用户名: 密码: 验证码:
NaCN中毒对缺氧大鼠心脏损伤作用及干预措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢氰酸(HCN)和氯化氰(CNCl)是外军重点装备的全身中毒性毒剂,因分子中都含有氰根,故又称之为氰类毒剂。它们的毒性大、吸收迅速、防护困难,是典型的速杀性战剂。除HCN和CNCl外,属于氰类的还有无机的氰化钠、氰化钾等,都是剧毒的化工原料,平时的工农业生产中也可能由于泄露而引起人畜中毒。有机氰和植物中存在的氰类化合物也能对机体产生毒害作用。因此,氰类毒物中毒的防治是军事预防医学的重要任务。
     氰化物中毒后迅速出现缺氧、窒息、惊厥等中毒症状,来势凶猛、发展迅速,可在数分钟至数十分钟内死于呼吸、循环衰竭。氰化物进入机体后能迅速离解出氰根离子(CN-),能阻断细胞呼吸和氧化磷酸化,对细胞线粒体呼吸链末端氧化酶产生抑制作用,引起组织中毒性缺氧,进而细胞内生物氧化发生一系列变化,造成“内呼吸”障碍。
     一般将海拔高度大于3 000m的地区成为高原。低压低氧(习惯上称作高原缺氧)是高原地区的主要环境特征。部分人在这种环境下会出现明显的症状和体征。而超过这个高度时,其生理、生化和解剖等方面的改变就会变得越来越明显[1]。我国是一个高原地区面积广阔的国家,仅青藏高原的面积就达到250万平方公里。高原地区多与他国相邻,边境漫长,有重要的军事战略地位。
     当高原缺氧复合NaCN中毒时,缺氧和NaCN中毒这“内”、“外”两种缺氧因素同时作用机体,将对机体产生双重缺氧的联合打击。因此,对缺氧复合氰化物(NaCN)中毒的研究对我国的国防保障和未来的战争胜负都会产生极其重要的影响。
     急性缺氧对机体的血压(SP)、心率(HR)的影响已有相关报道。有多篇文献提出,急性低压缺氧大鼠心室收缩功能指标如左室收缩压(LVSP),左室压力最大上升速率(+dP/dtmax)等均显著降低。心肌细胞缺氧不仅是严重创伤后心功能衰竭的重要原因,也是启动和诱发其它脏器损伤形成多脏器功能不全/衰竭的重要始动因素[2]。有研究发现,在高原缺氧条件下化学战剂毒性增强,对心功能损害效应加重,引起心率失常、心肌收缩力减弱等心脏功能异常变化[3]。目前,国内外对缺氧复合NaCN中毒所产生的联合效应对大鼠心脏结构和功能影响研究甚少,对药物预防救治效果亦未见有关评价方面的报道。
     心脏是对缺氧极为敏感的器官。有研究表明,单纯缺氧和单纯NaCN中毒均可明显导致心肌细胞凋亡(Apoptosis),缺氧导致细胞死亡的主要方式是通过诱导细胞凋亡而产生的。在采用大鼠离体心肌细胞培养后、给予缺氧/复氧处理的实验研究中,发现了心肌细胞在持续较长时间的缺氧而再复氧时,细胞损伤现象严重,与曾经研究过的在体动物心肌细胞缺血/再灌注损伤情况一致。在缺氧/复氧损伤组中,流式细胞仪PI染色法的DNA分析直方图上,低于G1期的细胞数增多,明显高于其他各组,说明凋亡的细胞存在较多。透射电镜可见缺氧/复氧损伤组心肌细胞损伤严重,可有明显的凋亡前期、凋亡阶段或凋亡后期的改变,同时心肌细胞凋亡数目也明显增加,支持复氧(再灌注)损伤是心肌细胞凋亡的重要诱发因素。认为缺氧/复氧可加重心肌细胞损伤,伴着心肌细胞凋亡的增加;细胞内钙离子过多可能是触发心肌细胞凋亡的因素;超氧化物歧化酶(superoxide dismutase, SOD)可减少自由基的生成、降低心肌细胞凋亡的发生和缺氧预处理具有抗心肌细胞损伤和减轻心肌细胞凋亡的作用,均有可能是通过降低细胞内钙离子浓度而起作用的[4-6]。Fliss[7]等在在体动物模型研究中也发现了细胞凋亡是心肌再灌注损伤的特征之一,再灌注损伤可加速不可逆转的细胞凋亡。Musat-Marcu等[8]在体外灌注大鼠心脏发现其早期即可发生心肌细胞凋亡,且在抑制凋亡后伴随着心功能的恢复,提示心肌细胞凋亡参与了心功能的衰减。
     细胞色素C(Cytochrome C, Cyt C)及细胞凋亡诱导因子(apoptosis-inducing factor, AIF)正常时分别位于线粒体内膜和线粒体膜间隙。缺血/再灌注(MI/R)时,PT孔受损而开放,Cyt C及AIF被释放入胞浆。Cyt C与胞浆中的凋亡激活因子-1(apoptosis- activating factor-1, Apaf-1)结合,依次激活半胱酸蛋白酶家族中的Caspase-9、Caspase-3而启动凋亡通路,活化的Caspase-3可以作用于胞质中的细胞骨架蛋白,或作用于细胞核中的DNA,引发细胞凋亡,这是线粒体caspase依赖性凋亡途径。而AIF经PT孔被释放入胞浆,其将易位入核,激活内源性核酸内切酶将染色体切割为180-200bp整数倍的DNA片断,同时加速Cyt C的释放,进一步促进细胞凋亡,这是线粒体caspase非依赖性凋亡途径。可见,线粒体caspase依赖性和caspase非依赖性这两条凋亡途径在心肌细胞凋亡中发挥重要作用。
     缺氧预适应( hypoxic preconditioning, HPC),并可将其界定为“预先短时间非致死性重复缺血/缺氧后,机体组织细胞获得对随后长时间致死性缺血/缺氧损伤的高度耐受性”。缺氧预处理对心肌细胞可以产生预适应现象,缺氧预适应迄今为止被认为是最强有力的一种心肌内源性保护措施[9,10]。
     人参皂苷(saponins of panax ginseng, SPG)能对抗氧自由基对心脏的损伤,保持心肌细胞膜的完整性,改善急性心肌缺血时心肌舒张功能,还能对抗心肌缺血所致心肌不可逆坏死,使SOD活性升高,心肌释放磷酸烯醇式丙酮酸羧激酶(phosphoenolpy- ruvate carboxykinase, PCK)减少。人参总皂苷(total saponins of Panax Ginseng, TSPG)对缺血再灌注损伤中的细胞坏死和细胞凋亡均有显著的保护作用[11-14]。人参皂苷尤其是Re可能具有阻滞K+通道的作用,可使离体豚鼠乳头状肌细胞动作电位时程和有效不应期均延长,人参皂苷抗心律失常的作用[15]。人参皂苷抗心肌缺血等作用研究表明,人参皂苷能对抗氧自由基对心脏的损伤,保持心肌细胞膜的完整性,改善急性心肌缺血时心肌舒张功能,还能对抗心肌缺血所致心肌不可逆坏死,使SOD活性升高,心肌释放PCK减少。侯明晓等利用体外培养的心肌细胞缺血再灌注损伤的模型的结果表明:TSPG对缺血再灌注损伤中的细胞坏死和细胞凋亡均有显著的保护作用[16]。Scott等研究发现,人参皂苷Rb1可抑制心肌细胞的收缩,有助于减少心肌的耗氧量[17]。自由基亦可损伤血管内皮细胞,引起动脉粥样硬化、高血压等心脑血管疾病。有实验表明,人参皂苷可降低过氧化物丙二醛的含量,从而减轻血管内皮细胞损伤。
     而牛磺酸(Taurine, Tau)能清除氧自由基、保护细胞膜、使心肌酶和肝酶释放减少、具有极强抗氧化能力。它也能调节细胞内钙的稳态,减少肢体缺血再灌注时钙离子内流,而且中性粒细胞呼吸爆发产生大量过氧化氢(hydrogen peroxide, H2O2),与CL结合产生难以清除的强氧化剂-次氯酸,牛磺酸可与次氯酸结合,形成稳定的弱氧化剂-氯胺牛磺酸,从而除次氯酸对细胞的破坏作用。因此显示牛磺酸可纠正肢体缺血再灌注后远隔器官损伤[18]。长疗程应用牛磺酸在降低血压和逆转心肌肥厚的同时,也使高血压大鼠心肌细胞凋亡减少,并能降低大鼠心肌AngⅡ含量和ACE活性。因此,我们认为,长疗程牛磺酸治疗可抑制高血压大鼠心肌细胞凋亡和逆转心肌肥厚,上述作用可能与药物拮抗组织局部AngⅡ的生成有关。牛磺酸还具有抑制心肌细胞凋亡的作用,可能与其调控凋亡相关基因Fas、Bax和Bcl-2的蛋白表达有关。牛磺酸可以有效保护心肌细胞而避免发生心脏畸形,同时有降低血压[19,20]。
     血液供应和血氧含量是心脏功能正常的先决条件,因此,任何引起血液中氧含量降低或心肌供血不足的有害因素都可能导致心脏功能异常。
     那么,缺氧环境氰化物中毒对心脏功能将会产生何种影响?由此带来的心脏损伤其机制如何?线粒体caspase依赖性和caspase非依赖性这两条凋亡途径在缺氧环境氰化物中毒诱导大鼠心肌细胞凋亡中有何种作用?缺氧预适应、人参皂苷和牛磺酸等干预措施对大鼠缺氧环境氰化物中毒有无效果?这些问题迄今未见研究报道。本课题基于上述两种情况,在前期工作的基础上,采用实验动物研究和体外细胞培养研究相结合的方法,建立缺氧复合NaCN中毒的动物模型和NaCN染毒的细胞模型,通过观察模拟高原环境缺氧复合NaCN中毒对大鼠心脏的影响、检测SPG等干预措施对缺氧复合NaCN中毒大鼠心脏保护作用、观测心肌细胞NaCN染毒后细胞凋亡情况,以及定量分析上述情况下线粒体caspase依赖性和caspase非依赖性这两条凋亡途径中Cyt C、caspase-3和AIF等因子的表达,来探讨模拟缺氧条件下NaCN中毒后心功能改变的特点和心肌细胞凋亡的特性,为今后缺氧性NaCN中毒的预防救治措施的研究提供重要的理论基4础。最终为制定缺氧条件下复合NaCN中毒的预防和救治方案提供实验和理论依据。
     方法:
     1.检测有无干预措施情况下缺氧复合NaCN中毒后对大鼠心脏结构和功能影响,包括血流动力学、心电图、心肌酶谱、心肌病理切片光镜电镜观测等;
     2.建立体外SD乳鼠心肌细胞NaCN染毒模型,检测急性NaCN染毒后心肌细胞是否存在凋亡情况;
     3.定量分析有无干预措施情况下心肌细胞缺氧复合NaCN中毒后Cyt C、caspase-3和AIF表达,分析线粒体caspase依赖性和caspase非依赖性这两条凋亡途径在缺氧复合NaCN中毒引起心肌细胞凋亡中的特点;
     结果:
     一、人参皂苷等干预措施对缺氧和NaCN中毒大鼠心脏的保护作用
     1.平原实验组大鼠NaCN中毒后,血流动力学发生改变:HR、mLVSP、+dP/dtmax等指标均较中毒前出现显著下降(P<0.01),T波振幅则出现显著上升(P<0.01),30min后逐渐向正常值恢复。
     2.高原实验组大鼠NaCN中毒后,血流动力学改变比平原实验组更为明显:HR、mLVSP、+dP/dtmax等指标均较中毒前出现显著下降(P<0.01),T波振幅则出现显著上升(P<0.01),40min后逐渐向正常值恢复,但恢复程度和效果较平原实验组差。
     3.平原实验组大鼠NaCN中毒后,Cyt C活性显著降低(P<0.01)。中毒2h后,Cyt C活性有明显的恢复(P<0.01)。
     4.高原实验组大鼠在NaCN中毒后,Cyt C的活性显著低于平原实验组(P<0.01);中毒2h后也有一定程度恢复,但与平原实验组比较恢复更慢(P<0.01)。
     5.平原和高原实验组大鼠NaCN中毒后均出现明显的心肌酶谱(AST、LDH、CK、CK-MB)变化,高原实验组大鼠的心肌酶谱改变比平原实验组大鼠更显著(P<0.01),并且恢复缓慢。其中,LDH变化最为显著。
     6.平原实验组大鼠中毒后心肌组织损伤逐渐加重,至2h后最为严重,间质有腔隙形成,出现纤维退变,横纹不清,弥漫性充血、水肿变性,少数心肌有断裂,横纹消失;中毒6h时有明显的恢复。
     7.高原实验组大鼠心肌组织中毒前即见充血、水肿变性、局灶性炎症细胞等变化。NaCN中毒后心肌损伤加重,出现严重水肿变性,弥漫性细胞肿胀,胞质模糊,并有水肿囊出现,细胞变性,间质血管充血。中毒6h时,高原实验组大鼠心肌组织损伤并无明显的恢复。
     8.平原实验组大鼠中毒2h后出现线粒体轻微水肿,灶性溶解,内质网扩张,线粒体部分嵴和膜融合或消失等现象。
     9.高原对照组大鼠超微结构也出现轻微损伤,心肌间质有轻微水肿,线粒体略有肿胀;高原NaCN中毒组大鼠线粒体则肿胀明显,有小量的嵴和膜融合或消失,心肌间质水肿,肌节排列稍紊乱,核旁水肿处线粒体大部分嵴和膜融合或消失,粗面内质网有脱颗粒现象;损伤程度明显重于平原实验组大鼠。
     10. HPC和SPG、Tau灌胃干预后,对NaCN中毒和高原缺氧复合NaCN中毒引起的大鼠血流动力学改变有明显的干预作用,HR、mLVSP、+dP/dtmax、T波振幅等指标均较未干预组变化程度小,恢复效果更明显,且有统计学意义。
     11. HPC干预后的大鼠NaCN中毒后Cyt C活性也出现显著降低(P<0.01),至2h时有所恢复,效果好于高原缺氧复合NaCN中毒大鼠(P<0.05)。
     二、NaCN对SD乳鼠原代心肌细胞的凋亡作用
     1.建立了NaCN染毒SD乳鼠心肌细胞模型;
     2.测定出SD乳鼠心肌细胞NaCN染毒的IC50值:正常条件下IC50值为87.85μmol·L-1。
     3.以IC50剂量的NaCN染毒后,SD乳鼠心肌细胞出现凋亡。凋亡细胞的细胞核由于染色质浓集而呈现亮蓝色,呈分叶、碎片状等。
     三、caspase依赖/非依赖性途径在大鼠心脏损伤中的作用研究
     1.大鼠缺氧复合/或NaCN中毒30min后,心肌组织胞浆Cyt C、caspase-3蛋白表达和mRNA表达均上调;
     2.大鼠缺氧复合/或NaCN中毒30min后,心肌组织胞浆AIF蛋白表达上调,而AIF mRNA表达对NaCN染毒诱导却并不敏感;
     3. Tau、SPG干预对抑制大鼠缺氧复合/或NaCN中毒30min后心肌组织胞浆Cyt C、caspase-3和AIF蛋白表达以及Cyt C、caspase-3 mRNA表达上调有明显作用,对AIF mRNA表达无明显作用。
     结论:
     1.缺氧复合NaCN中毒大鼠血流动力学HR、mLVSP、+dP/dtmax等指标均显著下降,T波振幅显著增高。相对于单纯的缺氧和单纯的NaCN中毒,两种因素同时作用所引起的心脏功能损伤,特别是心脏的收缩能力的损伤更加明显;
     2.缺氧复合NaCN中毒大鼠的血液生化指标,如心肌酶谱(AST、LDH、CK、CK-MB)的变化也更为明显,Cyt C活性下降也更为显著。表明两种因素作用下大鼠的心脏生化代谢变化很大,加重心脏功能的紊乱;
     3.病理检测结果表明,缺氧复合NaCN中毒后大鼠心肌组织的结构损伤更为严重,超微结构的病理改变更加明显,特别是NaCN中毒的靶细胞器-线粒体的损伤,这可能是引起心肌细胞凋亡的最主要原因;
     4. HPC、SPG和Tau等干预措施,对缺氧复合NaCN中毒大鼠心脏功能的恢复和维持Cyt C的活性均有一定的效果。可考虑将HPC、SPG和Tau等列入缺氧复合NaCN中毒防护措施的筛选;
     5.通过建立的体外SD乳鼠心肌细胞NaCN染毒模型,发现经IC50剂量NaCN染毒SD乳鼠原代心肌细胞凋亡。提示细胞凋亡可能在缺氧复合NaCN中毒心脏损伤中发挥作用;
     6.大鼠缺氧复合/或NaCN中毒30min后心肌组织胞浆Cyt C、caspase-3蛋白表达和mRNA表达上调,线粒体caspase依赖途径导致的心肌细胞凋亡十分明显,寻找阻止线粒体caspase依赖途径心肌细胞凋亡的措施可能会对缺氧复合NaCN中毒的预防和治疗带来一定的效果;
     7. Tau、SPG干预,对抑制大鼠缺氧和/或NaCN中毒心肌组织胞浆Cyt C、caspase-3和AIF蛋白表达以及Cyt C、caspase-3 mRNA表达上调有明显作用,提示Tau、SPG可作为预防线粒体途径引起心肌细胞凋亡的筛选措施;
     8.大鼠NaCN中毒30min后,心肌组织胞浆AIF蛋白表达虽然出现上调,但AIF mRNA表达变化却并不明显;AIF mRNA表达对缺氧的敏感程度强于对NaCN中毒,提示NaCN中毒后线粒体非caspase依赖途径引起心肌细胞凋亡的机制并不同于caspase依赖途径,缺氧、NaCN中毒引起心肌细胞凋亡可能存在不同的机制,值得深入研究。
Exemplified by the HCN, Cyanogen agents (blood agents) are highly toxic. Teir intocication effects are potent, quick and hard to defend. As a result, it has captured the attention of foreign military forces. Attachment three of the UN’s ban on chemical weapons, cyanogens chloride and hydrogen cyanide ranked 2 and 3 on the list. Both of which are cynogen agents. They are referred to as“the king of speed kills”. They are considered as the top chemical weapons of U.S. and Russia. After intoxication with the agent, the subject experiences hypoxia and difficulty breathing.
     The toxicant acts quickly and disseminates through the body with incredible speed. It could kill the subject within 10 minutes. After the cynogen agents enters the body, the CN ion stops cells from performing respiratory functions and oxidative phosphorylation. It inhibits oxidases the end of the Mitochondrial respiratory chain. This causes the tissues to die due to lack of toxic lack of oxygen. Also known as damage to“internal respiratory”. Medical definition for plateau is 3 000m above sea level. Hypoxia is a characteristic of plateaus. Some people demonstrate clear symptoms of hypoxia. Any level higher than this could have substantial effects on Physiology, biochemistry and anatomy. Our country is full of plateaus. Just the Tibetan plateau alone covers 250 square kilometers of land. The plateau borders many other countries. The military values of these plateaus are of great importance. When NaCN is mixed in with the harsh environment of the plateaus, hypoxia kicks in from both external and internal. When this occurs, the rate at which a subject dies doubles. To understand and analyze the use and nature of NaCN intoxication is of great importance for national defense of our country.
     The heart functions under the condition of ample blood supply and oxygen. Therefore, any lack of blood supply or the level of oxygen in the blood will cause the heart to function abnormally. Sudden decrease in oxygen level could lead to fluctuation in blood pressure and heart rate. Many studies have shown that when hypoxia is induced in lab rat, the left ventricle pressure and maximum pressure decreases dramatically. Myocardial hypoxia is not only a serious post-traumatic heart failure, but also other start-induced organ damage and the formation of multiple organ dysfunction and failure of the move before an important factor. Studies have found that oxygen under the conditions of soman toxicity increased.
     Heart is a very sensitive organ to hypoxia; studies have shown that simple and pure hypoxia induced by NaCN poisoning can result in significant cardiomyocyte apoptosis, hypoxia leading to the main form of cell death through induction of apoptosis arising. In the use of isolated rat cardiac cells to give H / R in the way of experimental studies have found that the myocardial cells in continued lack of oxygen condition for a longer period of time have achieved reoxygenation. The animal myocardial cells in vivo ischemia / reperfusion injury is in the same situation. In hypoxia and reoxygenation, there is injury in the group. PI staining by flow of cytometry analysis of DNA histogram showed that it’s lower than the number of cells in G1 phase of the increase and it was significantly higher than other groups. There are more cell apoptosis. Transmission of electron microscopy can see hypoxia / reoxygenation group of serious cardiac cell injury is a clear pre-apoptosis. Apoptosis in the late stages changes at the same time the number of cardiomyocyte apoptosis is also a noticeable increase in support for the resumption of oxygen (again Reperfusion). Injury in myocardial apoptosis is an important predisposing factor. The H / R can increase the myocardial cell damage, accompanied by an increase in myocardial apoptosis; intracellular calcium may be triggered by excessive apoptosis of myocardial factors; SOD (superoxide dismutase, SOD) can be reduced. The generation of free radicals and reduced the incidence of myocardial apoptosis and hypoxic preconditioning with anti-myocardial cells to reduce myocardial injury and apoptosis. It’s likely to have lower intracellular calcium ion concentration. Fliss, and so on in the body in an animal subject study also found that the apoptosis of myocardial reperfusion injury is one of the characteristics. Reperfusion injury can accelerate irreversible apoptosis. Musat-Marcu and so on at the heart of rat in vitro perfusion can be found in its early occurrence of myocardial apoptosis, and inhibit apoptosis in the post along with the restoration of heart functions. This suggests that cardiomyocyte apoptosis isinvolved in the attenuation of cardiac function.
     Cytochrome C (Cyt C) and apoptosis-inducing factor are located in normal mitochondria mitochondrial membrane and space. Ischemia / reperfusion time, PT and the opening hole damage, Cyt C and AIF were released into the cytoplasm. Cyt C with the cytoplasm of apoptosis-activating factor-1(apoptosis-activating factor-1, Apaf-1), followed by activation of acid cysteine protease family of Caspase-9, Caspase-3 and start the apoptosis pathway, activation of Caspase-3 can be in the cytoplasm of the role of the cytoskeleton protein, or acting on the nuclear DNA, lead to apoptosis. The AIF was released by PT hole into the cytoplasm, the translocation into the nucleus, activated endogenous endonuclease chromosome will be cut for several times the entire 180-200bp fragment of DNA, at the same time to speed up the release of cytochrome C and further promote cell Apoptosis. Cyt C, AIF can be seen as apoptosis of the two channels in cardiac cells. They play an important role in apoptosis.
     Hypoxic preconditioning, and can be defined as "a short period of time in advance to repeat non-fatal ischemic / hypoxic, the body of the cell was followed by a long-fatal ischemic / hypoxic injury A high degree of tolerance.”Hypoxic preconditioning on myocardial cells can generate Preconditioning. Hypoxic preconditioning so far is considered to be one of the most powerful endogenous myocardial protective measures. Ginsenosides can act as antioxidants to free radical damages to the heart, to maintain the integrity of myocardial cell membrane and improve acute myocardial ischemia diastolic function. But also against myocardial ischemia-induced myocardial necrosis is irreversible, so that the increased activity of SOD can release myocardial PCK Reduction. Ginsenosides have significant protective effects on ischemia-reperfusion injury in cell necrosis and apoptosis.
     In addition, taurine removes oxygen free radicals and protects the cell membrane, so that the enzyme reduces the release of liver enzymes, which are very anti-oxidized. It also can regulate the intracellular calcium homeostasis, reduces limb ischemia reperfusion. During calcium influx, neutrophil respiratory burst a large amount of H2O2 and CL, having a combination of difficulty to get rid of the strong oxidizer - hypochlorous acid and Taurine With hypochlorous acid, to form a stable low-oxidants-taurine chloramine, and thus clear the hypochlorite on the role of cell damage. Therefore taurine corrects limb ischemia-reperfusion injury in distant organs. Application of taurine in the long course of treatment to lower blood pressure and reversal of cardiac hypertrophy are highly possible. High blood pressure also reduces myocardial apoptosis, and can reduce myocardial AngⅡcontent and ACE activity. As a result, we believe that the long course of taurine treatment of high blood pressure can inhibit myocardial apoptosis and reverse cardiac hypertrophy. The role of antagonist drugs may be related to local organizations related to the generation of AngⅡ. Taurine inhibition of myocardial apoptosis also may be related to apoptosis-related gene regulation Fas, Bax and Bcl-2 protein expressions. Taurine can protect myocardial cells and avoid the occurrence of cardiac malformation, at the same time have lower blood pressure.
     The normal supply of blood and oxygen to heart bring into full play. Accordingly, some adverse factor that result lower oxygen content of blood and insufficiency of blood for the cardiac muscle will lead to abnormal cardiac function.
     Hypoxic environment of cyanide poisoning changes how the heart functions? How the mechanism of the heart resulting in injury? What are the characteristics of myocardial apoptosis? How to search for possible interventions? Research on these issues has not been reported so far. To be the subject of the preliminary research on the basis of the establishment of hypoxia and cyanide poisoning of animal models and cell models to study hypoxia on the compound sodium cyanide poisoning Cyt C, AIF apoptosis two way interference with the role of hypoxia to find Cyanide poisoning and two different factors at the same time under myocardial apoptosis. The key to explore the hypoxic preconditioning, as well as ginsenosides is taurine and anti-hypoxia medicines interference with the effects of hypoxia environment for the prevention and treatment of cyanide poisoning research Theory. Based on this subject in both cases, the use of laboratory animals in general studies and cell culture in vitro study of the combination will implement both methods. By observing the simulation of composite NaCN high altitude hypoxia in rat poisoning on heart structure and function as well as myocardial hypoxia and NaCN poisoning After Cyt C, caspase-3 and AIF expression of quantitative analysis, as well as Cyt C and AIF caused by apoptosis analytical effect, to explore simulated hypoxic conditions of NaCN poisoning after cardiac function changes in the characteristics of myocardial apoptosis. The future of hypoxic NaCN poisoning prevention measures the medical treatment studies and it provides important theoretical basis. For the ultimate development of composites hypoxia NaCN poisoning prevention and treatment programs, it will implement the following methods.
     Method:
     1. Testing whether interventions of hypoxia and NaCN intoxication after rat cardiac structures will function. Utilizing methods include hemodynamics, ECG, myocardial enzymes, myocardial biopsy light microscope, such as electron microscopy observation;
     2. the establishment of in vitro NaCN poisoning induced by hypoxia and myocardial cell damage model to detect hypoxia and NaCN poisoning under the conditions of myocardial apoptosis and its interventions on the impact of cardiac apoptosis;
     3. any intervention under the circumstances NaCN complex cardiomyocytes hypoxia poisoning after caspase-3, Cyt C and AIF expression detection, analysis Cyt C and AIF caused by the two channels the characteristics of apoptosis;
     Results:
     Part one: Change of hypoxia and NaCN intoxication on structure and fuction in rat.
     1. Hemodynamics of rat in the plain experimental group takes place change after NaCN intoxication. These markers, such as HR, mLVSP, +dP/dtmax show up significance descent(P<0.01) and the amplitude of T wave show up significance elevation(P<0.01) after NaCN intoxication than no NaCN intoxication. Then, they get a recover to normal value after 30 minute.
     2. Hemodynamics of rat in plateau experimental group take place more evident change after NaCN intoxication than the plain experimental group. These markers, such as HR, mLVSP, +dP/dtmax show up significance descent(P<0.01) and the amplitude of T wave show up significance elevation(P<0.01) after NaCN intoxication than no NaCN intoxication. Then, they get a recover to normal value after 40 minute. Nevertheless, the recover degree and effect is bad.
     3. Change of the cardiac muscle enzymogram in the plateau experimental group is more obviously than in plain experimental group, and it shows up significant difference (P<0.01). This change difficultly put back. Variation of LDH value is the most significant, and it is with one accord that anaerobic respiration corresponding reinforce in the hypoxia environment.
     4. The activity of Cyt C show up significant decrease after NaCN intoxication in plain experimental group. Behind tow hours, the activity occur evident recovery.
     5. Compare to in plain experimental group, the activity of Cyt C in plateau experimental group show up significance decrease after NaCN intoxication. Behind tow hours, the activity occur recovery to normal value, but this recovery is the more slowing.
     6. Cardiac muscle tissue damage of rat gradually aggravate in plain experimental group after NaCN intoxication. It is the most severity after two hour. There is lacune formation in interstitial substance, and showing up fibrilla cataplasia, transverse striation no clear, diffuse hyperemia, hydropic degeneration, and so on. There is apparent recovery after six hour.
     7. Cardiac muscle tissue of normal rat occur some symptom in plateau experimental group, including hyperemia, hydropic degeneration, colour shallowness, focal inflammation cell, etc. Myocardial damage rapidly aggravate after NaCN intoxication. There are severely hydropic degeneration, diffuse cellular swelling, cytoplasm ambiguity, hydrops capsule, cell degeneration and interstitial substance vasocongestion. These symptoms don’t emerge recovery after six hour.
     8. Mitochondrion of rat occur light hydrops and swelling and distension, deliquescence, cristae and membrane fusion or delitescence in plain experimental group after NaCN intoxication two hour.
     9. Mitochondrion of rat occur light hydrops and swelling and distension in plateau experimental group. It shows up obviously Swelling, cristae and membrane fusion or delitescence, etc. after NaCN intoxication. Degree of injury is the more severity.
     10. HPC, SPG and Tau bring out comparative effect to Hemodynamics of rat after hypoxia and NaCN intoxication. These indexes, such as HR, mLVSP, +dP/dtmax and amplitude of T wave show up less change degree. Rat gets obviously recovery.
     11. Activity of Cyt C of HPC rat shows up significance depress after NaCN intoxication, and gets recovery after two hour. The recovery effectiveness is better in HPC rat group than in plateau rat group, and worse in HPC rat group than in plain rat group.
     Part two: Apoptosis detection of origin generation cardiac muscle cell of SD neonate rat
     1. Model constructing of cardiac muscle cell of SD neonate rat used NaCN narcotics.
     2. Assay of IC50 value of origin generation cardiac muscle cell of SD neonate rat. IC50 value is 87.85mmol/L.
     3. Origin generation cardiac muscle cell of SD neonate rat show up apoptosis by IC50 dosage NaCN used narcotics, and Cell Nucleus appear sapphirine owing to chromatin enrich, and so on.
     Part three: Expression detection of Cyt C, caspase-3, AIF in cardiac muscle cell of SPG and Tau intervention rat after NaCN intoxication
     1. There are Expression up-regulation of Cyt C, caspase-3 and their mRNA of hypoxia and NaCN intoxication rat after 30 minute in cardiac muscle tissue endochylema.
     2. There is Expression up-regulation of AIF of hypoxia and NaCN intoxication rat after 30 minute in cardiac muscle tissue endochylema. But, Expression of AIF mRNA show up insensitivity to NaCN used narcotics.
     3. HPC, SPG and Tau interventions bring out comparative effect to Expression depress of Cyt C, caspase-3 and their mRNA, AIF after hypoxia and NaCN intoxication.
     Conclusion:
     1. Hemodynamics markers, such as HR, mLVSP, +dP/dtmax of rat in plateau experimental group show up significance descent after NaCN intoxication, and amplitude of T wave show up significance heightening. These direct that cardiac contractile function of rat occur the more severity injury.
     2. Biochemical indicator, such as cardiac muscle enzymogram and Cyt C activity of rat in plateau experimental group shows up significance change after NaCN intoxication. These direct that heart biochemistry metabolism of rat occur large change, and it results to cardiac function disorder.
     3. Ultrastructural pathology variation and injury of cardiac muscle tissue of rat in plateau experimental group get all the more severity after NaCN intoxication. Mitochondrial injury especially is possible to cause cardiac muscle cell apoptosis.
     4. These intervention study including HPC, SPG and Tau are effect for recover of cardiac function and Cyt C activity. They act as bolting measures for prevention and treatment of hypoxia and NaCN intoxication.
     5. Origin generation cardiac muscle cell of SD neonate rat show up apoptosis by IC50 dosage NaCN used narcotics. Otherwise, cardiac muscle cell apoptosis has induced by purely hypoxia. These hint cardiac muscle cell apoptosis all the more severity under hypoxia and NaCN intoxication koinonia, and it may be important reason of heart injury.
     6. There are Expression up-regulation of Cyt C, caspase-3 and their mRNA of hypoxia and NaCN intoxication rat after 30 minute in cardiac muscle tissue endochylema. Action of mitochondria caspase dependency way is obviously to cardiac muscle cell apoptosis, and it may bring out good effect for prevention and treatment of hypoxia and NaCN intoxication.
     7. SPG and Tau interventions bring out comparative effect to Expression depress of Cyt C, caspase-3 and their mRNA, AIF after hypoxia and NaCN intoxication. It hint SPG and Tau maybe act as bolting measures for prevention and treatment of hypoxia and NaCN intoxication.
     8. There is expression up-regulation of AIF of anoxia and NaCN intoxication rat after 30 minute in cardiac muscle tissue endochylema. But, it is not obviously to expression change of AIF mRNA. These results direct that sensitive degree of AIF mRNA expression is better in hypoxia rat than in NaCN intoxication rat, and cardiac muscle cell apoptosis mechanism of mitochondria caspase dependency way is different with mitochondria non-caspase dependency way after NaCN intoxication, and cardiac muscle cell apoptosis mechanism of hypoxia is different with NaCN intoxication. These results are worth for lucubrate.
引文
1.石敏,马小庆,李琳娜等.高原护理的特点及研究进展[J].中华护理杂志, 1999, (12): 764.
    2. Kang P M, Haunstetter A, Aoki H, et al. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxy-genation[J]. Circ Res, 2 000, 87(2): 118.
    3.董兆君,吴强,赵吉清等.化学中毒与急性缺氧的双因素联合效应的实验研究[J].第三军医大学学报, 2003, 25(12): 1029.
    4. Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspase activation during apoptosis[J]. Annu Rev Cell Dev Biol, 1999, 15: 269.
    5.姚震,冯建章,符史干等.缺氧-复氧对培养的大鼠心肌细胞损伤与细胞凋亡的影响[J].海南医学院学报, 2005, 11(6): 483.
    6.姚震,陈颜芳,冯建章等.实验性家兔缺血预适应减轻心肌细胞凋亡[J].中国动脉硬化杂志, 1999, 7(1): 20.
    7. Fliss H, Gattinger D.Apoptosis in ischemic and reper fused rat Myocardium [J]. Circ Res, 1996, 79: 949.
    8. Musat-Marcu S, Gunter HE, Jugdutt BI, et al. Inhibition of apoptosis after ischemia- reperfusion in rat myocardium by Cyclohesimide[J]. J Mol Cell Cardiol, 1999, 31: 1073.
    9. Abdallah Y, Gkatzoflia A, PHPer HM, et al. Mechanism of cGMPO mediated protection in a celluLar model of myocardial reperfusion injury [J]. Cardioovasc Res, 2005, 66(1): 123.
    10. Storey KB, Storey JM. Biological adaptation to extreme environments in Walz Wed. Integrative Physiology in the Proteomics and Postgeomics Age [J]. Human Press, Totowa, New Jersey, 2005, 169.
    11.吕文伟,刘洁,赵丽娟,等.人参皂苷Rg2对麻醉犬急性心源性休克血流动力学和氧代谢的影响[J].吉林大学学报, 2004, 30(4): 534.
    12.徐德生,刘力,吴志荣等.参附青注射液对休克犬血压、心脏血液动力学的影响[J].中国实验方剂学杂志, 1998, 4(4): 41.
    13.孙晓霞,王晓明.在离体工作心脏上对比观察人参二醇组与三醇组皂甙的钙通道阻滞作用[J].白求恩医科大学学报, 1992, 18(5): 409.
    14.孙晓霞,夏映红,钟国赣.人参皂苷单体Rb1对大鼠在体心脏收缩性能的影响[J].长春中医学院学报, 2003, 19(1): 43.
    15.王天成.人参皂苷抗心律失常作用研究进展[J].中国起搏与心电生理杂志, 2004, 18(4): 309.
    16.侯明晓,敖定椿.人参皂苷抗心肌缺血-再灌注损伤的作用机制[J].中国胸心血管外科临床杂志, 2 000, 7(4): 256.
    17. Scott G I, Colligan P B, Ren B H, et al.Ginsenosides Rb1 and Redecrease cardiac contraction in adult ratventricularmyocytes: role of nitricoxide [J]. Br J P harmacol, 2001, 134(6): 1159.
    18.李红梅,崔乃杰,崔德健.牛磺酸预防机体缺血再灌注致远隔多器官的损伤[J].中国临床康复, 2006, 10(11): 104.
    19. Hamet P, Richard L, Dam TV, et al. Apoptosis intarget organs of hypertension [J]. Hypertension, 1995, 26: 642.
    20.郑敏,尹时华,吴基良等.牛磺酸对肾性高血压大鼠肥厚心肌原癌基因c-fos表达的影响[J].中国药学杂志, 2005, 40(20): 1592.
    21.刘红刚,王扬宗.高原急性缺氧对大鼠心肌结构的影响[J].首都医科大学学报, 2000, 21(1): 37.
    22.韩丽萍,姜春明,李鸿珠等.精胺减轻大鼠在体心肌缺血/再灌注损伤的作用及机制初探[J].中国病理生理杂志, 2007, 23(5): 839.
    23. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction [J]. Circulation, 1997, 95: 320.
    24.刘颖,陈晨,吴伟康,陈伟强等.细胞凋亡的线粒体信号通路在大鼠缺血延迟预适应抗心肌细胞凋亡机制中的作用[J].中国康复医学杂志, 2006, 21(5): 401.
    25. Mosser DD, Moriomoto RI. Molecular chaperones and the stress of oncogenesis [J]. Oncogene, 2004, 23(16): 2907.
    26.郞海滨. Bcl-2家族蛋白与线粒体凋亡路径研究进展[J].国外医学卫生学分册, 2004, 30(2): 88.
    27. Suleiman MS, Halestrap AP, Griffiths EJ. Mitochondria: a targetfor myocardial protection [J]. Pharmacol Ther, 2001, 89(1): 29.
    28. Regula KM, Ens K, Kirshenbaum LA. Mitochondria-assisted cell suicide: a license tokill [J]. J Mol Cell Cardio, 2003, 35(6): 559.
    29. Lorenzo HK, Susin SA, Penninger J, et al. Apoptosis inducing factor (AIF): a phylogenetically old Caspase-independent effector of cell death [J].Cell Death Differ, 1999, 6: 516.
    30. Boatright KM, Salvesen G S. Caspase activation [J]. Biochem Soc Symp, 2003, 70(3): 233.
    31. Laugwitz K L, Moretti A, Weig H J, et al. Blocking caspase-activated apoptosis improves contractility in failing myocardium [J]. Hum Gene Ther, 2001, 12(17): 2051.
    32.周舟,王小华,朱光旭等. Caspase-3、9表达上调参与缺氧诱导心肌细胞凋亡[J].第三军医大学学报, 2005, 27(3): 185.
    33. Saleh A, Srinivasula SM, Balkir L, et al. Negative regulation of the Apaf-1 apoptosome by HSP70 [J]. Nat Cell Biol, 2000, 2(8): 476.
    34. Ravagnan L,Gurbuxani S,Susin SA, et al. Heat shock protein 70 antagonizes apoptosis inducing-factor [J]. Nat Cell Biol, 2001, 3(9): 839.
    35. Shen AC, Jennings RB. Kinetics of calcium accumulation in acute myocardial ischemic injury [J]. Am J Pathol, 1972, 67: 441.
    36. Meldrum DR, Mechanism of cardiac p reconditioning: ten years after the discovery of ischemic preconditioning[J]. J Surg Res, 1997, 73: 1.
    37. Murry CE, R ichard VJ, Reimer KA, et al. Ischemic p reconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode [J]. Circ Res, 1990, 66(4): 913.
    38.高峰, YanWL, Geng YJ等.缺氧后处理对大鼠缺氧-复氧心室肌细胞的保护作用[J].心功能杂志, 1999, 11(4): 241.
    39. Kharbanda RK, Mortensen UM, White PA, et al. Transient limb ischemia induces remote ischemic preconditioning in vivo [J]. Circulation, 2002, 106: 2881.
    40. Toumpoulis IK. Immediate ischemic p reconditioning for spinal cord protection following descending thoracic aortic cross-clamping [J]. Eur J Cardiothorac Surg, 2006, 29: 126.
    41.李金芳,周荫庄,屠淑洁.牛磺酸对细胞的保护功能[J].首都师范大学学报, 2006, 27(1): 63.
    42. Milei J, Ferreira R, L lesuy S, et al. Reduction of reperfusion injury with preoperativerapid intravenous infusion of taurine during myocardial revascularization [J]. Am Heart J, 1992, 123 (2): 339.
    43.叶赤,王吉先,唐朝枢等.家兔主动脉平滑肌细胞牛磺酸转运和缺氧-复氧损伤对其的影响[J].北京医科大学学报, 1996, 28 (6): 422.
    44. Gurujeyalakshmi G, HollingerM A, Giri SN, et al. Regulation of transforming growth factor-beta1 mRNA expression by tauine and niacin in the bleomycin hamster modle of lung fibrosis [J]. Am J Repair CellMolBiol, 1998, 18(8): 334.
    45. Ohta H, Azuma J, Awata N, et al. Mechanism of the protective action of taurine against isoprenadine induced myocarditial damage [J]. Cardiovas Res, 1998, 22(6): 407.
    46. Maffei-Facino R, CariniM, Aldini G, et al 1 Panax ginseng administration in the rat prevents myocardial ischemia reperfusion damage induced by hyperbaric oxygen: evidence for an antioxidant intervention [J]. PlantaMed, 1999, 65: 614.
    47.李永杰,于振香,徐茂凤等.人参二醇组皂甙对实验犬心肌缺血再灌注损伤保护作用的研究[J].中国老年学杂志, 1998, 18: 369.
    48. Chen Q, Hoppel C L, Lesnefsky E J. Blockade of electron transport before cardiac ischemia with the reversible inhibitor amobarbital protects rat heart mitochondria [J]. J Pharmacol Exp Ther, 2006, 316(1): 200.
    49. Megarbane B, Delahaye A, Goldgran-Toledano D, et al. Antidotal treatment of cyanide poisoning [J]. J Chin Med Assoc, 2003, 66 (4):193
    50. Cummings TF. The treatment of cyanide poisoning [J]. Occup Med (Lond), 2004, 54 (2): 82.
    51.陆敏松,李伟文,王正国.缺血缺氧与线粒体DNA损伤[J].创伤外科杂志, 2001, 3 (4): 295.
    52.洪平,冯连世,赵晶等.模拟不同海拔高度训练对大鼠红细胞变形的影响[J].中国应用生理学杂志,1998, 14(4):296
    53.蔡春明,柳君泽.大鼠缺氧过程中脑线粒体超微结构变化及形态计量学研究[J].高原医学杂志, 2000, 10(2): 12.
    54. Neubauer JA, Sunderram J. Oxygen - sensing neurons in the central nervous system[J]. J Appl Physiol, 2004, 96(1): 367.
    55.周舟,王小华,朱光旭等.缺氧诱导心肌细胞凋亡与Caspase-3激活及细胞内钙超载的关系[J].中国应用生理学杂志, 2005, 21: 10.
    56.寸凌云,许发茂.氰化物中枢毒作用与钙稳态失调[J].国外医学卫生学分册, 1998, 25(3): 141.
    57.祝卫国,陈学敏.氧化应激、兴奋性毒性与神经毒性[J].国外医学卫生学分册, 1999, 26(5): 2963.
    58. Ardelt BK, Borowitz JL, Maduh EU et al. Cyanide-induced lipid peroxidation in different organs, subcellular distributions and hydroperoide generation in neuronal cells [J]. Toxicology, 1994, 89(2): 127.
    59.于爱平,马景德.活性氧与细胞凋亡[J].前卫医药杂志,1999, 15(4): 254.
    60.闫玲,苗琦.细胞器与细胞凋亡[J].生物物理学报, 2002, 18(3): 271.
    61. Green DR, Reed JC. Mitochondria and apoptosis [J]. Science, 1998, 281(381): 1309.
    62.金莉,王国中,李和泉.心肌细胞凋亡的研究进展[J].齐齐哈尔医学院学报, 2003, 24(10): 1133.
    63. Joza N, Susin SA, Daugas E, et al. Essential role of the mitochondrial apoptosis- inducing factor in programmed cell death [J]. Na-ture, 2001, 410: 549.
    64. Zou H, Li YC, Liu X, et al. An APAF-1-Cytochrome c multimeric complex is a funtional apoptosome that activates procaspase-9 [J]. J Biol Chem, 1999, 274(11): 549.
    65. Yu SW, Wang H, PoitrasMF, et al. Mediation of poly (ADP-ribose) polymerase-1- dependent cell death by apoptosis-inducing factor [J]. Science, 2002, 297(579): 259.
    66. Alberto C, MichaelAM. PARP-1 -a perpetrator of apoptotic cell death? [J]. Science, 2002, 297(5579): 200.
    67. OTERA H, OHSAKAYA S, NAGAURA Z, et al. Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space [J]. EMBO J, 2005, 24(7): 1375.
    68. CHEUNG E C, JOZA N, STEENAARTN A. Dissociating the dual roles of apoptosis- inducing factor in maintaining mitochondrial structure and apoptosis [J] 1 EMBO J, 2006, 25(17): 4061.
    69. Susin SA, Lorenzo HZ, Zamzami N, et al. Mitochondrial release of Caspase-2 and Caspase-9 during the apoptotic process. J ExpMed, 1999, 189(2): 381.
    1.石敏,马小庆,李琳娜等.高原护理的特点及研究进展[J].中华护理杂志, 1999, 34 (12): 764.
    2.赵善民,何显教,晋玲等.急性低氧对家兔血压心率对微血管反应性及自由基的影响[J].中国应用心理学杂志, 2003, 19(4): 341.
    3.赵善民,何显教,黄丽娟等.不同程度急性低氧对家兔心电图变化的比较分析[J].右江民族医学院报, 2002, 24(2): 1764.
    4.王剑辉,藏云宁,田广庆等.急性低氧对飞行人员心血管功能影响的研究[J].空军总医学报, 1993, 9(增刊): 9.
    5.孙希武,叶益新,邓希贤等.低氧适应对缺氧性心功能损伤的保护作用及其机制探讨[J].中国应用心理学杂志, 1994, 10(3): 203.
    6.任炯.预缺氧的保护作用[J].中华临床医药, 2003, 4(3): 47.
    7.郑志平,杨壮,赖璐璐等.缺氧预处理后急性低氧对大鼠血压及心率的影响[J].右江民族医学院学报, 2005, 6: 783.
    8.龙超良,周智,尹照云.急、慢性缺氧对大鼠心功能的影响[J].航天医学与医学工程, 1999, 12(4): 266.
    9. Hu A Q, Ke Y S, Zhang G B. Anti-digoxin antiserum antagonized cerebral ischemic-reperfusion injury induced by endoxin [J]. Chin Pharm acol Bull, 2003, 19(10): 1135.
    10. WangD G, Wang H G, Ke Y S, et al. Protective effects of endoxin antagonist on myocardial ischemia reperfusion injury in rat [J]. Chin Pharm acol Bull, 2004, 20(8): 927.
    11. Okonski P, Szram S, Banach M, et al. The influence of L-arginine on secretion of nitric oxide and haemodynamic function of isolated rat’s heart subjected to cold cardioplegic ischemia and reperfusion [J]. PrzeglLek, 2004, 61 (7): 789.
    12. Ke Y S, Liu Z F, Wang D G,et al. Effects of antidigoxin antiserum on endoxin levels, apop tosis and the expression of Bax and Bcl-2 protein in ischaemia-reperfusion myocardium [J]. Clin Exp Pharm acol Physiol, 2004, 31: 691.
    13.韩丽萍,姜春明,李鸿珠等.精胺减轻大鼠在体心肌缺血/再灌注损伤的作用及机制初探[J].中国病理生理杂志, 2007, 23(5): 839.
    14.刘红刚,王扬宗.高原急性缺氧对大鼠心肌结构的影响[J].首都医科大学学报, 2000, 21(1): 37.
    15. Lin J, Bombeck CA, Yang S, et al. Nitric oxide supp resses apoptosis via interrup ting caspase activation and mitochondrial dysfunction in cultured hepatocytes [J]. J Biol Chem, 1999, 274 (24): 17325.
    16.刘辉,刘勇,贾庆军等.急性高原缺氧对大鼠心脏信号传导系统的影响[J].临床军医杂志, 2003, 31(5): 8.
    17.宋玲,孙秉庸,张国斌.模拟高原缺氧不同时间对大鼠心肌线粒体功能的影响[J].高原医学杂志, 1999, 9(3): 9.
    18. MALHOTRA J D, CHEN C L, R IVOLTA I, et al. Characterization of sodium channelα-andβ-subunits in rat and mouse cardiac myocytes[J]. Circulation, 2001, 103(9): 1303.
    19. SCHOTT J J, ALSH INAW IC, KYNDT F, et al. Cardiac conduction defects associate with mutations in SCN5A[J]. Nat Genet, 2003, 23(1): 20.
    20. MIURA M, YAMAGISH I H, MOR IKAWA Y, et al. Congenital longQT syndrome and 2:1 atrioventricular block with amutation of the SCN5A gene [J]. Pediatr Cardiol, 2003, 24(1): 70.
    21.龙超良,尹昭云,汪海.慢性间断低氧暴露对大鼠心肌线粒体ATP酶及呼吸链酶复合物的影响[J].中国应用生理学杂志, 2004, 20(3): 219.
    22. Rustin P,Chretien D,Bourgeron T,et a1.Bio-chemical and molecular investigations in respiratory chain deficiencies[J].Clin Chim Acta, 1994, 228: 35.
    23. Sheridan FM, Dauber IM, McMurtry IF, et al. Role of leukocytes in coronary vascular endothelial injury due to ischemia and reperfusion [J]. Circ Res 1991, 69(6): 1566.
    24. Ma XL, Johnson G 3rd, Lefer AM. Low doses of superoxide dismutase and a stable prostacyclin analogue protect in myocardial ischemia and reperusion [J]. J Am Coll Cardiol 1992, 19(1): 197.
    25. Horwitz LD, Kaufman D, Kong Y. An antibody to leukocyte integrins attenuates coronary vascular injury due to ischemia and reperfusion in dogs [J]. Am J Physiol 1997, 272(2): 618.
    26. Kubes P, Payne D, Ostrovsky L. Preconditioning and adenosine in I/R-induced leukocyte-endothelial cell interactions [J]. Am J physiol 1998, 274(2): 1230.
    27.钱频,关崧,肖贞良.血管内皮黏附分子的功能和TNF-α及IL-1的致炎机制[J].中国临床康复, 2003, 7(14): 2029.
    28.谢志泉,刘伊丽,黄翠瑶等.心脏缺血预适应对中性粒细胞功能与活性氧释放的影响[J].中国临床康复. 2005, 9(43): 38.
    29. Klingenberg M.The ADP/ATP translocation in mitochondria, a membrane potential controlled transport [J]. Membr Biol, 1980, 56(2): 97.
    30.李兵,柳君泽,陈丽芬.缺氧对大鼠心肌线粒体能量代谢和腺苷酸转位酶活性的影响[J].中国病理生理杂志, 2006, 22(3): 460.
    31.张建青,刘俭,赖世忠等.卡托普利和依那普利对培养心肌细胞缺氧再复氧损伤的保护作用[J].第一军医大学学报, 1996, 16(3): 189.
    32.张鑫,刘瀚温,周同甫等.缺氧对乳鼠心肌细胞的损伤作用研究[J].华西医科大学学报, 2002, 33: 144.
    33.陈红勤,陈鹏慧.缺氧对大鼠心肌细胞钙通道的影响[J].高原医学杂志, 2001, 11: 12.
    34. Bers DM, Bassani JW, Bassani RA. Competition and redistribution amony caliumtran sport system in rabbit cardiacmyocyte [J]. Cardiovasc Res, 1993, 27: 772.
    35. Kang P M, Haunstetter A, Aoki H, et al. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxy-genation [J]. Circ Res, 2 000, 87(2): 118.
    36. Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspase activation during apoptosis [J]. Annu Rev Cell Dev Biol, 1999, 15: 269.
    37.姚震,冯建章,符史干等.缺氧-复氧对培养的大鼠心肌细胞损伤与细胞凋亡的影响[J].海南医学院学报, 2005, 11(6): 483.
    38.姚震,陈颜芳,冯建章等.实验性家兔缺血预适应减轻心肌细胞凋亡[J].中国动脉硬化杂志, 1999, 7(1): 20。
    39. Fliss H, Gattinger D.Apoptosis in ischemic and reper fused rat myocardium [J]. Circ Res, 1996, 79: 949.
    40. Musat-Marcu S, Gunter HE, Jugdutt BI, et al. Inhibition of apoptosis after ischemia- reperfusion in rat myocardium by Cyclohesimide [J]. J Mol Cell Cardiol, 1999, 31: 1073.
    41. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardialinfarction [J]. Circulation, 1997, 95: 320.
    42.郞海滨. Bcl-2家族蛋白与线粒体凋亡路径研究进展[J].国外医学卫生学分册, 2004, 30(2): 88.
    43. Suleiman MS, Halestrap AP, Griffiths EJ. Mitochondria: a targetfor myocardial protection [J]. Pharmacol Ther, 2001, 89(1): 29.
    44. Regula KM, Ens K, Kirshenbaum LA. Mitochondria-assisted cell suicide: a license to kill [J]. J Mol Cell Cardio, 2003, 35(6): 559.
    45. Lorenzo HK, Susin SA, Penninger J, et al. Apoptosis inducing factor (AIF): a phylogenetically old Caspase-independent effector of cell death [J]. Cell Death Differ, 1999, 6: 516.
    46. Boatright KM, Salvesen G S. Caspase activation [J]. Biochem Soc Symp, 2003, 70(3): 233.
    47. Laugwitz K L, Moretti A, Weig H J, et al. Blocking caspase-activated apoptosis improves contractility in failing myocardium [J]. Hum Gene Ther, 2001, 12(17): 2051.
    48.周舟,王小华,朱光旭等. Caspase-3、9表达上调参与缺氧诱导心肌细胞凋亡[J].第三军医大学学报, 2005, 27(3): 185.
    49.刘颖,陈晨,吴伟康等.细胞凋亡的线粒体信号通路在大鼠缺血延迟预适应抗心肌细胞凋亡机制中的作用[J].中国康复医学杂志, 2006, 21(5): 401.
    50. Saleh A, Srinivasula SM, Balkir L, et al. Negative regulation of the Apaf-1 apoptosome by HSP70 [J]. Nat Cell Biol, 2000, 2(8): 476.
    51. Ravagnan L, Gurbuxani S, Susin SA, et al. Heat shock protein 70 antagonizes apoptosis inducing-factor [J]. Nat Cell Biol, 2001, 3(9): 839.
    52. Calvani M, Reda E, Arrigoni-Martelli E. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions [J]. Basic Res Cardiol, 2000, 95(2): 75.
    53.谢燕,朱光旭,江海洪等.缺氧复氧对培养仔鼠心肌细胞NRF1和mtTFA表达的影响与L-carnitine保护作用[J].第三军医大学学报, 2003, 23(12): 1399.
    54. Venugopal R, Jaiswal A K. NRF-1 and NRF-2 positively and c-fos and Fral negatively regulate the human antioxidant response element2mediated expression of NAD(P) H: quinone oxidoreductase 1 gene [J]. Proc Natl Acad Sci USA, 1996, 93(25): 14960.
    55. Venugopal R, Jaiswal A K. NRF-2 and NRF-1 in association with Jun proteins regulateantioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes [J]. Oncogene, 1998, l17(24): 3145.
    56. Scarpull R C. Nuclear control of respiratory chain expression in mammalian cell [J]. Bioenergetics Biomembranes, 1997, 29 (2): 109.
    57. Montoya J, Perez-Martos A, Garstka H L, et al. Regulation of mitochondrial transcription by mitochondrian transcription factor A [J]. Molecular Cellular Biochemistry, 1997, 174(1-2): 227.
    58. Au H C, Scheffler I E. Promoter analysis of the human succinate dehydrogenase iron-protein gene-both nuclear respirator factor NRF-1 and NRF-2 are requined [J]. Eur J Biochem, 1998, 1251(1-2): 164.
    59.宋海燕,曾宪惠,刘鸣旺等。肉毒碱对实验性心肌损伤线粒体呼吸酶的影响[J].哈尔滨医科大学学报, 1997, 31(1): 37.
    60. Giulio CD, Bianchi G, CacchioM, et al. Oxygen and life span: chronic hypoxia as a model for studying HIF-1alpha, VEGF and NOS during aging[J]. Respir Physiol Neurobiol, 2005, 147(1): 31.
    61. Eric L, Huang H, Franklin Bunn, et al. Hypoxia-inducible factor and its biomedical relevance [J]. J Biol Chem, 2003, 278 (22): 19575.
    62. Annamaria R, Badarch U, Dominic A, et al. Identification of smallmolecule inhibitors of hypoxia-inducible factor 1 transcrip tional activation pathway [J]. Cancer Res, 2002, 62 (15): 4316.
    63.董红燕,张中明,闫英群.缺氧、复氧条件下低氧反应元件( HRE)对心肌细胞转染hVEGF165基因表达的调控作用[J].中国病理生理杂志, 2006, 22(9): 1712.
    64. Das KC, Misra HP. Hydroxyl radical scavenging and singlet oxygen quenching p roperties of polyamines [J]. Mol Cell Biochem, 2004, 262(1-2): 127.
    65. MarzabadiMR, Eric L. Spermine p revent iron accumulation and dep ress lipofuscin accumulation in cultured myocardial cells [J]. Free Radic BiolMed, 1996, 21(3): 375.
    66. CommezM, Hellstrand. Endogenous polyaminesmodulate Ca2+ channel activity in guinea-pig intestinal smooth muscle [J]. Pflugers Arch Eur J Physiol, 1999, 438(4): 445.
    67. Uehara A, FillM, Velez P, et al. Rectification of rabbit cardiac ryanodine recep tor current by endogenous polyamines [J]. Biophys J, 1996, 71(2): 769.
    68. SalviM, Toninello A. Effects of polyamines on mitochondrial Ca2+ transport [J]. Biochim Biophys Acta, 2004, 1661(2): 113.
    69.赵雅君,徐长庆,时飒等.多胺对大鼠缺氧-复氧心肌细胞内钙的影响[J].中国病理生理杂志, 2005, 21(10): 1938-1941.
    70. Wang R, Xu C, Zhao W, et al. Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues [J]. Eur J Biochem, 2003, 270(12): 2680.
    71.徐长庆,王瑞,赵伟民等.钙敏感受体的研究进展和大鼠心肌细胞钙敏感受体的功能检测[J].中国病理生理杂志, 2002, 18(13): 1640.
    72.贾清华,滕瑞芝.缺氧预处理对大鼠心脏的影响及保护机制的研究[J].中国老年学杂志, 2007, 27(5): 853.
    73.李自普,刘豫阳,顾娟红等.预防性应用钙拮抗剂对缺血大鼠心肌细胞和红细胞内钙变化的影响[J].上海医学, 1997, 20: 253.
    74.彭章龙,杭燕南,孙大金.尼卡地平对缺氧/复氧心肌细胞损害及细胞内Ca2+的影响[J].临床麻醉学杂志, 2 000, 16: 347.
    75.刘遂心,孙明,李彤.缺氧对心肌细胞内游离钙离子浓度和SERCA2表达的影响及薯蓣皂甙的干预作用[J].中华心血管病杂志, 2004, 32(9): 841.
    76.汪和贵,柯永胜,王德国等.地高辛抗血清对大鼠心肌缺氧复氧损伤心功能的影响及机制研究[J].中国药理学通报, Chinese Pharm acological B ulletin, 2007, 23(5): 662.
    77.陈羽,吕文伟,雷春利等.黄芪皂甙与黄芪多糖对急梗犬心的保护作用及其机制分析[J].中药药理与临床, 1994, 10(3): 12.
    78.张灼,陈立新,宋崇顺等.黄芪多糖对大鼠心肌缺血-再灌注损伤后的保护作用[J].中国中医药信息杂志, 2007, 14(2): 33.
    1.闫玲,苗琦.细胞器与细胞凋亡[J].生物物理学报, 2002, 18(3): 271.
    2. Green DR, Reed JC. Mitochondria and apoptosis [J]. Science, 1998, 281 (5381): 1309.
    3.金莉,王国中,李和泉.心肌细胞凋亡的研究进展[J].齐齐哈尔医学院学报, 2003, 24(10): 1133.
    4. Joza N, Susin SA, Daugas E, et al. Essential role of the mitochondrial apoptosis- inducing factor in programmed cell death [J]. Nature, 2001, 410: 549.
    5. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J et al. Molecular characterization of mitochondrial apoptosis2inducing factor [J]. Nature, 1999, 397(6718): 441.
    6. Zou H, Li YC, Liu X, et al. An APAF-1-Cytochrome c multimeric complex is a funtional apoptosome that activates procaspase-9 [J]. J Biol Chem, 1999, 274: 11549.
    7. Suleiman MS, Halestrap AP, Griffiths EJ. Mitochondria: a target for myocardial protection [J]. Pharmacol Ther, 2001, 89 (1): 29.
    8.常青,王晓良. Cyt C、线粒体与凋亡[J].中国药理学通报, 2003, 19(3): 241.
    9.刘伟丽,齐文成.线粒体在细胞凋亡中作用的研究进展[J].医学综述, 2007, 13(8): 578.
    10.萨其拉,李文彬,孙勇如.线粒体与细胞凋亡机制[J].国外医学分子生物学分册,2 000, 22(5): 277.
    11. Zou H, Li Y, Liu X et al. An Apaf-1. Cytochrome C multimeric complex is a functional apoptosome that activates procaspase-9 [J]. J Biol Chem, 1999, 274 (17): 11549.
    12. Hu Y, Benedict MA, Ding L et al. Role of cytochrome C and dATP/ ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis [J]. EMBO J, 1999, 18(13): 3586.
    13. Saleh A, Srinivasula SM, Acharya S et al. Cytochrome C and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation [J]. Biol Chem, 1999, 274(25): 17941.
    14. Enari M, Sakahira H, Yokoyama H et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [J]. Nature, 1998, 391(6662): 43.
    15. Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ. Posttranslational N-myristoylation of Bid as a molecular switch for targeting mitochondria and apoptosis [J]. Science, 2000,290(5497): 1761.
    16. Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane [J]. Mol Cell Biol, 2000, 20(3): 929.
    17. Wei MC, Lindsten T , Mootha VK, Weiler S, Gross A, Ashiya M , Thompson CB et al. tBID, a membrane2targeted death ligand , oligomerizes BAK to release cytochrome c [J]. Genes Dev, 2000, 14(16): 2060.
    18. Miramar MD, Costantini P, Ravagnan L, et al. NADH oxidaseactivity of mitochondrial apoptosis inducing factor [J]. J Biol Chem, 2001, 276(19): 16391.
    19. Patterson SD, Spahr CS, Daugas E, Susin SA, Irinopoulou T, Koehler C, Kroemer G. Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition [J]. Cell Death Differ, 2000, 7(2): 137.
    20. Susin SA, Daugas E, Ravagnan L, et al. Two distinct pathways leading to nuclear apop tosis [J]. J Exp Med, 2000, 192(4): 571.
    21.于翠娟,王成济,杨安钢. AIF及AIF依赖的细胞凋亡[J].国外医学分子生物学分册, 2003, 25(6): 351.
    22. Loeffler M, Daugas E, Susin SA, et al. Dominant cell death induction by extra mitochondrially targeted apoptosis inducing factor [J]. FASEB J, 2001, 15(3): 758.
    23. Wang X, Yang C, Chai J, et al. Mechanisms of AIF mediated apoptotic DNA degradation in Caenorhabditis elegans [J]. Science, 2002, 298(5598): 1587.
    24.张闻多,丁文惠.细胞凋亡与凋亡诱导因子[J].中国病理生理杂志, 2006, 22(9): 1858.
    25. McConkey DJ, Nutt LK. Calciumflux measurements in apoptosis [J]. Methods Cell Biol, 2001, 66(2): 229.
    26. Nutt LK, Pataer A, Pahler J, et a1. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores [J]. J Biol Chem, 2002, 277(11): 9219.
    27. Wood DE, Newcomb EW. Caspase-dependent activation of calpain during drug-induced apoptosis [J]. J Biol Chem, 1999, 274(12): 8309.
    28. Breckenridge DG, Stojanovic M, Marcellus RC, et al. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals,enhancing cytochrome c release to the cytosol [J]. J Cell Biol, 2003, 160(7): 1115.
    29. Wang B, Nguyen M, Breckenridge DG, et al. Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondrial [J]. J Biol Chem, 2003, 278(16): 1461.
    30. Li H, Zhu H, Xu CJ, et al. Cleavage of BID by Caspase-8 mediates the mitochondrial damage in the Fas path of apoptosis [J]. Cell, 1998, 94(4): 491.
    31. Kandasamy K, Srinivasula SM, Alnemri ES, et al. Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced mitochondrial disruption and apoptosis: differential regulation of cytochrome c and Smac/DIABLO release [J]. Cancer Res, 2003, 63(7): 1712.
    32. Sun XM, Bratton SB, Butterworth M, et al. Bcl-2 an d Bcl-xL inhibit CD95-media-ted apoptosis by preventing mitochondrial release of Smac/ DIABLO and subseque- nt inactivation of X-linked inhibitor of apoptosis protein [J]. J Biol Chem, 2002, 277(13): 11345.
    33. Burkart V, et al. Natural resistance of human beta cells toward nitric oxide is mediated by heat shock p rotein 70 [J]. J Biol Chem, 2000, 275(26): 19521.
    34. Nylandsted J, RohdeM, Brand K, et al. Selective dep letion of heat shock p rotein
    70(HSP70) activates a tumor-specific death p rogram that is independent of caspases and bypasses Bcl-2 [J]. Proc Natl Acad Sci USA, 2000, 97(14): 7871.
    35. Saleh A, Srinivasula SM, Balkir L, et al. Negative regulation of the Apaf- 1 apoptosome by HSP70 [J]. Nat Cell Biol, 2000, 2(8): 476.
    36. Ravagnan L,Gurbuxani S,Susin SA, et al. Heat shock protein70 antagonizes apoptosis inducing - factor [J]. Nat Cell Biol, 2001, 3(9): 839.
    37.刘颖,陈晨,刘伟康,陈伟强.细胞凋亡的线粒体信号通路在大鼠缺血延迟预适应抗心肌细胞凋亡机制中的作用[J].中国康复医学杂志. 2006年, 21(5): 401.
    38. Misako H, Seiji T, Matsuzawa SI, et al. Apoptotic protease activating factor 1(Apaf-1) - independent cell death supp ression by Bcl-2 [J]. Exp Med, 2 000, 191(10): 1709.
    39. Luigi R, Sandeep G, SantosAS, et al. Heat-shock protein 70 antagonizes apoptosis- inducing factor [J]. Nature Cell Biol, 2001, 3(9): 839.
    40. Kim GT, Chun YS, Park JW, et al. Role of apoptosis-inducing factor in myocardial cell death by ischemia-reperfusion [J]. BBRC, 2003, 309(3): 619.
    41. Barbara C, Giovanna B, Heather K, et al. Curcumin inhibits activation of V_9V_2 T cells by phosphoantigens and induces apoptosis involving apoptosis-inducing factorand large scale DNA fragmentation1 [J]. J Immunol, 2001, 167(6): 3454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700