用户名: 密码: 验证码:
云斑天牛胃肠道内共生细菌来源的纤维素酶和半纤维素酶的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素酶及半纤维素酶在多种工业领域,包括在饲料工业中都具有巨大的应用价值。天牛幼虫以木材为食,是研究纤维素酶及半纤维素酶的高价值材料。胃肠道内共生细菌蕴藏着丰富多样的纤维素酶及半纤维素酶,但天牛胃肠道细菌来源纤维素酶及半纤维素酶的相关报道却极为有限。
     本研究使用简并引物同源克隆的方法,从云斑天牛(Batocera horsfieldi)幼虫胃肠道分离培养的34株细菌中,总共获得26个纤维素酶或半纤维素酶编码基因片段,包括糖苷水解酶(GH)第3家族β-葡糖苷酶、48家族纤维二糖水解酶、10和11家族内切木聚糖酶、52家族β-木糖苷酶、67家族α-葡糖醛酸糖苷酶、16家族β-葡聚糖酶、2家族β-半乳糖苷酶和36家族α-半乳糖苷酶。同时,从云斑天牛幼虫胃肠道环境基因组中直接获得了纤维素酶和半纤维素酶编码基因片段,包括第5和45家族内切纤维素酶,48家族纤维二糖水解酶,10家族内切木聚糖酶,39和52家族β-木糖苷酶和67家族α-葡糖醛酸糖苷酶。选取第5和第10家族的氨基酸片段进行多样性分析,Shannon指数分别为2.68和2.09。系统发育分析指出这些氨基酸序列可能并不来源于多样的细菌门类,而主要是源于单个细菌门下的多样的细菌属或种类。通过与松墨天牛(Monochamus alternatus)虫洞环境、瘤胃和白蚁胃肠道来源序列的比较分析(第10家族序列仅与虫洞环境序列比较),揭示了云斑天牛胃肠道环境第5和第10家族的氨基酸序列的特异性(p<0.001)。
     改进了常规热不对称交错聚合酶链式反应(TAIL-PCR)方法以使操作更简便、更高效,同时建立了针对鸟嘌呤(G)和胞嘧啶(C)含量高的基因的GC TAIL-PCR方法,结果获得了由25个基因构成的木聚糖和木糖代谢染色体片段、6个纤维素酶或半纤维素酶编码基因和2个高GC含量(xynA119中GC含量为67.8%,xynB119中GC含量为67.3%)的木聚糖酶基因。选取其中11个酶作进一步研究,包括来源于Sphingobacterium sp. TN111的第16家族β-葡聚糖酶GluA111,Serratia sp. TN49的第3和家族β-葡糖苷酶BglA49,Sphingobacterium sp. TN19的2个第10家族内切木聚糖酶XynA19和XynB19、43家族α-阿拉伯呋喃糖苷酶Gh43A19和36家族α-半乳糖苷酶GalA19,Streptomyces sp. TN119的第10和11家族内切木聚糖酶XynA119和XynB119,Sphingobacterium sp. TN105的第2家族β-半乳糖苷酶BgaA105和36家族α-半乳糖苷酶GalA105及Flavobacterium sp. TN17的第36家族α-半乳糖苷酶GalA17。这11个酶与数据库中已发表序列的氨基酸序列最高一致性为38.8–80.1%。系统发育分析发现内切木聚糖酶XynA19和α-半乳糖苷酶GalA17与其同分类地位细菌来源的序列亲缘关系较远,而与胃肠道共生细菌来源的序列相近;但第3家族β-葡糖苷酶BglA49却未具有这样的特征。进一步的分析发现胃肠道环境共生细菌来源的第36家族α-半乳糖苷酶具有潜在催化域KWD和SDXXDXXXR,不同于已知具有晶体结构的α-半乳糖苷酶催化域KXD和RXXXD。突变分析表明KWD中的D480,SDXXDXXXR中的S548、D549和R556是GalA17具有酶活的必要氨基酸,其中,D480和D549可能是催化残基。
     将上述11个酶编码基因都重组到pET载体,并转化到Escherichia coli BL21(DE3)中表达,除了GluA111未能检测到活性外,其余10个都检测到了相应的酶活。利用组氨酸标签纯化了重组的XynA119、XynB119、XynA19、BglA49及GalA17。对这些纯化酶进行酶学性质测定,结果显示:最适pH都在中性范围内(pH5.5–7.5),pH稳定性在中性pH内最佳,最适温度较低(35–60°C),热稳定性较差(低于50°C但都能在37°C稳定)。这些共同特征可能与天牛生存环境及肠道生理环境密切相关。同时,GalA17具多种蛋白酶抗性(胰蛋白酶、胶原蛋白酶、α-糜蛋白酶和蛋白酶K);XynB119在很宽的pH范围内稳定(pH1.0–11.0)并对多种蛋白酶(胃蛋白酶、胰蛋白酶、胶原蛋白酶、α-糜蛋白酶和蛋白酶K)有抗性;XynA19在低温具有活性(10°C时~40%的活性),同时具有低温内切木聚糖酶中相对较好的热稳定性(40°C稳定);BglA49也在低温具有活性(10°C时酶活>20%);与嗜热或中温第10家族内切木聚糖酶和第3家族β-葡糖苷酶结构相比,XynA19和BglA49在结构上的离子键和氢键数量大幅降低。GalA17、XynB119、XynA19和BglA49的性质特点使其在食品和饲料添加剂方面具一定的应用潜力。
     本文首次研究了云斑天牛胃肠道这一特殊生态环境中共生细菌来源的纤维素酶和半纤维素酶,从酶的多样性、系统发育、高级结构和酶学性质方面进行了相关探讨,增进了对食木昆虫胃肠道内的纤维素酶和半纤维素酶的基础认识,发掘了具有应用潜力的纤维素酶及半纤维素酶。
Cellulases and hemicellulases have great potential for application in various industries, including the feed industry. The larvae of longhorned beetles (Cerambycidae) can develop deep within sapwood, and are thought to be a potential source harboring diverse and novel symbiotic microorganisms producing cellulases and hemicellulases. So far enzymes from symbiotic microorganisms in the gut of longhorned beetles still remain extremely limited.
     Using the homologous cloning strategy with degenerate primers, 26 gene fragments encoding cellulases or hemicellulases were cloned from the 34 bacterial strains isolated from the gut of Batocera horsfieldi larvae. These cellulases or hemicellulases are glycosyl hydrolase family (GH) 3β-glucosidases, GH 48 cellobiohydrolases, GH 10 and GH 11 endo-xylanases, GH 52β-xylosidases, GH 67α-glucuronidases, GH 16β-1,3(4)-endoglucanases, GH 2β-galactosidases, and GH 36α-galactosidases. Environmental DNA of luminal contents (TNG) of B. horsfieldi larvae was extracted and used as the template to clone gene fragments encoding cellulases or hemicellulases. As a result, some gene fragments related with GH 5 and GH 45β-1,4-endoglucanases, GH 48 cellobiohydrolases, GH 10 endo-xylanases, GH 39 and GH 52β-xylosidases, and GH 67α-glucuronidases were isolated. Furthermore, gene fragments of GH 5 and GH 10 were chosen for diversity analysis. Their Shannon indexes were 2.68 (GH 5) and 2.09 (GH 10), respectively. Phylogenetic analysis indicated that the GH 10 and GH 5 protein fragments from TNG were novel and diverse, and present at limited breadth of bacterial phyla but much greater in depth in terms of genera and species. Significant difference (p < 0.001) between GH 10 or GH 5 protein fragments from TNG and that from the wormhole niche of Monochamus alternatus, and among GH 5 protein fragments from gastrointestinal habitats (TNG, termite gut or rumen) revealed environment-specific distributions of GH 10 and GH 5 proteins in TNG.
     In this study, the conventional thermal asymmetric interlaced-PCR (TAIL-PCR) technique was improved for efficacy and ready-to-use, and GC TAIL-PCR specific for GC-rich genes was developed. As a result, a chromosomal segment containing 25 genes related to xylan and xylose metabolism and showing xylanolytic activity, 6 cellulases or hemicellulases encoding genes, and 2 xylanases encoding genes (xynA119 and xynB119) with 67.8% and 67.3 GC content, respectively, were obtained. Among them, 11 enzymes were selected for further study, including the GH 16β-1,3(4)-endoglucanase GluA111 from Sphingobacterium sp. TN111; GH 3β-glucosidase BglA49 from Serratia sp. TN49; GH 10 endo-xylanases XynA19 and XynB19, GH 43 arabinofuranosidase Gh43A19, and GH 36α-galactosidase GalA19 from Sphingobacterium sp. TN19; GH 10 endo-xylanase XynA119 and GH 11 endo-xylanase XynB119 from Streptomyces sp. TN119; GH 2β-galactosidase BgaA105 and GH 36α-galactosidase GalA105 from Sphingobacterium sp. TN105; and GH 36α-galactosidase GalA17 from Flavobacterium sp. TN17. The deduced amino acid sequences of these 11 enzymes showed the highest identity of 38.8–80.1% with their counterparts in public databases. Phylogenetic analysis revealed that endo-xylanase XynA19 andα-galactosidase GalA17 were more closely related to their counterparts from symbiotic bacteria in the gastrointestinal habitats than to that from bacteria belonged to the same phylum. The GH 3β-glucosidase BglA49 had no such characteristic. GH 36α-galactosidases from symbiotic bacteria shared two putative catalytic motifs KWD and SDXXDXXXR instead of KXD and RXXXD motifs of knownα-galactosidases. Site-directed mutagenesis indicated four essential amino acid residues (D480 in KWD; S548, D549, and R556 in SDXXDXXXR) involved in theα-galactosidase activity, among which D480 and D549 were the putative catalytic residues.
     The eleven genes mentioned above were inserted into pET vector and expressed successfully in Escherichia coli BL21 (DE3). All recombinant enzymes showed activity except for gluA111. The recombinant enzymes XynA119, XynB119, XynA19, BglA49 and GalA17 were purified to electrophoretic homogeneity by Ni2+-NTA metal chelating affinity chromatography and subjected to biochemical characterizations. All of the five enzymes showed optimal activity at neutral pH (pH 5.5–7.5) and low temperature (35–60°C), and were more stable at neutral pH and temperatures lower than 50°C. These common features are putatively dependent on the living environment and gut physiological environment of B. horsfieldi larvae. GalA17 was resistant to various proteases (trypsin, collagenase, proteinase K andα-chymotrypsin). XynB119 remained stable over a broad pH range (pH 1.0–11.0), and had strong protease resistance (pepsin, trypsin, collagenase, proteinase K andα-chymotrypsin). XynA19 remained active at low temperatures (retained ~40% xylanase activity at 10°C), and was more stable than known low-temperature endo-xylanases at 40°C. BglA49 was also active at low temperature (remained >20% activity at 10°C). Compared to the thermophilic and mesophilic counterparts, XynA19 and BglA49 had fewer hydrogen bonds and salt bridges. These properties suggest that GalA17, XynB119, XynA19 and BglA49 have various potential applications in food and feed industries.
     It is the first report to explore the diversity, phylogenesis, structure and properties of cellulases and hemicellulases from symbiotic bacteria harbored in the gut of B. horsfieldi larvae. The information improves our knowledge of cellulases and hemicellulases in the gut of wood-feeding insect and promotes the development of novel industrial enzymes.
引文
1.曹月青,殷幼平,董亚敏,等.桑粒肩天牛肠道纤维素分解细菌的分离和鉴定.微生物学通报, 2001, 28: 9?11.
    2.陈碧祥,吴振强.饲料用酶制剂的开发与应用.粮食储藏, 2002, 5: 40?44.
    3.陈金华,王中康,贺闽,等. DGGE和RFLP方法分析桑粒肩天牛幼虫肠道微生物多样性.生物技术通报, 2008, 6: 115?119.
    4.郭源梅.抗营养因子的研究进展.国外畜牧学, 2000, 5: 16?19.
    5.何正波,殷幼平,曹月青,等.桑粒肩天牛幼虫肠道菌群的研究.微生物学报, 2001, 41: 741?743.
    6.蒋书楠.中国天牛幼虫.重庆,重庆出版社, 1989.
    7.李渤南,王庆华.饲用酶制剂的国内外研究进展.中国禽业导刊, 2002, 19: 30.
    8.刘开朗,卜登攀,王加启,等.六个不同品种牛的瘤胃微生物群落的比较分析.中国农业大学学报, 2009, 14: 13?18.
    9.刘玉升,陈艳霞,吕飞,等.斑衣蜡蝉成虫肠道细菌的鉴定研究.山东农业大学学报(自然科学版), 2006b, 37: 495?498.
    10.刘玉升,张丽,张静.黑粉虫幼虫肠道细菌的研究.中国微生态学杂志, 2006a, 18: 471?473.
    11.马玉龙.饲用酶制剂的研究进展及应用前景.粮食与饲料工业, 1998, 4: 29?31.
    12.毛宗林,曹爱青,何瑞国.酶制剂对雏鹅小肠食糜相对黏度、pH值及消化酶活性的影响.粮食与饲料工业, 2007, 6: 36?38.
    13.孟雷,陈冠军,王怡,等.纤维素酶的多型性.纤维素科学与技术, 2002, 10: 47?55.
    14.史宝军.酶制剂在饲料中的应用研究进展.广东饲料, 2009, 18: 25?28.
    15.许梓荣,钱利纯,孙建义.高麦麸饲粮中添加β-葡聚糖酶、木聚糖酶和纤维素酶对肉鸡作用效果的研究.动物营养学报, 2000, 12: 61.
    16.杨红,彭建新,刘凯于,等.低等白蚁肠道共生微生物的多样性及其功能.微生物学报, 2006, 46: 496?499.
    17.杨生武,王忠山.饲料用酶制剂.粮食与饲料工业, 1997, 4: 34?36.
    18.袁志辉,蓝希钳,杨廷,等.家蚕肠道细菌群体调查与分析.微生物学报, 2006, 46: 285?291.
    19.张静.饲料酶制剂研究进展.青海草业, 2002, 11: 39?44.
    20.张伟,何正波,邓新平,等.桑粒肩天牛幼虫肠道菌群的种类及分布.西南农业大学学报, 2004, 26: 169?172.
    21. Acevedo JP, Reyes F, Parra LP, et al. Cloning of complete genes for novel hydrolytic enzymes from Antarctic sea water bacteria by use of an improved genome walking technique. J Biotechnol, 2008, 133: 277?286.
    22. Akila G, Chandra TS. A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase. FEMS Microbiol Lett, 2003, 219: 63?67.
    23. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol Rev, 1995, 59: 143?169.
    24. Bahar AA, Demirbag Z. Isolation of pathogenic bacteria from Oberea linearis (Coleptera: Cerambycidae). Biologia, 2007, 62: 13?18.
    25. Bai YG, Wang JS, Zhang ZF, et al. A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotechnol, 2010, 37: 187?194.
    26. Bansod SM, Duttachoudhary M, Srinivasan MC, et al. Xylanase active at high pH from an alkalotolerant Cephalosporium species. Biotechnol Lett, 1993, 15: 965?970.
    27. Beg QK, Kapoor M, Mahajan L, et al. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol, 2001, 56: 326?338.
    28. Bhatia Y, Mishra S, Bisaria VS. Microbialβ-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol, 2002, 22: 375?407.
    29. Blanco J, Coque JJR, Velasco J, et al. Cloning, expression in Streptomyces lividans and biochemical characterization of a thermostable endo-β-1,4-xylanase of Thermomonospora alba ULJB1 with cellulose-binding ability. Appl Microbiol Biotechnol, 1997, 48: 208?217.
    30. Bradford MM. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem, 1976, 72: 248?254.
    31. Brauman A, Dore J, Eggleton P, et al. Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol, 2001, 35: 27?36.
    32. Breznak JA, Brune A. Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol, 1994, 39: 453?487.
    33. Broderick NA, Raffa KF, Goodman RM, et al. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol, 2004, 70: 293?300.
    34. Bronnenmeier K, Staudenbauer WL. Purification and properties of an extracellularβ-glucosidase from the cellulolytic thermophile Clostridium stercorarium. Appl Microbiol Biotechnol, 1988, 28: 380?386.
    35. Brulc JM, Antonopoulos DA, Miller MEB, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A, 2009, 106: 1948?1953.
    36. Brux C, Ben-David A, Shallom-Shezifi D, et al. The structure of an inverting GH43β-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. J Mol Biol, 2006, 359: 97?109.
    37. Cao L, Wang WM, Yang CT, et al. Application of microbial phytase in fish feed. Enzyme Microb Technol, 2007a, 40: 497?507.
    38. Cao Y, Wang Y, Meng K, et al. A novel protease-resistantα-galactosidase with high hydrolytic activity from Gibberella sp. F75: gene cloning, expression, and enzymatic characterization. ApplMicrobiol Biotechnol, 2009, 83: 875?884.
    39. Cao Y, Yang P, Shi P, et al. Purification and characterization of a novel protease-resistantα-galactosidase from Rhizopus sp. F78 ACCC 30795. Enzyme Microb Technol, 2007b, 41: 835?841.
    40. Carroll B, Vandyk JW. The hydrolysis of starch as indicated by congo red. J Am Chem Soc, 1954, 76: 2506?2511.
    41. Chapman AD. Numbers of living species in Australia and the world. Canberra, Australian Biological Resources Study, 2009.
    42. Cho KH, Salyers AA. Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. J Bacteriol, 2001, 183: 7224?7230.
    43. Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev, 2005, 29: 3?23.
    44. Collins T, Meuwis MA, Stals I, et al. A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem, 2002, 277: 35133?35139.
    45. Comfort DA, Bobrov KS, Ivanen DR, et al. Biochemical analysis of Thermotoga maritima GH36α-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry, 2007, 46: 3319?3330.
    46. Condemine G, Robertbaudouy J. Tn-5 insertion in kdgr, a regulatory gene of the polygalacturonate pathway in Erwinia chrysanthemi. FEMS Microbiol Lett, 1987, 42: 39?46.
    47. Coombs J, Brenchley JE. Characterization of two new glycosyl hydrolases from the lactic acid bacterium Carnobacterium piscicola strain BA. Appl Environ Microbiol, 2001, 67: 5094?5099.
    48. Cottrell MT, Yu LY, Kirchman DL. Sequence and expression analyses of Cytophaga-like hydrolases in a Western arctic metagenornic library and the Sargasso seat. Appl Environ Microbiol, 2005, 71: 8506?8513.
    49. Coutinho PM, Henrissat B. Carbohydrate-active enzymes: an integrated database approach. Cambridge, The Royal Society of Chemistry, 1999, 3?12.
    50. Cristobal HA, Breccia JD, Abate CM. Isolation and molecular characterization of Shewanella sp. G5, a producer of cold-activeβ-D-glucosidases. J Basic Microbiol, 2008, 48: 16?24.
    51. Crooks GE, Hon G, Chandonia JM, et al. WebLogo: a sequence logo generator. Genome Res, 2004, 14: 1188?1190.
    52. Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure, 1995, 3: 853?859.
    53. Dayhoff MO, Schwartz RM, Orcutt BC. A model of evolutionary change in proteins. Washington, DC, National Biomedical Research Foundation, 1978, 345–352.
    54. Dehority BA. Pectin-fermenting bacteria isolated from the bovine rumen. J Bacteriol, 1969, 99: 189?196.
    55. Delalibera I, Vasanthakumar A, Burwitz BJ, et al. Composition of the bacterial community in thegut of the pine engraver, Ips pini (Say) (Coleoptera) colonizing red pine. Symbiosis, 2007, 43: 97?104.
    56. Deng WD, Xi DM, Mao HM, et al. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep, 2008, 35: 265?274.
    57. Denherder IF, Rosell AMM, Vanzuilen CM, et al. Cloning and expression of a member of the Aspergillus Niger gene family encodingα-galactosidase. Mol Gen Genet, 1992, 233: 404?410.
    58. Devillard E, Newbold CJ, Scott KP, et al. A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from Gram-positive bacteria. FEMS Microbiol Lett, 1999, 181: 145?152.
    59. Dillon RJ, Charnley AK. Chemical barriers to gut infection in the desert locust-in-vivo production of antimicrobial phenols associated with the bacterium Pantoea agglomerans. J Invertebr Pathol, 1995, 66: 72?75.
    60. Dillon RJ, Webster G, Weightman AJ, et al. Composition of acridid gut bacterial communities as revealed by 16S rRNA gene analysis. J Invertebr Pathol, 2008, 97: 265?272.
    61. Domingo JWS, Kaufman MG, Klug MJ, et al. Characterization of the cricket hindgut microbiota with fluorescently labeled rRNA-targeted oligonucleotide probes. Appl Environ Microbiol, 1998, 64: 752?755.
    62. Douglas AE. The microbial dimension in insect nutritional ecology. Funct Ecol, 2009, 23: 38?47.
    63. Duan CJ, Xian L, Zhao GC, et al. Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol, 2009, 107: 245?256.
    64. Duffield T, Plaizier JC, Fairfield A, et al. Comparison of techniques for measurement of rumen pH in lactating dairy cows. J Dairy Sci, 2004, 87: 59?66.
    65. Edwards IP, Upchurch RA, Zak DR. Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by PCR. Appl Environ Microbiol, 2008, 74: 3481?3489.
    66. Eisenberg D, Luthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol, 1997, 277: 396?404.
    67. Elifantz H, Waidner LA, Michelou VK, et al. Diversity and abundance of glycosyl hydrolase family 5 in the North Atlantic Ocean. FEMS Microbiol Ecol, 2008, 63: 316?327.
    68. Emami K, Topakas E, Nagy T, et al. Regulation of the xylan-degrading apparatus of Cellvibrio japonicus by a novel two-component system. J Biol Chem, 2009, 284: 1086?1096.
    69. Felsenstein J. Inferring phylogenies. Sunderland Massachusetts USA, Sinauer Associates, 2004.
    70. Feng Y, Duan CJ, Pang H, et al. Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol, 2007, 75: 319?328.
    71. Ferre F, Clote P. DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Res, 2006, 34: W182?W185.
    72. Ferrer M, Golyshina OV, Chernikova TN, et al. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol, 2005, 7: 1996?2010.
    73. Finn RD, Tate J, Mistry J, et al. The Pfam protein families database. Nucleic Acids Res, 2008, 36: D281?D288.
    74. Flint HJ, Whitehead TR, Martin JC, et al. Interrupted catalytic domain structures in xylanases from two distantly related strains of Prevotella ruminicola. Biochim Biophys Acta, 1997, 1337: 161?165.
    75. Fujimoto Z, Kaneko S, Momma M, et al. Crystal structure of riceα-galactosidase complexed with D-galactose. J Biol Chem, 2003, 278: 20313?20318.
    76. Fujino Y, Ogata K, Nagamine T, et al. Cloning, sequencing, and expression of an endoglucanase gene from the rumen anaerobic fungus Neocallimastix frontalis MCH3. Biosci Biotechnol Biochem, 1998, 62: 1795?1798.
    77. Fujita K, Oura F, Nagamine N, et al. Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-α-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem, 2005, 280: 37415?37422.
    78. Garman SC, Garboczi DN. The molecular defect leading to Fabry disease: Structure of humanα-galactosidase. J Mol Biol, 2004, 337: 319?335.
    79. Gasparic A, Marinseklogar R, Martin J, et al. Isolation of genes encodingβ-D-xylanase,β-D-xylosidase andα-L-arabinofuranosidase activities from the rumen-bacterium Prevotella ruminicola B14. FEMS Microbiol Lett, 1995a, 125: 135?141.
    80. Gasparic A, Martin J, Daniel AS, et al. A xylan hydrolase gene-cluster in Prevotella ruminicola B14-sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase andβ-(1,4)-xylosidase activities. Appl Environ Microbiol, 1995b, 61: 2958?2964.
    81. Geib SM, Filley TR, Hatcher PG, et al. Lignin degradation in wood-feeding insects. Proc Natl Acad Sci U S A, 2008, 105: 12932?12937.
    82. George SP, Ahmad A, Rao MB. A novel thermostable xylanase from Thermomonospora sp.: influence of additives on thermostability. Bioresour Technol, 2001, 78: 221?224.
    83. Ghazi S, Rooke JA, Galbraith H. Improvement of the nutritive value of soybean meal by protease andα-galactosidase treatment in broiler cockerels and broiler chicks. Br Poult Sci, 2003, 44: 410?418.
    84. Golubev AM, Nagem RAP, Neto JRB, et al. Crystal structure ofα-galactosidase from Trichoderma reesei and its complex with galactose: implications for catalytic mechanism. J Mol Biol, 2004, 339: 413?422.
    85. Gomes J, Gomes I, Steiner W. Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties. Extremophiles, 2000, 4: 227?235.
    86. Goulas T, Goulas A, Tzortzis G, et al. A novelα-galactosidase fromΒifidobacterium bifidum with transgalactosylating properties: gene molecular cloning and heterologous expression. Appl Microbiol Biotechnol, 2009, 82: 471?477.
    87. Graham KK, Kerley MS, Firman JD, et al. The effect of enzyme treatment of soybean meal on oligosaccharide disappearance and chick growth performance. Poult Sci, 2002, 81: 1014?1019.
    88. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18: 2714?2723.
    89. Guimaraes BG, Souchon H, Lytle BL, et al. The crystal structure and catalytic mechanism of cellobiohydrolase CelS, the major enzymatic component of the Clostridium thermocellum cellulosome. J Mol Biol, 2002, 320: 587?596.
    90. Hayashi H, Abe T, Sakamoto M, et al. Direct cloning of genes encoding novel xylanases from the human gut. Can J Microbiol, 2005, 51: 251?259.
    91. Heine G, Raida M, Forssmann WG. Mapping of peptides and protein fragments in human urine using liquid chromatography mass spectrometry. J Chromatogr A, 1997, 776: 117?124.
    92. Heneghan MN, McLoughlin L, Murray PG, et al. Cloning, characterisation and expression analysis ofα-glucuronidase from the thermophilic fungus Talaromyces emersonii. Enzyme Microb Technol, 2007, 41: 677?682.
    93. Heo S, Kwak J, Oh HW, et al. Characterization of an extracellular xylanase in Paenibacillus sp HY-8 isolated from an herbivorous longicorn beetle. J Microbiol Biotechnol, 2006, 16: 1753?1759.
    94. Hernandez A, Lopez JC, Arenas M, et al. Xylan-binding xylanase Xyl30 from Streptomyces avermitilis: cloning, characterization, and overproduction in solid-state fermentation. Int Microbiol, 2008, 11: 133?141.
    95. Hong MR, Kim YS, Park CS, et al. Characterization of a recombinantβ-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. J Biosci Bioeng, 2009, 108: 36?40.
    96. Huang HQ, Shi PJ, Wang YR, et al. Diversity ofβ-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol, 2009, 75: 1508?1516.
    97. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph, 1996, 14: 33?38.
    98. Hunter MS, Perlman SJ, Kelly SE. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc R Soc Lond B Biol Sci, 2003, 270: 2185?2190.
    99. Ihsanawati, Kumasaka T, Kaneko T, et al. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8. Proteins, 2005, 61: 999?1009.
    100. Inoue S, Kinoshita T, Takemiya A, et al. Leaf positioning of Arabidopsis in response to blue light. Mol Plant, 2008, 1: 15?26.
    101. Inoue T, Moriya S, Ohkuma M, et al. Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Gene, 2005, 349: 67?75.
    102. Ishimizu T, Hashimoto C, Takeda R, et al. A novelα-1,2-L-fucosidase acting on xyloglucan oligosaccharides is associated with endo-β-mannosidase. J Biochem, 2007, 142: 721?729.
    103. Ito K, Ogasawara H, Sugimoto T, et al. Purification and properties of acid stable xylanases from Aspergillus Kawachii. Biosci Biotechnol Biochem, 1992, 56: 547?550.
    104. Jacobsen J, Lydolph M, Lange L. Culture independent PCR: an alternative enzyme discovery strategy. J Microbiol Methods, 2005, 60: 63?71.
    105. Jaswal SS, Sohl JL, Davis JH, et al. Energetic landscape ofα-lytic protease optimizes longevity through kinetic stability. Nature, 2002, 415: 343?346.
    106. Jiang ZQ, Kobayashi A, Ahsan MM, et al. Characterization of a thermostable family 10 endo-xylanase (XynB) from Thermotoga maritima that cleaves p-nitrophenyl-β-D-xyloside. J Biosci Bioeng, 2001, 92: 423?428.
    107. Jones DA, DuPont MS, Ambrose MJ, et al. The discovery of compositional variation for the raffinose family of oligosaccharides in pea seeds. Seed Sci Res, 1999, 9: 305?310.
    108. Khasin A, Alchanati I, Shoham Y. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol, 1993, 59: 1725?1730.
    109. Kim DY, Han MK, Oh HW, et al. Catalytic properties of a GH10 endo-β-1,4-xylanase from Streptomyces thermocarboxydus HY-15 isolated from the gut of Eisenia fetida. J Mol Catal B Enzym, 2010, 62: 32?39.
    110. Kim DY, Han MK, Park DS, et al. Novel GH10 xylanase, with a fibronectin type 3 domain, from Cellulosimicrobium sp. strain HY-13, a bacterium in the gut of Eisenia fetida. Appl Environ Microbiol, 2009, 75: 7275?7279.
    111. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences J Mol Evol, 1980, 16: 111?120.
    112. Kittur FS, Mangala SL, Abu Rus'd A, et al. Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritima to soluble xylan. FEBS Lett, 2003, 549: 147?151.
    113. Kongsted J, Ryde U, Wydra J, et al. Prediction and rationalization of the pH dependence of the activity and stability of family 11 xylanases. Biochemistry, 2007, 46: 13581?13592.
    114. Krishna K, Weesner FM. Biology of termites. New York, Academic press, 1969.
    115. Kurokawa K, Itoh T, Kuwahara T, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res, 2007, 14: 169?181.
    116. LeCleir GR, Buchan A, Hollibaugh JT. Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distributions. Appl Environ Microbiol, 2004, 70: 6977?6983.
    117. Lee CC, Kibblewhite-Accinelli RE, Wagschal K, et al. Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles, 2006a, 10: 295?300.
    118. Lee CC, Smith M, Kibblewhite-Accinelli R, et al. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr Microbiol, 2006b, 52: 112?116.
    119. Ley RE, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes. Science, 2008a, 320: 1647?1651.
    120. Ley RE, Lozupone CA, Hamady M, et al. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol, 2008b, 6: 776?788.
    121. Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pK(a) values. Proteins, 2005, 61: 704?721.
    122. Li N, Meng K, Wang YR, et al. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl Microbiol Biotechnol, 2008a, 80: 231?240.
    123. Li N, Shi PJ, Yang PL, et al. Cloning, expression, and characterization of a new Streptomyces sp. S27 xylanase for which xylobiose is the main hydrolysis product. Appl Biochem Biotechnol, 2009a, 159: 521?531.
    124. Li N, Shi PJ, Yang PL, et al. A xylanase with high pH stability from Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions. Appl Microbiol Biotechnol, 2009b, 83: 99?107.
    125. Li N, Yang PL, Wang Y, et al. Cloning, expression, and characterization of protease-resistant xylanase from Streptomyces fradiae var. k11. J Microbiol Biotechnol, 2008b, 18: 410?416.
    126. Li WZ, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22: 1658?1659.
    127. Lian MZ, Lin S, Zeng RY. Chitinase gene diversity at a deep sea station of the east Pacific nodule province. Extremophiles, 2007, 11: 463?467.
    128. Lin LL, Thomson JA. Cloning, sequencing and expression of a gene encoding a 73-kDa xylanase enzyme from the rumen anaerobe Butyrivibrio fibrisolvens H17c. Mol Gen Genet, 1991, 228: 55?61.
    129. Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc, 1934, 56: 658?666.
    130. Liu JR, Duan CH, Zhao X, et al. Cloning of a rumen fungal xylanase gene and purification of the recombinant enzyme via artificial oil bodies. Appl Microbiol Biotechnol, 2008, 79: 225?233.
    131. Liu L, Feng Y, Duan CJ, et al. Isolation of a gene encoding endoglucanase activity from uncultured microorganisms in buffalo rumen. World J Microbiol Biotechnol, 2009a, 25: 1035?1042.
    132. Liu XD, Meng K, Wang YR, et al. Gene cloning, expression and characterization of anα-galactosidase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. World J Microbiol Biotechnol, 2009b, 25: 1633?1642.
    133. Liu YG, Mitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced pcr. Plant J, 1995, 8: 457?463.
    134. Liu YG, Whittier RF. Thermal asymmetric interlaced pcr-automatable amplification and sequencing of insert end fragments from P1 and Yac cones for chromosome walking. Genomics, 1995, 25: 674?681.
    135. Luo HY, Wang Y, Li J, et al. Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme Microb Technol, 2009, 45: 126?133.
    136. Luthy R, Bowie JU, Eisenberg D. Assessment of protein models with 3-dimensional profiles.Nature, 1992, 356: 83?85.
    137. Mahowald MA, Rey FE, Seedorf H, et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A, 2009, 106: 5859?5864.
    138. Manimaran A, Kumar KS, Permaul K, et al. Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Appl Microbiol Biotechnol, 2009, 81: 887?893.
    139. Mannarelli BM, Evans S, Lee D. Cloning, sequencing, and expression of a xylanase gene from the anaerobic ruminal bacterium Butyrivibrio fibrisolvens. J Bacteriol, 1990, 172: 4247?4254.
    140. Manning M, Colon W. Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias towardβ-sheet structure. Biochemistry, 2004, 43: 11248?11254.
    141. Martinez AT, Ruiz-Duenas FJ, Martinez MJ, et al. Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol, 2009, 20: 348?357.
    142. McCarthy AA, Morris DD, Bergquist PL, et al. Structure of XynB, a highly thermostableβ-1,4-xylanase from Dictyoglomus thermophilum Rt46B.1, at 1.8 angstrom resolution. Acta Crystallogr D Biol Crystallogr, 2000, 56: 1367?1375.
    143. Medina M, Sachs JL. Symbiont genomics, our new tangled bank. Genomics, 2010, 95: 129?137.
    144. Meng X, Shao ZZ, Hong YZ, et al. A novel pH-stable, bifunctional xylanase isolated from a deep-sea microorganism, Demequina sp. JK4. J Microbiol Biotechnol, 2009, 19: 1077?1084.
    145. Mi S, Meng K, Wang Y, et al. Molecular cloning and characterization of a novelα-galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme Microb Technol, 2007, 40: 1373?1380.
    146. Michiels A, Tucker M, Van den Ende W, et al. Chromosomal walking of flanking regions from short known sequences in GC-rich plant genomic DNA. Plant Mol Biol Report, 2003, 21: 295?302.
    147. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31: 426?428.
    148. Mittendorf V, Thomson JA. Cloning of an endo-(1,4)-β-glucanase gene, cela, from the rumen bacterium Clostridium sp. (C. longisporum) and characterization of its product, Cela, in Escherichia coli. J Gen Microbiol, 1993, 139: 3233?3242.
    149. Miyata R, Noda N, Tamaki H, et al. Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem, 2007, 71: 1244?1251.
    150. Miyazaki K, Miyamoto H, Mercer DK, et al. Involvement of the multidomain regulatory protein XynR in positive control of xylanase gene expression in the ruminal anaerobe Prevotella bryantii B14. J Bacteriol, 2003, 185: 2219?2226.
    151. Moore JB, Markiewicz P, Miller JH. Identification and sequencing of the Thermotoga maritima lacz gene, part of a divergently transcribed operon. Gene, 1994, 147: 101?106.
    152. Morgavi DP, Beauchemin KA, Nsereko VL, et al. Resistance of feed enzymes to proteolytic inactivation by rumen microorganisms and gastrointestinal proteases. J Anim Sci, 2001, 79: 1621?1630.
    153. Mutsumi N, Takafumi N, Akio T, et al. Molecular cloning, nucleotide sequence and characteristics of a xylanase gene (xynA) from Ruminococcus albus 7. Anim Sci J, 2002, 73: 347?352.
    154. Nei M. Molecular evolutionary genetics. New York, Columbia University Press, 1987.
    155. Noda S, Inoue T, Hongoh Y, et al. Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol, 2006, 8: 11?20.
    156. Oh HW, Heo SY, Kim DY, et al. Biochemical characterization and sequence analysis of a xylanase produced by an exo-symbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12. Antonie Leeuwenhoek, 2008, 93: 437?442.
    157. Ohkuma M. Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol, 2008, 16: 345?352.
    158. Ohkuma M, Kudo T. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol, 1996, 62: 461?468.
    159. Ohtoko K, Ohkuma M, Moriya S, et al. Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Extremophiles, 2000, 4: 343?349.
    160. Ozcan N, Cunningham C, Harris WJ. Cloning of a cellulase gene from the rumen anaerobe Fibrobacter succinogenes SD35 and partial characterization of the gene product. Lett Appl Microbiol, 1996, 22: 85?89.
    161. Parinov S, Kondrichin I, Korzh V, et al. Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn, 2004, 231: 449?459.
    162. Park DS, Oh HW, Heo SY, et al. Characterization of an extracellular lipase in Burkholderia sp. HY-10 isolated from a longicorn beetle. J Microbiol, 2007a, 45: 409?417.
    163. Park DS, Oh HW, Jeong WJ, et al. A culture-based study of the bacterial communities within the guts of nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin. J Microbiol, 2007b, 45: 394?401.
    164. Petrescu I, Lamotte-Brasseur J, Chessa JP, et al. Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles, 2000, 4: 137?144.
    165. Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera-a visualization system for exploratory research and analysis. J Comput Chem, 2004, 25: 1605?1612.
    166. Pittman GW, Brumbley SM, Allsopp PG, et al. "Endomicrobia" and other bacteria associated with the hindgut of Dermolepida albohirtum larvae. Appl Environ Microbiol, 2008, 74: 762?767.
    167. Pozzo T, Pasten JL, Karlsson EN, et al. Structural and functional analyses ofβ-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3. J Mol Biol, 2010, 397: 724?739.
    168. Prade RA. Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev, 1996, 13: 101?131.
    169. Qiu Z, Shi P, Luo H, et al. A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry. Enzyme Microb Technol, 2010, 46: 506?512
    170. Qu A, Brulc JM, Wilson MK, et al. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One, 2008, 3: e2945.
    171. Rodionova NA, Dubovaya NV, Eneiskaya EV, et al. Purification and characterization of endo-(1,4)-β-xylanase from Geotrichum candidum 3C. Appl Biochem Microbiol, 2000, 36: 460?465.
    172. Roy N, Rana MM, Uddin ATMS. Isolation and some properties of new xylanase from the intestine of a herbivorous insect (Samia cynthia pryeri). J Biol Sci, 2004, 4: 27?33.
    173. Ruijssenaars HJ, Hartmans S. Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl Microbiol Biotechnol, 2001, 55: 143?149.
    174. Ruizarribas A, Fernandezabalos JM, Sanchez P, et al. Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii jm8. Appl Environ Microbiol, 1995, 61: 2414?2419.
    175. Saitou N, Nei M. The neighbor-joining method-a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406?425.
    176. Sakka K, Yoshikawa K, Kojima Y, et al. Nucleotide-sequence of the Clostridium stercorarium xyla gene encoding a bifunctional protein withβ-D-xylosidase andα-L-arabinofuranosidase activities, and properties of the translated product. Biosci Biotechnol Biochem, 1993, 57: 268?272.
    177. Salyers AA, Vercellotti JR, West SEH, et al. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from human colon. Appl Environ Microbiol, 1977, 33: 319?322.
    178. Sanchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv, 2009, 27: 185?194.
    179. Santo Domingo JW, Kaufman MG, Klug MJ, et al. Influence of diet on the structure and function of the bacterial hindgut community of crickets. Mol Ecol, 1998, 7: 761?767.
    180. Schell MA, Karmirantzou M, Snel B, et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A, 2002, 99: 14422?14427.
    181. Schloss PD, Delalibera I, Handelsman J, et al. Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ Entomol, 2006, 35: 625?629.
    182. Schloss PD, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol, 2005, 71: 1501?1506.
    183. Schulze J, Sonnenborn U. Yeasts in the gut: from commensals to infectious agents. Dtsch ArzteblInt, 2009, 106: 837?841.
    184. Shendure J, Ji HL. Next-generation DNA sequencing. Nat Biotechnol, 2008, 26: 1135?1145.
    185. Shi PJ, Meng K, Zhou ZG, et al. The host species affects the microbial community in the goat rumen. Lett Appl Microbiol, 2008, 46: 132?135.
    186. Shipkowski S, Brenchley JE. Characterization of an unusual cold-activeβ-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Appl Environ Microbiol, 2005, 71: 4225?4232.
    187. Silva Z, Horta C, da Costa MS, et al. Polyphasic evidence for the reclassification of Rhodothermus obamensis Sako et al. 1996 as a member of the species Rhodothermus marinus Alfredsson et al. 1988. Int J Syst Evol Microbiol, 2000, 50: 1457?1461.
    188. Smith D, Yanai Y, Liu YG, et al. Characterization and mapping of Ds-GUS-T-DNA lines for targeted insertional mutagenesis. Plant J, 1996, 10: 721?732.
    189. Smith MT, Tobin PC, Bancroft J, et al. Dispersal and spatiotemporal dynamics of Asian longhorned beetle (Coleoptera: Cerambycidae) in China. Environ Entomol, 2004, 33: 435?442.
    190. Spilliaert R, Hreggvidsson GO, Kristjansson JK, et al. Cloning and sequencing of a Rhodothermus marinus gene, bgla, coding for a thermostableβ-glucanase and its expression in Escherichia coli. Eur J Biochem, 1994, 224: 923?930.
    191. Subramaniyan S, Prema P. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol, 2002, 22: 33?64.
    192. Sukumaran RK, Singhania RR, Pandey A. Microbial cellulase–production, applications and challenges. J Sci Ind Res, 2005, 64: 832?844.
    193. Taguchi H, Koike S, Kobayashi Y, et al. Partial characterization of structure and function of a xylanase gene from the rumen hemicellulolytic bacterium Eubacterium ruminantium. Anim Sci J, 2004, 75: 325?332.
    194. Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596?1599.
    195. Tayasu I, Sugimoto A, Wada E, et al. Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften, 1994, 81: 229?231.
    196. Teeri TT. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol, 1997, 15: 160?167.
    197. Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997,
    25: 4876?4882.
    198. Todaka N, Moriya S, Saita K, et al. Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol Ecol, 2007, 59: 592?599.
    199. Trinder P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol, 1969, 22: 158?161.
    200. Tsujibo H, Miyamoto K, Kuda T, et al. Purification, properties, and partial amino acid sequences of thermostable xylanases from Streptomyces thermoviolaceus Opc-520. Appl Environ Microbiol, 1992, 58: 371?375.
    201. Turkiewicz M, Kalinowska H, Zielinska M, et al. Purification and characterization of two endo-1,4-β-xylanases from Antarctic krill, Euphausia superba Dana. Comp Biochem Physiol Biochem Mol Biol, 2000, 127: 325?335.
    202. Turner P, Svensson D, Adlercreutz P, et al. A novel variant of Thermotoga neapolitanaα-glucosidase B is an efficient catalyst for the synthesis of alkyl glucosides by transglycosylation. J Biotechnol, 2007, 130: 67?74.
    203. van den Broek LAM, Ton J, Verdoes JC, et al. Synthesis ofα-galacto-oligosaccharides by a clonedα-galactosidase from Bifidobacterium adolescentis. Biotechnol Lett, 1999, 21: 441?445.
    204. Van Petegem F, Collins T, Meuwis MA, et al. The structure of a cold-adapted family 8 xylanase at 1.3 angstrom resolution-structural adaptations to cold and investigation of the active site. J Biol Chem, 2003, 278: 7531?7539.
    205. Ventura M, Canchaya C, Tauch A, et al. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylura. Microbiol Mol Biol Rev, 2007, 71: 495?548.
    206. Walenciak O, Zwisler W, Gross EM. Influence of Myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acentria ephemerella. J Chem Ecol, 2002, 28: 2045?2056.
    207. Warnecke F, Luginbuhl P, Ivanova N, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 2007, 450: 560?565.
    208. Watanabe H, Tokuda G. Cellulolytic systems in insects. Annu Rev Entomol, 2010, 55: 609?632.
    209. Willard L, Ranjan A, Zhang HY, et al. VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res, 2003, 31: 3316?3319.
    210. Xie G, Bruce DC, Challacombe JF, et al. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol, 2007, 73: 3536?3546.
    211. Xu J, Mahowald MA, Ley RE, et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol, 2007, 5: 1574?1586.
    212. Zhang M, Eddy C, Deanda K, et al. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science, 1995, 267: 240?243.
    213. Zhao H, Lu LL, Xiao M, et al. Cloning and characterization of a novelα-galactosidase from Bifidobacterium breve 203 capable of synthesizing Gal-α-1,4 linkage. FEMS Microbiol Lett, 2008, 285: 278?283.
    214. Zhou JZ, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol, 1996, 62: 316?322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700