用户名: 密码: 验证码:
远程缺血预处理对脊髓型颈椎病减压术后脊髓缺血再灌注损伤保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     脊髓型颈椎病是颈椎病最严重的类型,也是导致成年人出现脊髓功能障碍最常见的原因。治疗方法包括非手术治疗和手术治疗。手术减压被认为是治疗的金标准。手术治疗的主要目的是充分解除对脊髓的压迫和维持脊柱的稳定性。恰当的手术治疗可以使大部分患者神经功能得到满意的恢复。然而,减压手术可导致脊髓缺血再灌注损伤。脊髓缺血再灌注损伤常可导致不同程度脊髓功能障碍,严重影响脊髓型颈椎病患者术后生存质量,甚至危及生命。许多动物实验研究已证实远程缺血预处理具有减轻心、脑、肝、肾、脊髓、胃等器官的缺血再灌注损伤作用。最近一些临床随机对照试验研究证实,肢体远程缺血预处理可减轻心脑血管手术时心肌和脑的缺血再灌注损伤。肢体远程缺血预处理具有安全、效果确切、价格低廉、无创伤且临床操作简便易行等优点。设计本研究旨在探讨肢体远程缺血预处理对脊髓型颈椎病患者术后脊髓缺血再灌注损伤的保护作用,为将来其临床应用提供科学依据。
     目的研究肢体缺血预处理对脊髓型颈椎病减压术后脊髓缺血再灌注损伤的保护作用。
     方法
     40例择期行脊髓减压手术的脊髓型颈椎病患者在麻醉诱导前随机分成两组:肢体远程缺血预处理组和对照组,每组各20例。肢体远程缺血预处理参照文献使用充气式止血带对右上肢实施3次5分钟缺血5分钟再灌注,充气压力为200mmHg。检测麻醉诱导前、减压前、减压后及术后1、3、5、7天血清S-100B和神经元特异性烯醇化酶(NSE)的浓度。在围术期采用正中神经体感诱发电位(SEPs)仪监测脊髓功能。术前及术后7天、1、3、6个月神经功能状况评估采用国际标准的日本骨科学会脊髓型颈椎病评分法(JOA score),并计算出相应各时间点的恢复率(Recovery Rate, RR)。
     结果
     1.对血清生化指标的影响。肢体远程缺血预处理可使术后6小时、术后1天S-100B及术后6小时、术后1、3、5天NSE的释放明显减少(P<0.05)。
     2.体感诱发电位的变化。预处理组和对照组各时间点诱发电位的监测指标及术中显著变化的发生率无显著性差异(P>0.05)。
     3.神经功能的情况。两组术后7天及术后1、3个月神经功能恢复率具有显著性差异(P<0.05)。
     结论
     本研究结果证实,肢体缺血预处理对脊髓型颈椎病术后脊髓缺血再灌注损伤具有保护作用,对术后患者的预后有益。这些新的研究结果为将来肢体缺血预处理在脊髓型颈椎病减压手术中开展多中心临床试验研究提供了一定的科学依据。
Background:
     Cervical spondylotic myelopathy is the most serious condition of cervical spondylosis and a leading cause of spinal cord dysfunction in the adult population. Treatment options include operative and non-operative treatments. Surgical decompression is considered the gold standard of treatment. The objective of operative treatment is to adequately decompress the spinal cord and to maintain the stability of the spinal column. Appropriate operative treatment of cervical spondylotic myelopathy will result in satisfactory recovery from myelopathy in most cases. However, elective cervical decompression surgery is associated with spinal cord ischemia-reperfusion injury. Spinal cord ischemia-reperfusion injury after surgical decompression often leads to neurological deficits which seriously influence the quality of life after surgery and even threaten the survival of patients with cervical spondylotic myelopathy. Remote ischemic preconditioning (RIPC) reduces injury caused by ischemia-reperfusion in distant organs. RIPC has been proved to be protective against ischemia-reperfusion injury in brain, heart, liver, kidney, spinal cord, gut, and etc in many animal studies. Quite a few clinical trials have recently reported that remote ischemic preconditioning reduces myocardial and cerebral injury after major cardiovascular and neurovascular surgery. Remote ischemic preconditioning is a safe, effective, noninvasive, and cost-effective strategy for reducing ischemia-reperfusion injury in clinical settings. This study was designed to investigate whether limb remote ischemic preconditioning is beneficial to surgical outcome in patients with cervical spondylotic myelopathy, and to provide scientific basis for its clinical application in the future.
     Objective
     To investigate the effect of remote ischemic preconditioning on spinal cord ischemia-reperfusion injury in patients with cervical spondylotic myelopathy undergoing cervical decompression surgery. Methods
     Forty adult myelopathic patients undergoing elective cervical decompression surgery were randomly assigned to either a remote ischemic preconditioning group (n=20) or a control group (n=20) before induction of anesthesia. Limb remote ischemic preconditioning consisted of three 5-min cycles of right upper limb ischemia, induced by an automated cuff-inflator placed on the upper arm and inflated to 200 mmHg, with an intervening 5 min of reperfusion during which the cuff was deflated. Serum samples for measurements of S-100B and neuron-specific enolase (NSE) concentrations were drawn before the induction of anesthesia, before decompression, after decompression and at 6h, 1, 3, 5, 7days after surgery. Median nerve somatosensory evoked potentials (SEPs) were measured before, during and after surgery. Preoperative and postoperative neurological functional status was evaluated using a Japanese Orthopaedic Association (JOA) scale, and the recovery rate (RR) was calculated. Assessment was done before the operation, at 7 days and 1 month, 3 months, 6 months after surgery.
     Results
     1.Biochemical markers: Remote ischemic preconditioning significantly reduced serum S-100B release at 6 h, 1day after surgery and NSE release at 6h, 1, 3, 5days after surgery (P<0.05).
     2.Somatosensory evoked potentials: No differences in SEPs measurements at either time point and in the incidences of significant SEPs changes between Control group and RIPC group during the surgery were observed (P>0.05).
     3.The recovery rate: There were significant differences in the RR at 7 days and 1 month, 3 months after surgery between the two groups (P<0.05). Conclusions
     The present study demonstrates that adult myelopathic patients undergoing elective cervical decompression surgery at a single center could benefit from remote ischemic preconditioning, using transient upper limb ischemia. These novel data support the need for a larger multi-center clinical study of RIPC in patients undergoing elective cervical decompression surgery for cervical spondylotic myelopathy (CSM).
引文
[1]周德祥,郑丰任,赖润龙,许锦成,袁军.慢性压迫脊髓损伤减压后早期颈髓MDA和SOD的实验研究.昆明医学院学报,2006;(05):43-45
    [2]朱守荣,刘郑生,侯克东,王岩.脊柱手术后迟发脊髓损伤的早期诊断和治疗.中国脊柱脊髓杂志,2006; (S1):20-22
    [3] Lang-Lazdunski L, Matsushita K, Hirt L, Waeber C, Vonsattel J. P, Moskowitz M. A, Dietrich W. D. Spinal cord ischemia. Development of a model in the mouse. Stroke, 2000; 31(1):208-213
    [4] Carden D. L, Granger D. N. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000; 190(3):255-266
    [5] Pokorny H, Gruenberger T, Soliman T, Rockenschaub S, Langle F, Steininger R. Organ survival after primary dysfunction of liver grafts in clinical orthotopic liver transplantation. Transpl Int. 2000; 13 Suppl 1. S:154-S157
    [6] Margarit C, Asensio M, Davila R, Ortega J, Iglesias J, Tormo R, Charco R. Analysis of risk factors following pediatric liver transplantation. Transpl Int. 2000; 13 Suppl 1. S:150-S:153
    [7] Clavien P. A, Harvey P. R, Strasberg S. M. Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. Transplantation. 1992; 53(5): 957-978
    [8] Yamanaka J, Lynch S. V, Ong T. H, Fawcett J, Robinson H. E, Beale K, Balderson G. A, Strong R. W. Surgical complications and long-term outcome in pediatric liver transplantation. Hepatogastroenterology. 2000;47(35): 1371-1374
    [9] Perdrizet G. A, Giles D. L, Dring R, Jr Agarwal S. K, Khwaja K, Gao Y. Z, Geary M, Cowell V. L, Berman M, Brautigam R. Major hepatic trauma: warm ischemic tolerance of the liver after hemorrhagic shock. J Surg Res. 2006; 136(1): 70-77
    [10]卫小春,张志强,韩来春.丹参对肢体缺血再灌注损伤的保护作用(动物实验).中国中医骨伤科杂志,1993;(05):5-7
    [11] Eriksson O, Pollesello P, Saris N. E. Inhibition of lipid peroxidation in isolated rat liver mitochondria by the general anaesthetic propofol. Biochem Pharmacol. 1992;44(2):391-393
    [12] Weigand M. A, Schmidt H, Zhao Q, Plaschke K, Martin E, Bardenheuer H. J. Ketamine modulates the stimulated adhesion molecule expression on human neutrophils in vitro. Anesth Analg, 2000; 90(1): 206-212
    [13]吴新文,董庆龙,钟少平,王忠懋,欧阳葆怡.异丙酚和咪唑安定对氧自由基的影响.中华麻醉学杂志,1998;(01):25-26
    [14]张欢,杨拔贤,于德水,苟淑琴,张秀华.异丙酚对止血带引起的下肢缺血再灌注损伤的影响.中华麻醉学杂志,2001;(09):15-17
    [15]郭平凡,熊圣仁,张金池,林春忠.白细胞介素-1受体拮抗剂对骨骼肌缺血再灌注损伤的保护作用.福建医科大学学报,2003;(03):273-276
    [16]郭平凡,陈福真.抗肿瘤坏死因子-α单克隆抗体减轻骨骼肌缺血再灌注损伤的研究.中华实验外科杂志,2002;(01):71-72
    [17]阎作勤,张光健, Long-En Chen, Anthony V. Seaber, James R. Urbaniak. L一粘附素单抗在缺血再灌注损伤中的作用.中国临床医学,2000; (01):29-31
    [18]高昌俊,柴伟,徐礼鲜,孙绪德,张惠,张贵和,杨永慧,彭德民.肠系膜上动脉灌注高氧液对家兔肠缺血-再灌注损伤的保护作用.临床麻醉学杂志,2006;(01):39-42
    [19]高昌俊,柴伟,孙绪德,张贵和,赵晖,杨永慧,蒯建科,于代华,徐礼鲜.肠腔灌注高氧液对缺血-再灌注后肠黏膜屏障损伤的保护作用.临床麻醉学杂志,2008;(08):686-689
    [20]彭慧平,卢晓欣,汤永建,房卫红.高压氧对小鼠脑缺血再灌注损伤的保护作用.生物医学工程与临床,2008;(04):279-281
    [21]高博,任为,张彦,宋红,汪永强,雷燕,赵渝.大鼠缺血再灌注损伤肢体骨骼肌形态和组织中细胞因子变化及高压氧的干预.中国组织工程研究与临床康复,2008;(20):3874-3878
    [22]陈婵,邹望远,王锷,郭曲练.高压氧与脑缺血再灌注损伤中的氧化应激.国际神经病学神经外科学杂志,2008;(04):311-314
    [23]张卫东.高压氧疗法、甲基强的松龙在椎管狭窄症围手术期的应用.医学信息(手术学分册),2008;(02):168-169
    [24]赵斌,黄媛霞,吴大鹏,徐海斌,李康.高压氧及甲基强的松龙联合应用预防脊髓缺血再灌注损伤的疗效观察.中国民康医学,2008;(13):1406-1407
    [25]周鹏,马晓明.电针治疗脑缺血再灌注损伤机理的研究概况.云南中医学院学报,2008;(06):72-75
    [26]曲怡,张立德,才丽平,蒋宁.针刺对缺血/再灌注脑组织基因表达影响的研究进展.医学综述,2008;(14):2159-2162
    [27]高卉,白育庭,周水生,周燕红,罗德生,查文良,阮明凤.亚低温缺血预处理对大鼠肠缺血再灌注肾损伤的保护作用.咸宁学院学报(医学版), 2008;(02):93-95
    [28]侯经元.中度低温疗法对大鼠肠组织缺血/再灌注损伤的保护作用.中国中西医结合急救杂志,2008; (05):271
    [29]曲怡,张立德,才丽平,蒋宁,夏淑杰,孙红,山岩,田国伟,林庶茹.电针督脉穴对局灶性脑缺血再灌注大鼠大脑基因表达谱的影响.中华中医药学刊,2009; (01):218-220
    [30]赵宇辉,孙忠人,张丽娟.针灸预处理对缺血再灌注大鼠心肌血清SOD和MDA的影响.中医药信息,2009;(01):63-65
    [31]顾卫东,陈群,曾因明.低温对脑缺血/再灌注期间沙土鼠海马CA1区延迟性神经元死亡及ATP水平和细胞色素氧化酶活性的影响.徐州医学院学报,2009;(01):4-7
    [32]高长越,周华东,邓娟,普兴富.川芎嗪对脑缺血再灌注损伤后细胞粘附作用的影响(英文).中国临床康复,2006;(35):178-179
    [33]何文智,熊艾君,陈美丽,陈北阳,陈安.川芎嗪对肝缺血再灌注损伤大鼠P-选择素表达的影响.中国中西医结合消化杂志,2006;(01):1-5
    [34]曲友直,赵燕玲,高国栋.川芎嗪联合黄芪对脑缺血/再灌注后神经细胞凋亡及Fos蛋白表达的影响.中国中西医结合急救杂志,2006;(02):123-125
    [35]曲友直,高国栋,赵振伟,赵燕玲.川芎嗪对脑缺血/再灌注后脑组织肿瘤坏死因子-α含量及髓过氧化物酶活性的影响.中国中西医结合急救杂志,2006;(01):35-37
    [36]王汉民,吴雄飞,谭华,陈光磊,李锋.川芎嗪对缺血/再灌注损伤大鼠肾脏细胞凋亡及Bcl-2和Bax表达的影响.第四军医大学学报,2006;(20):1884-1887
    [37]娄海燕,魏欣冰,刘慧青,王姿颖,张岫美.羟乙葛根素对大鼠局灶性脑缺血再灌注损伤后脑组织E-selectin及P-selectin表达的影响.中国药学杂志,2008;(23):1788-1791
    [38]许益笑,王万铁,徐正祄,金晓凤,郝卯林.葛根素对缺血/再灌注损伤兔肺组织天冬氨酸特异性半胱氨酸蛋白酶-3变化的影响.中国中西医结合急救杂志,2008;(02):104-107
    [39]宋麒,张转,陈华.葛根素对小鼠肠缺血再灌注肝损伤的保护作用.武汉大学学报(医学版),2009;(01):78-80
    [40]叶青,徐达,王祥慧,周佩军.丹参注射液和川芎嗪防治肾缺血-再灌注损伤的对比研究.上海中医药大学学报,2007;(05):49-52
    [41]袁振飞,范国祥,王蓓蓓,何忠友,苏佩清.丹参注射液对缺血再灌注损伤心肌保护作用.实用临床医药杂志,2008;(13):12-14
    [42]刘志刚,陈向东.参附对大鼠肠缺血再灌注损伤时p38丝裂素活化蛋白激酶信号转导通路的影响.中国现代医学杂志,2008;(20):2976-2978
    [43]张秀玲,刘玉萍,杨欢,江涛.参附注射液对大鼠全脑缺血再灌注时核转录因子-κB表达的影响.卒中与神经疾病,2008;(06):363-366
    [44]彭松林,赵阳,顾玺,黄勇,戴朝六.参附注射液对大鼠肝缺血再灌注损伤保护作用的实验研究.陕西医学杂志,2008;(10):1284-1287
    [45]郑波,杨训,周晓辉,张刚,安宁,邓晓军.参附注射液在防治肝脏手术时缺血再灌注损伤的应用.中国中医急症,2008;(09):1234-1236
    [46]刘齐宁,杨芳欣,丁慧.参附注射液预处理对大鼠心肌缺血再灌注损伤的保护作用.陕西医学杂志,2008;(10):1290-1292
    [47]桑韩飞,张英民,徐礼鲜,王强,计根林,吴明春.葛根素对兔脊髓缺血再灌注损伤的保护作用.第四军医大学学报,2001;(05):414-417
    [48]王强,熊利泽,陈绍洋,桑韩飞,朱正华,董海龙.川芎嗪对兔脊髓缺血/再灌注损伤的保护和治疗作用.中华麻醉学杂志,2001;(03):34-37
    [49] Murry C. E., Jennings R. B., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74(5): 1124-1136
    [50] Teoh L. K, Grant R., Hulf J. A, Pugsley W. B, Yellon D. M. The effect of preconditioning (ischemic and pharmacological) on myocardial necrosis following coronary artery bypass graft surgery. Cardiovasc Res. 2002;53(1): 175-180
    [51] Laskey W. K, Beach D. Frequency and clinical significance of ischemic preconditioning during percutaneous coronary intervention. J Am Coll Cardiol. 2003; 42(6): 998-1003
    [52] Chan M. T, Boet R, Ng S. C, Poon W. S, Gin T. Effect of ischemic preconditioning on brain tissue gases and pH during temporary cerebral artery occlusion. Acta Neurochir Suppl. 2005; 95: 93-96
    [53] Przyklenk K, Bauer B, Ovize M, Kloner R. A, Whittaker P. Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993; 87(3): 893-899
    [54] Hausenloy D. J, Yellon D. M. Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res. 2008; 79(3): 377-386
    [55] Kanoria S, Jalan R, Seifalian A. M, Williams R, Davidson B. R. Protocols and mechanisms for remote ischemic preconditioning: a novel method for reducing ischemia reperfusion injury. Transplantation. 2007; 84(4): 445-458
    [56] Takaoka A, Nakae I, Mitsunami K, Yabe T, Morikawa S, Inubushi T, Kinoshita M. Renal ischemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effects of "remote preconditioning". J Am Coll Cardiol. 1999; 33(2): 556-564
    [57] Pell T. J, Baxter G. F, Yellon D. M, Drew G. M. Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol. 1998; 275(5 Pt 2): H1542-H1547
    [58] Verdouw P. D, Gho B. C, Koning M. M, Schoemaker R. G, Duncker D. J.Cardioprotection by ischemic and nonischemic myocardial stress and ischemia in remote organs. Implications for the concept of ischemic preconditioning. Ann N Y Acad Sci. 1996; 793: 27-42
    [59] Gho B. C, Schoemaker R. G, van den Doel M. A, Duncker D. J, Verdouw P. D. Myocardial protection by brief ischemia in noncardiac tissue. Circulation. 1996; 94(9): 2193-2200
    [60] Patel H. H, Moore J, Hsu A. K, Gross G. J. Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. J Mol Cell Cardiol. 2002; 34(10): 1317-1323
    [61] Tokuno S, Hinokiyama K, Tokuno K, Lowbeer C, Hansson L. O, Valen G. Spontaneous ischemic events in the brain and heart adapt the hearts of severely atherosclerotic mice to ischemia. Arterioscler Thromb Vasc Biol. 2002; 22(6): 995-1001
    [62] Oxman T, Arad M, Klein R, Avazov N, Rabinowitz B. Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am J Physiol. 1997; 273(4 Pt 2): H1707-H1712
    [63] Birnbaum Y, Hale S. L, Kloner R. A. Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation. 1997; 96(5): 1641-1646
    [64] Konstantinov I. E, Li J, Cheung M. M, Shimizu M, Stokoe J, Kharbanda R. K, Redington A. N. Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism. Transplantation. 2005; 79(12): 1691-1695
    [65] Weinbrenner C, Nelles M, Herzog N, Sarvary L, Strasser R. H. Remotepreconditioning by infrarenal occlusion of the aorta protects the heart from infarction: a newly identified non-neuronal but PKC-dependent pathway. Cardiovasc Res. 2002; 55(3): 590-601
    [66] Peralta C, Closa D, Xaus C, Gelpi E, Rosello-Catafau J, Hotter G. Hepatic preconditioning in rats is defined by a balance of adenosine and xanthine. Hepatology. 1998; 28(3): 768-773
    [67] Carini R, De Cesaris M. G, Splendore R, Bagnati M, Albano E. Ischemic preconditioning reduces Na(+) accumulation and cell killing in isolated rat hepatocytes exposed to hypoxia. Hepatology. 2000; 31(1): 166-172
    [68] Teoh N, Dela Pena A, Farrell G. Hepatic ischemic preconditioning in mice is associated with activation of NF-kappaB, p38 kinase, and cell cycle entry. Hepatology. 2002; 36(1): 94-102
    [69] Vlasov T. D, Korzhevskii D. E, Poliakova E. A. [Ischemic adaptation of the rat brain as a method for protection of endothelium from ischemic reperfusion injury]. Ross Fiziol Zh Im I M Sechenova. 2004; 90(1): 40-48
    [70]赵翚,董海龙,熊利泽,路志红,孙静,徐宁.线粒体ATP敏感性钾离子通道参与远程预处理对大鼠脑保护作用的机制.第四军医大学学报,2007;(18):1633-1635
    [71] Rehni A. K, Singh N, Jaggi A. S, Singh M. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behav Brain Res. 2007; 183(1): 95-100
    [72] Rehni A. K, Singh N, Jaggi A. S. Possible involvement of insulin, endogenous opioids and calcitonin gene-related peptide in remote ischaemic preconditioning of the brain. Yakugaku Zasshi. 2007; 127(6): 1013-1020
    [73] Rehni A. K, Singh N. Role of phosphoinositide 3-kinase in ischemicpostconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice. Pharmacol Rep. 2007; 59(2): 192-198
    [74] Rehni A. K, Shri R, Singh M. Remote ischaemic preconditioning and prevention of cerebral injury. Indian J Exp Biol. 2007; 45(3): 247-252
    [75] Ates E, Genc E, Erkasap N, Erkasap S., Akman S, Firat P, Emre S, Kiper H. Renal protection by brief liver ischemia in rats. Transplantation. 2002; 74(9): 1247-1251
    [76] Kuntscher M. V, Schirmbeck E. U, Menke H, Klar E, Gebhard M. M, Germann G. Ischemic preconditioning by brief extremity ischemia before flap ischemia in a rat model. Plast Reconstr Surg. 2002; 109(7): 2398-2404
    [77] Kuntscher M. V, Kastell T, Sauerbier M., Nobiling R, Gebhard M. M, Germann G. Acute remote ischemic preconditioning on a rat cremasteric muscle flap model. Microsurgery. 2002; 22(6): 221-226
    [78] Moses M. A, Addison P. D, Neligan P. C, Ashrafpour H, Huang N, Zair M, Rassuli A, Forrest C. R, Grover G. J, Pang C. Y. Mitochondrial KATP channels in hindlimb remote ischemic preconditioning of skeletal muscle against infarction. Am J Physiol Heart Circ Physiol. 2005; 288(2): H559-H567
    [79] Kanoria S, Glantzounis G, Jalan R, Davies N. A, Seifalian A. M, Williams R, Davidson B. R. A model to study total hepatic ischemia-reperfusion injury. Transplant Proc. 2004; 36(9): 2586-2589
    [80] Lai I. R, Chang K. J, Chen C. F, Tsai H. W. Transient limb ischemia induces remote preconditioning in liver among rats: the protective role of heme oxygenase-1. Transplantation. 2006; 81(9): 1311-1317
    [81] Peralta C, Fernandez L, Panes J, Prats N, Sans M, Pique J. M, Gelpi E, Rosello-Catafau J. Preconditioning protects against systemic disordersassociated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor-induced P-selectin up-regulation in the rat. Hepatology. 2001; 33(1): 100-113
    [82] Peralta C, Bulbena O, Xaus C, Prats N, Cutrin J. C, Poli G, Gelpi E, Rosello-Catafau J. Ischemic preconditioning: a defense mechanism against the reactive oxygen species generated after hepatic ischemia reperfusion. Transplantation. 2002; 73(8): 1203-1211
    [83] Fernandez L, Heredia N, Grande L, Gomez G, Rimola A, Marco A, Gelpi E, Rosello-Catafau J, Peralta C. Preconditioning protects liver and lung damage in rat liver transplantation: role of xanthine/xanthine oxidase. Hepatology. 2002; 36(3): 562-572
    [84] Waldow T, Alexiou K, Witt W, Albrecht S, Wagner F, Knaut M, Matschke K. Protection against acute porcine lung ischemia/reperfusion injury by systemic preconditioning via hind limb ischemia. Transpl Int. 2005; 18(2): 198-205
    [85] Brzozowski T, Konturek P. C, Konturek S. J, Pajdo R, Kwiecien S, Pawlik M, Drozdowicz D, Sliwowski Z, Pawlik W. W. Ischemic preconditioning of remote organs attenuates gastric ischemia-reperfusion injury through involvement of prostaglandins and sensory nerves. Eur J Pharmacol. 2004; 499(1-2): 201-213
    [86] Brzozowski T, Konturek P. C, Pajdo R, Kwiecien S, Sliwowski Z, Drozdowicz D, Ptak-Belowska A, Pawlik M, Konturek S. J, Pawlik W. W, Hahn G. G. Importance of brain-gut axis in the gastroprotection induced by gastric and remote preconditioning. J Physiol Pharmacol. 2004; 55(1 Pt 2): 165-177
    [87] Gurcun U, Discigil B, Boga M, Ozkisacik E, Badak M. I, Yenisey C,Kurtoglu T, Meteoglu I. Is remote preconditioning as effective as direct ischemic preconditioning in preventing spinal cord ischemic injury?. J Surg Res. 2006; 135(2): 385-393
    [88]熊利泽,雷毅,董海龙,王强,陈绍洋,路志红,朱妙章.远程预处理对兔脊髓缺血再灌注损伤的保护作用(英文).中国临床康复, 2003;(26):3565-3567
    [89] Selimoglu O, Ugurlucan M, Basaran M, Gungor F, Banach M, Cucu O, Ong L. L, Gasparyan A. Y, Mikhailidis D, Ogus T. N. Efficacy of remote ischaemic preconditioning for spinal cord protection against ischaemic injury: association with heat shock protein expression. Folia Neuropathol. 2008; 46(3): 204-212
    [90] Heusch G, Schulz R. Remote preconditioning. J Mol Cell Cardiol. 2002; 34(10): 1279-1281
    [91] Schoemaker R. G, van Heijningen C. L. Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol. 2000; 278(5): H1571-H1576
    [92] Loukogeorgakis S. P, Williams R, Panagiotidou A. T, Kolvekar S. K, Donald A, Cole T. J, Yellon D. M, Deanfield J. E, MacAllister R. J. Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a K(ATP)-channel dependent mechanism. Circulation. 2007; 116(12): 1386-1395
    [93] Kharbanda R. K, Mortensen U. M, White P. A, Kristiansen S. B, Schmidt M. R, Hoschtitzky J. A, Vogel M, Sorensen K, Redington A. N, MacAllister R. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002; 106(23): 2881-2883
    [94] Loukogeorgakis S. P, Panagiotidou A. T, Broadhead M. W, Donald A,Deanfield J. E, MacAllister R. J. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 2005; 46(3): 450-456
    [95] Tapuria N, Kumar Y, Habib M. M, Abu Amara M, Seifalian A. M, Davidson B. R. Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury--a review. J Surg Res. 2008; 150(2): 304-330
    [96] Gunaydin B, Cakici I, Soncul H, Kalaycioglu S, Cevik C, Sancak B, Kanzik I, Karadenizli Y. Does remote organ ischaemia trigger cardiac preconditioning during coronary artery surgery?. Pharmacol Res. 2000; 41(4): 493-496
    [97] Cheung M. M, Kharbanda R. K, Konstantinov I. E, Shimizu M, Frndova H, Li J, Holtby H. M, Cox P. N, Smallhorn J. F, Van Arsdell G. S, Redington A. N. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol. 2006; 47(11): 2277-2282
    [98] Hausenloy D. J, Mwamure P. K, Venugopal V, Harris J, Barnard M, Grundy E, Ashley E, Vichare S, Di Salvo C, Kolvekar S, Hayward M, Keogh B, MacAllister R. J, Yellon D. M. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007; 370(9587): 575-579
    [99] Hoole S. P, Heck P. M, Sharples L, Khan S. N, Duehmke R, Densem C. G, Clarke S. C, Shapiro L. M, Schofield P. M, O'Sullivan M, Dutka D. P. Cardiac Remote Ischemic Preconditioning in Coronary Stenting (CRISPStent) Study: a prospective, randomized control trial. Circulation. 2009; 119(6): 820-827
    [100] Wan I. Y, Angelini G. D, Bryan A. J, Ryder I, Underwood M. J. Prevention of spinal cord ischaemia during descending thoracic and thoracoabdominal aortic surgery. Eur J Cardiothorac Surg. 2001; 19(2): 203-213
    [101] Yamazaki M, Mochizuki M, Ikeda Y, Sodeyama T, Okawa A, Koda M, Moriya H. Clinical results of surgery for thoracic myelopathy caused by ossification of the posterior longitudinal ligament: operative indication of posterior decompression with instrumented fusion. Spine. 2006; 31(13):1452-1460
    [102] Hasegawa K, Homma T, Chiba Y. Upper extremity palsy following cervical decompression surgery results from a transient spinal cord lesion. Spine. 2007; 32(6): E197-E202
    [103] Hida K, Yano S, Koyanagi I, Akino M, Seki T, Iwasaki Y. Surgical treatment of cervical spondylosis in the elderly: surgical outcomes, risk factors, and complications. Neurol Med Chir (Tokyo). 2008. 48(9). 377-382
    [104] Neumar R. W. Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med. 2000; 36(5): 483-506
    [105] Wang Y, Xu H, Mizoguchi K, Oe M, Maeta H. Intestinal ischemia induces late preconditioning against myocardial infarction: a role for inducible nitric oxide synthase. Cardiovasc Res. 2001; 49(2): 391-398
    [106] Matyja E, Naganska E, Taraszewska A, Rafalowska J. The mode of spinal motor neurons degeneration in a model of slow glutamate excitotoxicity in vitro. Folia Neuropathol. 2005; 43(1): 7-13
    [107] Matyja E, Taraszewska A, Naganska E, Grieb P, Rafalowska J. CDP-choline protects motor neurons against apoptotic changes in a modelof chronic glutamate excitotoxicity in vitro. Folia Neuropathol. 2008; 46(2): 139-148
    [108] Persson L, Hardemark H. G, Gustafsson J, Rundstrom G, Mndel-Hartvig I, Esscher T, Pahlman S. S-100 protein and neuron-specific enolase in cerebrospinal fluid ad serum: markers of cell damage in human central nervous system. Stroke. 1987; 18(5): 911-918
    [109] Lamers K. J, van Engelen B. G, Gabreels F. J, Hommes O. R, Borm G. F, Wevers R. A. Cerebrospinal neuron-specific enolase, S-100 and myelin basic protein in neurological disorders. Acta Neurol Scand. 1995; 92(3): 247-251
    [110] Yasuda T, Yanagi T, Kameyama T, Mokuno K, Kato K. [Neuron-specific enolase and S-100 protein levels in cerebrospinal fluid of patients with cervical spondylosis and ossification of posterior longitudinal ligaments]. Rinsho Shinkeigaku. 1990; 30(10): 1143-1146
    [111] Marquardt G, Setzer M, Seifert V. Protein S-100b for individual prediction of functional outcome in spinal epidural empyema. Spine; 2004. 29(1): 59-62
    [112]张怡,熊利泽,董海龙.肢体远程预处理通过上调机体抗氧化酶活性诱导兔脊髓缺血耐受.现代生物医学进展,2007;(08):1127-1130
    [113]熊利泽,雷毅,董海龙,陈绍洋,巩固,朱萧玲,桑韩飞,朱妙章.后肢缺血预处理诱导兔脊髓缺血耐受中热休克蛋白90表达的变化.中华创伤杂志,2005;(12):914
    [114]王俊生,赵东风,刘郑生.肢体缺血预处理对兔腰段脊髓急性缺血再灌注损伤的保护作用.中国组织工程研究与临床康复,2007;(12):2265-2268
    [115]刘郑生,王俊生,王岩,侯克东.肢体缺血预处理对兔颈髓慢性缺血后中国脊柱脊髓杂志,2005;(04):235-238
    [116] BRAIN W. R., KNIGHT G. C., BULL J. W. Discussion of rupture of the intervertebral disc in the cervical region. Proc R Soc Med. 1948; 41(8):509-516
    [117] Doppman J. L. The mechanism of ischemia in anteroposterior compression of the spinal cord. Invest Radiol. 1975; 10(6): 543-551
    [118] Fehlings M. G, Skaf G. A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine; 1998. 23(24): 2730-2737
    [119] Gooding M. R, Wilson C. B, Hoff J. T. Experimental cervical myelopathy. Effects of ischemia and compression of the canine cervical spinal cord. J Neurosurg. 1975; 43(1): 9-17
    [120] al-Mefty O, Harkey H. L, Marawi I, Haines D. E, Peeler D. F, Wilner H. I, Smith R. R, Holaday H. R, Haining J. L, Russell W. F, et al. Experimental chronic compressive cervical myelopathy. J Neurosurg. 1993; 79(4): 550-561
    [121] Gledhill R. F, Harrison B. M, McDonald W. I. Demyelination and remyelination after acute spinal cord compression. Exp Neurol. 1973; 38(3): 472-487
    [122] Ogino H, Tada K, Okada K, Yonenobu K, Yamamoto T, Ono K, Namiki H. Canal diameter, anteroposterior compression ratio, and spondylotic myelopathy of the cervical spine. Spine. 1983; 8(1): 1-15
    [123] Sekhon L. H, Fehlings M. G. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 2001; 26(24 Suppl): S2-S12
    [124] Matz P. G. Does nonoperative management play a role in the treatment ofcervical spondylotic myelopathy?. Spine J. 2006; 6(6 Suppl): 175S-181S
    [125] Bucciero A, Vizioli L, Carangelo B, Tedeschi G. MR signal enhancement in cervical spondylotic myelopathy. Correlation with surgical results in 35 cases. J Neurosurg Sci. 1993; 37(4): 217-222
    [126] Suri A, Chabbra R. P, Mehta V. S, Gaikwad S, Pandey R. M. Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J. 2003; 3(1): 33-45
    [127] Rao R. D, Gourab K, David K. S. Operative treatment of cervical spondylotic myelopathy. J Bone Joint Surg Am. 2006. 88(7). 1619-1640
    [128]方科,黄象望.脊髓型颈椎病的手术治疗及进展.现代生物医学进展,2008;(02):380-382
    [129] Jimenez J. C, Sani S, Braverman B, Deutsch H, Ratliff J. K. Palsies of the fifth cervical nerve root after cervical decompression: prevention using continuous intraoperative electromyography monitoring. J Neurosurg Spine. 2005; 3(2): 92-97
    [130] Epstein N. E, Danto J, Nardi D. Evaluation of intraoperative somatosensory-evoked potential monitoring during 100 cervical operations. Spine. 1993; 18(6): 737-747
    [131] Emery S. E, Bohlman H. H, Bolesta M. J, Jones P. K. Anterior cervical decompression and arthrodesis for the treatment of cervical spondylotic myelopathy. Two to seventeen-year follow-up. J Bone Joint Surg Am. 1998; 80(7): 941-951
    [132] Okada K, Shirasaki N, Hayashi H, Oka S, Hosoya T. Treatment of cervical spondylotic myelopathy by enlargement of the spinal canal anteriorly, followed by arthrodesis. J Bone Joint Surg Am. 1991; 73(3): 352-364
    [133] Ono K, Ebara S, Fuji T, Yonenobu K, Fujiwara K, Yamashita K.Myelopathy hand. New clinical signs of cervical cord damage. J Bone Joint Surg Br. 1987; 69(2): 215-219
    [134] Stark R. J, Kennard C, Swash M. Hand wasting in spondylotic high cord compression: an electromyographic study. Ann Neurol. 1981; 9(1): 58-62
    [135] Voskuhl R. R, Hinton R. C. Sensory impairment in the hands secondary to spondylotic compression of the cervical spinal cord. Arch Neurol. 1990; 47(3): 309-311
    [136] Lee T. T, Manzano G. R, Green B. A. Modified open-door cervical expansive laminoplasty for spondylotic myelopathy: operative technique, outcome, and predictors for gait improvement. J Neurosurg. 1997; 86(1): 64-68
    [137] Bertalanffy H, Eggert H. R. Clinical long-term results of anterior discectomy without fusion for treatment of cervical radiculopathy and myelopathy. A follow-up of 164 cases. Acta Neurochir (Wien). 1988; 90(3-4): 127-135
    [138] Edwards CC, Heller J. G, Murakami H. Corpectomy versus laminoplasty for multilevel cervical myelopathy: an independent matched-cohort analysis. Spine. 2002; 27(11): 1168-1175
    [139] Vitzthum H. E, Dalitz K. Analysis of five specific scores for cervical spondylogenic myelopathy. Eur Spine J. 2007; 16(12): 2096-2103
    [140] Nurick S. The natural history and the results of surgical treatment of the spinal cord disorder associated with cervical spondylosis. Brain. 1972; 95(1): 101-108
    [141] Nurick S. The pathogenesis of the spinal cord disorder associated with cervical spondylosis. Brain. 1972; 95(1): 87-100
    [142] Hukuda S, Mochizuki T, Ogata M, Shichikawa K, Shimomura Y.Operations for cervical spondylotic myelopathy. A comparison of the results of anterior and posterior procedures. J Bone Joint Surg Br. 1985; 67(4): 609-615
    [143] Yue W. M, Tan S. B, Tan M. H, Koh D. C, Tan C. T. The Torg--Pavlov ratio in cervical spondylotic myelopathy: a comparative study between patients with cervical spondylotic myelopathy and a nonspondylotic, nonmyelopathic population. Spine. 2001; 26(16): 1760-1764
    [144] Chiles BW rd, Leonard M. A, Choudhri H. F, Cooper P. R. Cervical spondylotic myelopathy: patterns of neurological deficit and recovery after anterior cervical decompression. Neurosurgery. 1999; 44(4): 762-769
    [145] Prolo D. J, Oklund S. A, Butcher M. Toward uniformity in evaluating results of lumbar spine operations. A paradigm applied to posterior lumbar interbody fusions. Spine. 1986; 11(6): 601-606
    [146] Ratliff J, Voorhies R. M. Outcome study of surgical treatment for axial neck pain. South Med J. 2001; 94(6): 595-602
    [147] Dvorak J, Sutter M, Herdmann J. Cervical myelopathy: clinical and neurophysiological evaluation. Eur Spine J. 2003; 12 Suppl 2: S181-S187
    [148] Flynn T. B. Neurologic complications of anterior cervical interbody fusion. Spine. 1982; 7(6): 536-539
    [149] Yonenobu K, Hosono N, Iwasaki M, Asano M, Ono K. Neurologic complications of surgery for cervical compression myelopathy. Spine. 1991; 16(11): 1277-1282
    [150] Satomi K, Ogawa J, Ishii Y, Hirabayashi K. Short-term complications and long-term results of expansive open-door laminoplasty for cervical stenotic myelopathy. Spine J. 2001; 1(1): 26-30
    [151] Komagata M, Nishiyama M, Endo K, Ikegami H, Tanaka S, Imakiire A.Prophylaxis of C5 palsy after cervical expansive laminoplasty by bilateral partial foraminotomy. Spine J. 2004; 4(6): 650-655
    [152] Baptiste D. C, Fehlings M. G. Pathophysiology of cervical myelopathy. Spine J. 2006; 6(6 Suppl): 190S-197S
    [153] Hasegawa K, Homma T, Chiba Y. Upper extremity palsy following cervical decompression surgery results from a transient spinal cord lesion. Spine. 2007; 32(6): E197-E202
    [154] Hida K, Yano S, Koyanagi I, Akino M, Seki T, Iwasaki Y. Surgical treatment of cervical spondylosis in the elderly: surgical outcomes, risk factors, and complications. Neurol Med Chir (Tokyo). 2008; 48(9): 377-382
    [155] Vaziri N. D, Lee Y. S, Lin C. Y, Lin V. W, Sindhu R. K. NAD(P)H oxidase, superoxide dismutase, catalase, glutathione peroxidase and nitric oxide synthase expression in subacute spinal cord injury. Brain Res. 2004; 995(1): 76-83
    [156] Tator C. H, Fehlings M. G. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991; 75(1): 15-26
    [157]赵立,李涛,贾连顺.脊髓继发性损伤机制的研究.中华创伤杂志, 1998;(02):62-63
    [158] Sakaura H, Hosono N, Mukai Y, Ishii T, Yoshikawa H. C5 palsy after decompression surgery for cervical myelopathy: review of the literature. Spine. 2003; 28(21): 2447-2451
    [159]朱守荣,刘郑生,侯克东,王岩,肖嵩华,刘保卫.脊髓再灌注损伤的临床诊断及围手术期处理.解放军医学杂志,2006;(11):1099-1100
    [160] Abraham V. S, Swain J. A, Forgash A. J, Williams B. L, Musulin M. M. Ischemic preconditioning protects against paraplegia after transient aorticocclusion in the rat. Ann Thorac Surg. 2000; 69(2): 475-479
    [161] Toumpoulis I. K, Anagnostopoulos C. E. Early ischemic preconditioning for spinal cord protection. Ann Thorac Surg. 2003; 76(4): 1340-1341
    [162] Walsh S. R, Tang T, Sadat U, Dutka D. P, Gaunt M. E. Cardioprotection by remote ischaemic preconditioning. Br J Anaesth. 2007; 99(5): 611-616
    [163] Hu Y, Ding Y, Ruan D, Wong Y. W, Cheung K. M, Luk K. D. Prognostic value of somatosensory-evoked potentials in the surgical management of cervical spondylotic myelopathy. Spine. 2008; 33(10): E305-E310
    [164] Burdess A, Newby D. Harnessing the preconditioning phenomenon: does remote organ ischaemia provide the answer?. Heart. 2006; 92(10): 1367-1368
    [165] Sang H, Cao L, Qiu P, Xiong L, Wang R, Yan G. Isoflurane produces delayed preconditioning against spinal cord ischemic injury via release of free radicals in rabbits. Anesthesiology. 2006; 105(5): 953-960
    [166] Nie H, Xiong L, Lao N, Chen S, Xu N, Zhu Z. Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits. J Cereb Blood Flow Metab. 2006; 26(5): 666-674
    [167] Dong H, Xiong L, Zhu Z, Chen S, Hou L, Sakabe T. Preconditioning with hyperbaric oxygen and hyperoxia induces tolerance against spinal cord ischemia in rabbits. Anesthesiology. 2002; 96(4): 907-912
    [168] Zhao H, Xiong L. Z, Dong H. L, Chen S. Y, Lu Z. H, Sun Y. Y, Sun J, Gao P. [Protective effect of remote ischemic preconditioning against focal cerebral ischemia/reperfusion injury in rats]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2007; 19(6): 340-342
    [169] Ren C, Gao X, Steinberg G. K., Zhao H. Limb remote-preconditioningprotects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience. 2008; 151(4): 1099-1103
    [170] Cheung W. Y, Arvinte D, Wong Y. W, Luk K. D, Cheung K. M. Neurological recovery after surgical decompression in patients with cervical spondylotic myelopathy - a prospective study. Int Orthop. 2008; 32(2): 273-278
    [171] Lamers K. J, Vos P, Verbeek M. M, Rosmalen F, van Geel W. J, van Engelen B. G. Protein S-100B, neuron-specific enolase (NSE), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) and blood of neurological patients. Brain Res Bull. 2003; 61(3): 261-264
    [172] Cao F, Yang X. F, Liu W. G, Hu W. W, Li G, Zheng X. J, Shen F, Zhao X. Q, Lv S. T. Elevation of neuron-specific enolase and S-100beta protein level in experimental acute spinal cord injury. J Clin Neurosci. 2008; 15(5): 541-544
    [173] Przyklenk K, Darling C. E, Dickson E. W, Whittaker P. Cardioprotection 'outside the box'--the evolving paradigm of remote preconditioning. Basic Res Cardiol. 2003; 98(3): 149-157
    [174] Heidbreder M, Naumann A, Tempel K, Dominiak P, Dendorfer A. Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways. Cardiovasc Res. 2008; 78(1): 108-115
    [175] Downey J. M, Davis A. M, Cohen M. V. Signaling pathways in ischemic preconditioning. Heart Fail Rev. 2007; 12(3-4): 181-188
    [176] Das M, Das D. K. Molecular mechanism of preconditioning. IUBMB Life. 2008; 60(4): 199-203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700