus in cervical cancer: the IARC multicentric case-control study[J]. Lancet, 2002;359:1093-1101.
    [38] Castle PE, Wacholder S, Lorincz AT, et al. A prospective study of high-grade cervical neoplasia risk among human papillomavirus-infected women[J]. J Natl Cancer Inst, 2002;94: 1406-1414.
    [39] Castle PE, Hillier SL, Rabe LK, et al. An association of cervical inflammation with high-grade cervical neoplasia in women infected with oncogenic human papillomavirus (HPV) [J]. Cancer Epidemiol Biomarkers Prev, 2001;10:1021-1027.
    [40] Carter JJ, Koutsky LA, Hughes JP, et al. Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection[J]. J Infect Dis 2000;181; 1911-1919.
    [41] Evans M, Borysiewicz LK, Evans AS, et al. Antigen processing defects in cervical carcinomas limit the presentation of a CTL epitopefrom human papillomavirus 16 E6[J]. J Immunol, 2001;167:5420-5428.
    [42] Herrero R, Hildesheim A, Bratti C, et al. Population-based study of human papillomavirus infection and cervical neoplasia in rural Costa Rica[J]. J Natl Cancer Inst, 2000;92:464-474.
    [43] Giroglou T, Sapp M, Lane C, et al. Immunological analyses of human papillomavirus capsids[J]. Vaccine, 2001;19:1783-1793.
    [44] Breitburd F., Kirnbauer R., Hubbert N.L, et al. Immunization with virus-like particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection[J]. J. Virol. 1995;69(6):3959-3963.
    [45] Suzich JA, Ghim S, Palmer-Hill FJ, et al. Systemic immunization with apillomavirus L1 protein completely prevents the development of viral mucosal papillomas[J]. roc Natl Acad Sci USA, 1995:92:11553-11557
    [46] McGarvie G, Schiller J, Lowy D, et al. Virus-like particles of Bovine Papillomavirus type4 in prophylactic and therapeutic immunization. Virology, 1996;219:37-44.
    [47] Kawana K, Kawana Y, Yoshikawa H, et al. Nasal immunization of mice with peptide having a cross-neutralization epitope on minor capsid protein L2 of human papillomavirus type 16 elicit systemic and mucosal antibodies[J]. Vaccine, 2001;19:1496-1502.
    [48] Roden RB, Yutzy WI, Fallon R, et al. Minor capsid protein of human genital papillomaviruses contains subdominant, crossneutralizing epitopes[J]. Virology, 2000;270(2): 254-257.
    [49] Harper DM, Franco EL, Wheeler C, et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: A randomised controlled trial[J]. Lancet, 2004;364(9447):1757-1765.
    [50] Villa LL, Costa RL, Petta CA, et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial[J]. Lancet Oncol, 2005;6(5):271-278.
    [51] Pinto LA, Edwards J, Castle PE, et al. Cellular immune responses to human papillomavirus (HPV)-16 L1 in healthy volunteers immunized with recombinant HPV-16 L1 virus-like particles[J]. J Infect Dis, 2003;188(2):327-338.
    [52] Doorbar J. The papillomavirus life cycle[J]. J Clin Virol, 2005;32(1):S7-S15.
    [53] Sven-Eric O, Luisa LV, Ronaldo LRC, et al. Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine[J]. Vaccine 2007;25:4931-4939
    [54] Christophe F, Joanne ET, Liwen X, et al. Modeling the long-termantibody response of a human papillomavirus (HPV) virus-like particle (VLP) type 16 prophylactic vaccine[J]. Vaccine, 2007;25: 4324-4333
    [55] Bouvet JP, Decroix N, Pamonsinlapatham P. Stimulation of local antibody production: parenteral or mucosal vaccination? [J]. Trends Immunol, 2002;23:209-213.
    [56] Nardelli-Haefliger D, Wirthner D, Schiller JT, et al. Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus-like particles[J]. J Natl Cancer Inst, 2003;95:1128-1137.
    [57] Bosch FX, Lorincz A, Munoz N. et al. The causal relation between human papillomavirus and cervical cancer[J]. J Clin Pathol, 2002;55(4):244-265.
    [58] Pastrana DV, Buck CB, Pang YY, et al. Reactivity of human sera in a sensitive, high- throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18[J]. Virology, 2004;321(2):205-216.
    [59] Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections[J]. J Clin Virol. 2005;32(1):516-524.
    [60] Parkin DM, Bray F, Ferlay J, et al. Estimating the world cancer burden: Globocan 2000[J]. Int J Cancer, 2001; 94(2):153-156.
    [61] Stanberry LR, Spruance SL, Cunningham AL, et al. Glycoprotein-Dadjuvant vaccine to prevent genital herpes [C]. N Engl J Med Online, 2002;347(21):1652-1661.
    [62] Davis K, Dickman ED, Ferris D, et al. Human papillomavirus vaccine acceptability among parents of 10 to 15-year-old adolescents[J]. J Low Genit Tract Dis. 2004;8(3):188-194.
    [63] Schiller JT, Davies P. Delivering on the promise: HPV vaccines and cervical cancer[J]. Nat. Rev. Microbiol, 2004;2(4):343-347.
    [64] Nardelli-Haefliger D, Lurati F, Wirthner D, et al. Immune responses induced by lower airway mucosal immunisation with a human papillomavirus type 16 virus-like particle vaccine[J]. Vaccine, 2005;23(28):3634-3641.
    [65] Baud D, Ponci F, Bobst M, et al. Improved efficiency of a Salmonella-based vaccine against human papillomavirus type 16 virus-like particles achieved by using a codon-optimized version of L1[J]. J Virol, 2004;78(23):12901-1209.
    [66] Pastrana DV, Gambhira R, Buck CB, et al. Crossneutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2[J]. Virology, 2005;337(2): 365-372.
    [67] Kawana K, Yasugi T, Kanda T, et al. Safety and immunogenicity of a peptide containing the crossneutralization epitope of HPV16 L2 administered nasally in healthy volunteers[J]. Vaccine, 2003;21(27-28):4256-4260.
    [68] Liu XS, Xu Y, Hardy L, et al. IL-10 mediates suppression of the CD8 T cell IFN-gamma response to a novel viral epitope in a primed host[J]. J Immunol, 2003;171(9):4765-4772.
    [69] Mocellin S, Mandruzzato S, Bronte V, et al. Vaccines for solid tumours[J]. Lancet Oncol, 2004;5(11):681-689.
    [70] Kaufmann AM, Stern PL, Rankin EM, et al. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer[J]. Clin. Cancer Res, 2002;8(12):3676-3685.
    [71] Klencke BJ, Palefsky JM. Anal cancer: An HIV-associated cancer[J]. Hematol Oncol Clin North Am, 2003;17(3):859-872.
    [72] Davidson EJ, Boswell CM, Sehr P, et al. Immunological and clinical responses in women with vulval intraepithelial neoplasia vaccinated with a vaccinia virus encoding human papillomavirus 16/18 oncoproteins[J]. Cancer Res, 2003;63(18):6032-6041.
    [73] Syrjanen S. Human papillomavirus (HPV) in head and neck cancer[J]. J. Clin. Irol, 2005; 32(1):S59-S66.
    [74] Chen CH, Suh KW, Ji H, et al. Antigen-specific immunotherapy for HPV-16 E7-expressing tumors grown in liver[J]. J Hepatology, 2000;33:91-98.
    [75] Lamikanra A, Pan ZK, Isaacs SN, et al. Regression of established human papillomavirus type 16 (HPV-16) immortalized tumors in vivo by vaccinia viruses expressing different forms of HPV-16 E7 correlates with enhanced CD8(+) T-cell responses that home to the tumor site[J]. J Virol, 2001;75:9654-9664.
    [76] He Z, Wlazlo AP, Kowalczyk DW, et al. Viral recombinant vaccines to the E6 and E7 antigens of HPV-16[J]. Virology, 2000;270:146-161.
    [77] Liu DW, Tsao YP, Kung JT, et al. Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer[J]. J Virol, 2000;74:2888-2894.
    [78] Velders MP, McElhiney S, Cassetti MC, et al. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA[J]. Cancer Res, 2001;61:7861-7867.
    [79] Cheng WF, Hung CF, Hsu KF, et al. Cancer immunotherapy using sindbis virus replicon particles encoding a VP22-antigen fusion[J]. Hum Gene Ther, 2002;13:553-568.
    [80] Touze A, Coursaget P. In vitro gene transfer using human papillomavirus-like particles[J]. Nucleic Acids Res, 1998;26:1317-1323.
    [81] Shi W, Liu J, Huang Y, et al. Papillomavirus pseudovirus: a novel vaccine to induce mucosal and systemic cytotoxic T-lymphocyte responses[J]. J Virol, 2001;75:10139-10148.
    [82] Gunn GR, Zubair A, Peters C, et al. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16[J]. J Immunol, 2001;167:6471-6479.
    [83] Jabbar IA, Fernando GJ, Saunders N, et al. Immune responses induced by BCG recombinant for human papillomavirus L1 and E7 proteins[J]. Vaccine, 2000;18:2444-2453.
    [84] Feltkamp MC, Smits HL, Vierboom MP, et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells[J]. Eur J Immunol, 1993;23:2242-2249.
    [85] Gerard CM, Baudson N, Kraemer K, et al. Therapeutic potential of protein and adjuvant vaccinations on tumour growth[J]. Vaccine, 2001;19:2583-2589.
    [86] Jochmus I, Schafer K, Faath S, et al. Chimeric virus-like particles of the human papillomavirus type 16 (HPV 16) as a prophylactic and therapeutic vaccine[J]. Arch Med Res, 1999;30:269-274.
    [87] Chen CH, Wang TL, Hung CF, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene[J]. Cancer Res, 2000;60:1035-1042.
    [88] Cheng WF, Hung CF, Chai CY, et al. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen[J]. J Clin Invest, 2001;108:669-678.
    [89] Ji H, Wang TL, Chen CH, et al. Targeting HPV-16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine HPV-16 E7-expressing tumors[J]. Human Gene Therapy, 1999;10:2727-2740.
    [90] Michel N, Osen W, Gissmann L, et al. Enhanced immunogenicity of HPV 16 E7 fusion proteins in DNA vaccination[J]. Virology, 2002;294:47-59.
    [91] Hung CF, He L, Juang J, et al. Improving DNA vaccine potency by linking Marek's disease virus type 1 VP22 to an antigen[J]. J Virol, 2002;76:2676-2682.
    [92] Kim TW, Hung CF, Ling M, et al. Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins[J]. J Clin Invest, 2003;112:109-117.
    [93] Leachman SA, Tigelaar RE, Shlyankevich M, et al. Granulocyte-macrophage colonystimulating factor priming plus papillomavirus E6 DNA vaccination: effects on papilloma formation and regression in the cottontail rabbit papillomavirus-rabbit model[J]. J Virol, 2000;74:8700-8708.
    [94] Tan J, Yang NS, Turner JG, et al. Interleukin-12 cDNA skin transfection potentiates human papillomavirus E6 DNA vaccine-induced antitumor immune response[J]. Cancer Gene Ther, 1999;6:331-339.
    [95] Janet LB, Mark S, Daniel Z, et al. Therapeutic vaccination of rabbits with a ubiquitin-fused papillomavirus E1, E2, E6 and E7 DNA vaccine[J]. vaccine,2007;25(33):6158-6163
    [96] Cheng WF, Hung CF, Chai CY, et al. Enhancement of Sindbis virus self-replicating RNA vaccine potency by linkage of Mycobacterium tuberculosis heat shock protein 70 gene to an antigen gene[J]. J Immunol, 2001;166:6218-6226.
    [97] Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity[J]. Nat Med, 1995;1:1297-1302.
    [98] Murakami M, Gurski KJ, Marincola FM, et al. Induction of specific CD8+ T-lymphocyte responses using a human papillomavirus-16 E6/E7 fusion protein and autologous dendritic cells[J]. Cancer Res, 1999;59:1184-1187.
    [99] Bubenik J, Simova J, Hajkova R, et al. Interleukin 2 gene therapy of residual disease in mice carrying tumours induced by HPV 16[J]. Int J Oncol, 1999;14:593-597.
    [100] Chang EY, Chen CH, Ji H, et al. Antigen-specific cancer immunotherapy using an GM-CSF secreting allogeneic tumor cell-based vaccine[J]. Int J Cancer, 2000;86:725-30.
    [101] Chen CH, Wang TL, Hung CF, et al. Boosting with recombinant vaccinia increases HPV-16 E7-specific T cell precursor frequencies of HPV-16 E7-expressing DNA vaccines[J]. Vaccine, 2000;18:2015-2022.
    [102] Kowalczyk DW, Wlazlo AP, Shane S, et al. Vaccine regimen for prevention of sexually transmitted infections with human papillomavirus type 16[J]. Vaccine, 2001;19:3583-3590.
    [103] Christensen ND, Han R, Cladel NM, et al. Combination treatment with intralesional cidofovir and viral-DNA vaccination cures large cottontail rabbit papillomavirus-induced papillomas and reduces recurrences[J]. Antimicrob Agents Chemother, 2001;45:1201-1209.
    [104] Frazer IH, Kluyver RD, Leggatt GR, et al. Tolerance or immunity to a tumor antigen expressed in somatic cells can be determined by systemic proinflammatory signals at the time of first antigen exposure[J]. J Immunol, 2001;167(11):6180-6187.
    [105] Moore RA, Walcott S, White KL, et al. Therapeutic immunisation with COPV early genes by epithelial DNA delivery[J]. Virology, 2003;314(2):630-635.
    [106] Steller MA, Gurski KJ, Murakami M, et al. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16E7[J]. Clin Cancer Res, 1998;4(9):2103-2109.
    [107] Muderspach L, Wilczynski S, Roman L, et al. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive[J]. Clin Cancer Res, 2000;6(9):3406-3416.
    [108] de Jong A, O’Neill T, Khan AY, et al. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine[J]. Vaccine, 2002;20(29-30):3456-3464.
    [109] Frazer IH, Quinn M, Nicklin JL, et al. Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia[J]. Vaccine, 2004;23(2):172-181.
    [110] Hallez S, Simon P, Maudoux F, et al. Phase I/II trial of immunogenicity of a human papillomavirus (HPV) type 16 E7 protein-based vaccine in women with oncogenic HPV-positive cervical intraepithelial neoplasia[J]. Cancer Immunol. Immunother, 2004;53(7):642-650.
    [111] Hunt S. Technology evaluation: HspE7, StressGen Biotechnologies Corp[J]. Curr Opin Mol Ther, 2001;3(4):413-417.
    [112] Maciag PC, Paterson Y. Technology evaluation: HspE7 (Stressgen) [J]. Curr Opin Mol Ther, 2005;7(3):256-263.
    [113] Garcia F, Petry KU, Muderspach L, ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: A randomized controlled trial[J]. Obstet Gynecol, 2004;103(2): 317-326.
    [114] Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections[J]. J Clin Virol, 2005;32(1):S16-S24.
    [115] Belyakov IM, Berzofsky JA. Immunobiology of mucosal HIV infection and the basis for development of a new generation of mucosal AIDS vaccines[J]. Immunity, 2004;20(3): 247-253.
    [116] Ciacci-Woolwine F, Blomfield IC, Richardson SH, et al. Salmonella flagellin induces tumor necrosis factorαin a human promonocytic cell line[J]. Infect Immun, 1998;66:1127-1134.
    [117] Wyant TL, Tanner MK, Sztein MB. Potent immunoregulatory effects of Salmonella typhi flagella on antigenic stimulation of human peripheral blood mononuclear cells[J]. Infect Immun, 1999;67:1338-1346.
    [118] Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5[J]. Nature, 2001;410:1099-1103.
    [119] Feuillet V, Medjane S, Mondor I, et al. Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria[J]. Proc Natl Acad Sci USA, 2006;103:12487-12492.
    [120] Mahieu T, Libert C. Should we inhibit type I interferons in sepsis?[J].Infect Immun, 2007; 75:22-29.
    [121] Bulut Y, Faure E, Thomas L, et al. Cooperation of Toll-like receptors 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling[J]. J Immunol, 2001;167:987-994.
    [122] Totemeyer S, Kaiser P, Maskell DJ, et al. Sublethal infection of C57BL/6 mice with Salmonella enterica Serovar Typhimurium leads to an increase in levels of Toll-like receptor 1 (TLR1), TLR2, and TLR9 mRNA as well as a decrease in levels of TLR6 mRNA in infected organs[J]. Infect Immun, 2005;73:1873-1878.
    [123] Koebernick H, Grode L, David JR, et al. Macrophage migration inhibitory factor (MIF) plays a pivotal role in immunity against Salmonella typhimurium[J]. Proc Natl Acad Sci USA, 2002;99:13681-13686.
    [124] Blander J M, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells[J]. Nature, 2006;440:808-812.
    [125] Loessner H, and Weiss S. Bacteria-mediated DNA transfer in gene therapy and vaccination [J]. Expert Opin Biol Ther, 2004;4:157-168.
    [126] Garmory HS, Leary SE, Griffin KF, et al. The use of live attenuated bacteria as a delivery system for heterologous antigens[J]. J Drug Target, 2003;11:471-479.
    [127] Pasetti MF, Levine MM, Sztein MB. Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar Typhi live oral vaccines and live vectors[J]. Vaccine, 2003;21:401-418.
    [128] Angelakopoulos H, Hohmann EL. Pilot study of phoP/phoQ-deleted Salmonella enterica serovar typhimurium expressing Helicobacter pylori urease in adult volunteers[J]. Infect Immun, 2000;68:2135-2141.
    [129] Urashima M, Suzuki H, Yuza Y, et al. An oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium[J]. Blood. 2000;95:1258-1263.
    [130] Woo PC, Wong LP, Zheng BJ, et al. Unique immunogenicity of hepatitis B virus DNA vaccine presented by live-attenuated Salmonella typhimurium[J]. Vaccine, 2001;19: 2945-2954.
    [131] Shata MT, Reitz MS, Devico AL, et al. Mucosal and systemic HIV-1 Env-specific CD8(+) T-cells develop after intragastric vaccination with a Salmonella Env DNA vaccine vector[J]. Vaccine, 2001;20:623-629.
    [132] Hummel S, Apte RN, Qimron U, et al. Tumor vaccination by Salmonella typhimurium after transformation with a eukaryotic expression vector in mice: impact of a Salmonella typhimurium gene interfering with MHC class I presentation[J]. J Immunother, 2005; 28(5):467-479.
    [133] Avogadri F, Martinoli C, Petrovska L, et al. Cancer immunotherapy based on killing of Salmonella-infected tumor cells[J]. Cancer Res, 2005;65:3920-3927.
    [134] VanCott JL, Chatfield SN, Roberts, et al. Regulation of host immune responses by modification of Salmonella virulence genes[J]. Nat.Med, 1998;4: 1247-1252.
    [135] Petrovska L, Aspinall RJ, Barber L, et al. Salmonella enterica serovar Typhimurium interaction with dendritic cells: impact of the sifA gene[J]. Cell Microbiol, 2004;6:1071-1084.
    [136] Zhao M, Yang M, Ma H, et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice[J]. Cancer Res, 2006;66:7647-7652.
    [137] Dunstan SJ, Simmons CP, Strugnell RA. In vitro and in vivo stability of recombinant plasmids in a vaccine strain of Salmonella enterica var. Typhimurium[J]. FEMS Immunol.Med.Microbiol, 2003;37:111-119.
    [138] Bauer H, Darji A, Chakraborty T, et al. Salmonella-mediated oral DNA vaccination using stabilized eukaryotic expression plasmids[J]. Gene Ther, 2005;12:364-372.
    [139] Isoda R, Simanski SP, Pathangey L, et al. Expression of a Porphyromonas gingivalis hemagglutinin on the surface of a Salmonella vaccine vector[J]. Vaccine, 2007;25:117-126.
    [140] Kramer U, Rizos K, Apfel H, et al. Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains[J]. Infect.Immun, 2003;71:1944-1952.
    [141] Dietrich G, Hess J, Gentschev I, et al. From evil to good: a cytolysin in vaccine development[J]. Trends Microbiol, 2001;9:23-28.
    [142] Loessner H, Endmann A, Rohde M, et al. Differential effect of auxotrophies on the release of macromolecules by Salmonella enterica vaccine strains[J]. FEMS Microbiol Lett, 2006;265: 81-88.
    [143] Stratford R, McKelvie ND, Hughes NJ, et al. Optimization of Salmonella enterica serovar typhi DeltaaroC DeltassaV derivatives as vehicles for delivering heterologous antigens by chromosomal integration and in vivo inducible promoters[J]. Infect.Immun, 2005;73:362-368.
    [144] Chatfield SN, Charles IG, Makoff AJ, et al. Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus vaccine[J]. Biotechnology (N.Y.), 1992;10:888-892.
    [145] Arnold H, Bumann D, Felies M, et al. Enhanced immunogenicity in the murine airway mucosa with an attenuated Salmonella live vaccine expressing OprF-OprI from Pseudomonas aeruginosa[J]. Infect.Immun, 2004;72:6546-6553.
    [146] Mengesha A, Dubois L, Lambin P, et al. Development of a Flexible andPotent Hypoxia- Inducible Promoter for Tumor-Targeted Gene Expression in Attenuated Salmonella[J]. Cancer Biol.Ther, 2006;5.
    [147] Nuyts S, Van Mellaert L, Theys J, et al. Radioresponsive recA promoter significantly increases TNFalpha production in recombinant clostridia after 2 Gy irradiation[J]. Gene Ther, 2001;8:1197-1201.
    [148] Electra N, Andreas DK. The burden of human papillomavirus infections and the expected inpact of the new vaccines[J]. Expert Rev Vaccines, 2007;6(4):475-477.
    [149] Julia ML, Brotherton. How much cervical cancer in Australia is vaccine preventable? A meta-analysis[J]. Vaccine, 2008;26(2):250-256.
    [150] L Bai, L Wei, J Wang, X. et al. Extended effects of human papillomavirus 16 E6-specific short hairpin RNA on cervical carcinoma cells[J]. Int J Gynecol Cancer, 2006;16:718-729.
    [151] Kopecko DJ, Sieber H, Ures JA, et al. Genetic stability of vaccine strain Salmonella Typhi Ty21a over 25 years[J].Int J Med Microbiol, 2009; 299(4):233-246. Michele AK, David BW. DNA vaccines: ready for prime time? [J].Nat Rev Gen, 2008;9:776-788.
    [152] Diane MH. Prevention of Human Papillomavirus Infections and Associated Diseases by Vaccination: A New Hope for Global Public Health[J]. Publ Hea Gen, 2009;12:319-330.
    [153] Jeffrey BU, Britta W,Margaret AL. Gene-based vaccines: recent technical and clinical advances[J]. J Mol Med, 2006;12(5):216-222.
    [154] V′eronique R, Rinaldo Z, Christian M, et al. Humoral and cellular immune responses to airway immunization of mice with human papillomavirus type 16 virus-like particles and mucosal adjuvants[J]. Antiviral Research, 2007;76:75-85.
    [155] Dominique F, David B, Susana YYPang, et al. Salmonella enterica Serovar Typhi Ty21a expressing human papillomavirus type 16 L1 as a potential live vaccine against cervical cancer and typhoid fever[J]. Clin Vaccine Immunol, 2007; 14(10)1285–1295.
    [156] Hakim E, Matteo B, David B, et, al. I ntravaginal immunization of mice with recombinant Salmonella enterica serovar typhimurium expressing Human Papillomavirus type 16 antigens as a potential route of vaccination against cervical cancer[J]. Infec Immun, 2008; 76(5):1940–1951.
    [157] David Baud, Franc oise Ponci, Martine Bobst, et, al. Improved Efficiency of a Salmonella- Based Vaccine against Human Papillomavirus Type 16 Virus-Like Particles Achieved by Using a Codon-Optimized Version of L1[J]. J Virology, 2004;78(23): 12901-12909.
    [158] Gabrielle TB, Fre′de′rick M. Interleukin-2 Tickles T Cell Memory[J]. Immunity, 2010;32:7-9.
    [159] Catriona HTM, Stephen GM, Howard AY. Clinical Use of Interferon-γ[J]. Ann. N.Y. Acad. Sci, 2009;1182:69-79.
    [160] S Tang, MF Tao, JP McCoy, et, al. The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk Human Papillomavirus type 16- or type 18-Positive cervical cancer cell lines via translation reinitiation[J]. J Virology, 2006; 80(9): 4249–4263.
    [161] Pan QW, Cai R, Liu XY, et, al. A novel strategy for cancer gene therapy: RNAi[J]. Chin Sci B, 2006; 51(10):1145-1151.
    [162]杨绍杰,孟金萍,屈伟,等.细胞凋亡信号传导通路的研究进展[J].中国比较医学杂志,2007;17(5):297-301
    [163] Minaguchi T, Yoshikawa H. Molecular mechanism of cervical carcinogenesis[J]. Gan To Kagaku Ryoho. 2010;37(1):18-22.
    [164] Galluzzi L, Morselli E, Kepp O, et, al. Defective autophagy control by the p53 rheostat in cancer[J]. Cell Cycle, 2010:9(2):250-255.
    [165] Autret A, Martin SJ. Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis[J]. Mol Cell, 2009;36(3):355-363.
    [166] Sheridan C, Delivani P, Cullen SP, et, al. Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release[J]. Mol Cell. 2008;31(4):570-585.
    [167] Kurokawa M, Kornbluth S. Caspases and kinases in a death grip[J]. Cell, 2009;138(5):838- 854.
    [168] Logue SE, Martin SJ.Caspase activation cascades in apoptosis[J]. Biochem Soc Trans, 2008; 36(1):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700