用户名: 密码: 验证码:
阳离子环肽对胰岛素经皮和跨膜促渗作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经皮给药系统具有维持药物血药浓度稳定,避免口服给药引起的肝脏首过效应,给药方便等优点。亲水性大分子药物很难透过皮肤产生药效,目前主要以注射的方式给药,导致患者适应性较差。因此亲水性大分子经皮肤的有效跨膜转运研究具有重要意义。
     文献报道环肽TD-1(ACSSSPSKHCG)可以促进胰岛素的经皮吸收。由于富含阳离子氨基酸的细胞穿膜肽具有跨膜转运能力,因此本研究以TD-1为骨架采用阳离子氨基酸精氨酸或赖氨酸扫描的方法设计合成了系列阳离子环肽,发现在设计的系列环肽中,N-5位是阳离子环肽的结构改造位点,其中N-5和N-6位双赖氨酸取代的阳离子环肽TD-34(ACSSKKSKHCG)表现出最好的经皮和跨膜促渗活性。5μmol/mL TD-34和21IU/mL胰岛素的混合溶液分别进行了在体经皮输送和跨膜转运实验,经皮给药8h后,糖尿病大鼠血糖浓度下降为初始值的26%;跨膜转运2h后,胰岛素跨Caco-2细胞单层膜(BL→AP)的Papp值从0.27×10-6cm/s增加到0.69×10-6cm/s。对系列环肽的经皮和跨膜促渗能力比较,发现不同环肽作用下胰岛素在Caco-2细胞单层膜外排侧(BL→AP)的转运能力与在体经皮吸收能力具有较好的相关性(R2=0.73),因此Caco-2细胞单层膜的外排侧可以用于阳离子环肽对胰岛素经皮促渗活性的评价。
     采用原子力显微镜(AFM)轻敲模式观察大气环境下Caco-2细胞膜的微观形态变化,发现阳离子环肽TD-34(ACSSKKSKHCG)作用于Caco-2细胞膜后,Caco-2细胞膜表面失去原有的平整性和光滑性,细胞膜表面粗糙度较未处理组提高91%,推测该变化可能与TD-34内吞进入细胞过程有关。在跨膜转运实验中,与未处理组比较胞吞抑制剂处理组TD-34跨膜转运量下降约49%,进一步证明了TD-34主要以内吞的方式跨膜转运。
     分别进行了三组胰岛素跨膜转运实验(对照组,胞吞抑制剂组,4℃组),空白对照组胰岛素跨细胞膜两侧转运的Papp值比值(PDR)明显高于1.5,说明胰岛素跨膜转运存在主动转运过程,同时这一转运过程并没有随着实验温度由37℃下降到4℃或胞吞抑制剂(氧化苯砷)的作用而完全被抑制,因此推测胰岛素跨Caco-2细胞单层膜的转运包括了被动扩散在内的多种转运方式。此外,采用促渗肽TD-34处理的Caco-2细胞单层膜阻值呈迅速下降趋势,去除TD-34后Caco-2细胞单层膜的阻值逐渐恢复,整个过程中的Caco-2细胞单层膜电阻值呈现可逆性的变化。免疫组化研究表明Caco-2细胞单层膜电阻值的变化与紧密连接蛋白Claudin-1的荧光的消失与重现具有密切相关性,该结果有力的证明了TD-34通过可逆地松弛Caco-2细胞单层膜间的紧密连接促进了胰岛素的细胞旁路转运。
     综合以上研究得到如下结论:在阳离子环肽中阳离子基团的含量和位置决定了环肽对胰岛素经皮和跨膜促渗的能力,Caco-2细胞单层膜外排侧可用于预测环肽对胰岛素的经皮和跨膜促渗能力,机理研究证明TD-34通过可逆的松弛紧密连接蛋白增加胰岛素的细胞旁路转运。该结论为今后研究生物大分子经皮输送促渗技术提供了重要的理论依据。
The advantages of transdermal delivery system are as follows:It can provide constant blood levels in the plasma; It can provide first-pass metabolism in the gastrointestinal tract and liver; It is suitable for patients who are unconscious or vomiting and rely on self-administration and so on. The biomolecules are usually taken as an injected way, so effective delivery of therapeutic biomolecules across skin and biomembranes is a challenging topic.
     Transdermal peptide (TD-1) has exhibited enhancement activity on insulin transdermal delivery. As cell penetrating peptides were rich in cationic amino acids, a series of cationic cyclopeptides based on the sequence of TD-1(ACSSSPSKHCG) were designed by partial arginine or lysine scan method. Among these peptides, TD-34(ACSSKKSKHCG) with bis-substituted lysine in N-5and N-6showed the best transdermal and transmembrane enhancement activity, the blood glucose level lower to about26%of initial after transdermal administrating21IU/mL insulin with5μmol/mL TD-34for8h to diabetic rats in vivo, and the Papp value of insulin in basolateral side of Caco-2cell monolayers was increased from0.27×10-6cm/s to0.69×10-6cm/s. In addition, the transmembrane permeability in Caco-2cell monolayers (BL→AP) exhibited preferable correlation with percutaneous absorption of insulin (R2=0.73), it is suggested that Caco-2cell monolayers can be used in assessing the transdermal enhancement activity of cationic cyclopeptides.
     AFM was used to observe the microstructure of Caco-2cell membrane treated with a cationic cyclopeptide (TD-34) at air condition and tapping mode using AFM. Results showed that the surface of Caco-2cell membrane treated with TD-34became rough, the mean square roughness increased91%, which implied the increased roughness of Caco-2cell membrane might be correlated with endocytosis process of TD-34. Transportation of TD-34decreased49%when Caco-2cell monolayers were treated with an endocytosis inhibitor. This result further testified TD-34transported across Caco-2cell monolayers by an endocytosis route.
     Transport studies (control group, endocytosis inhibitor group,4℃group) of insulin were did. PDR of insulin was large than1.5in control group which indicated insulin transported across Caco-2cell monoayers by an active process. But when an endocytosis inhibitor (PAO) was added or temperature was decreased from37℃to4℃, Papp value of insulin was not totally inhibited. This result indicated that insulin transported across Caco-2cell monolayers by mutiple routes including passive diffusion. In addition, transepithelial electrical resistance (TEER) value was monitored for24h immediately after the beginning of transport experiments. Moreover, the tight junction protein (Claudin-1) was localized by confocal immunofluorescence microscopy. Results showed the transport of insulin alone across biomembranes was attributable to multiple routes including passive diffusion. When TD-34was treated on Caco-2cell mono layers, TEER values decreased reversibly, and it was correlated with the reappearance of tight junction proteins by immunostaining assay. This result testified TD-34enhanced insulin delivery by loosening tight junction in a reversible way.
     It is concluded that appropriate content and position of cationic group in cyclopeptides may improve percutaneous absorption and transmembrane ability of insulin, and Caco-2cell monolayers (BL→AP) might be applied to predict the percutaneous absorption of insulin chaperoned by a cyclopeptide in vivo. The mechanism studies testified that the cationic cyclopeptide (TD-34) had the potential to enhance paracellular delivery of insulin across Caco-2cell monolayers by loosening tight junction in a reversible way. This work provided an important theoretically basis for researching the transdermal or transmembrane enhancement techniques for biomacromolecules.
引文
[1]Barry B W. Novel mechanisms and devices to enable successful transdermal drug delivery [J]. Eur J Pharm Sci, 2001,14:101-114.
    [2]Scheindlin S. Transdermal drug delivery:PAST, PRESENT, FUTURE [J]. Mol Interv,2004,4: 308-312.
    [3]Naik A, Kalia Y N, Guy R H. Transdermal drug delivery:overcoming the skin's barrier function [J]. Pharm Sci Technolo Today,2000,3:318-326.
    [4]Prausnitz M R, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery [J]. Nat Rev Drug Discov,2004,3:115-124.
    [5]Sadrzadeh N, Glembourtt M J, Stevenson C L. Peptide drug delivery strategies for the treatment of diabetes [J]. J Pharm Sci 2007,96:1925-1954.
    [6]Krishnankutty R K, Mathew A, Sedimbi S K, et al. Alternative routes of insulin delivery [J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2009,34:933-948.
    [7]Ogiso T, Tanino T. [Transdermal delivery of drugs and enhancement of percutaneous absorption] [J].Yakugaku Zasshi,2000,120:328-338.
    [8]Thomas B J, Finnin B C. The transdermal revolution [J]. Drug Discov Today,2004,9:697-703.
    [9]Guy R H. Current status and future prospects of transdermal drug delivery [J]. Pharm Res,1996, 13:1765-1769.
    [10]Shokri J, Nokhodchi A, Dashbolaghi A, et al. The effect of surfactants on the skin penetration of diazepam [J]. Int J Pharm,2001,228:99-107.
    [11]Langer R. Transdermal drug delivery:past progress, current status, and future prospects [J]. Adv Drug Deliv Rev,2004,56:557-558.
    [12]Chen Y, Shen Y, Guo X, et al. Transdermal protein delivery by a coadministered peptide identified via phage display [J]. Nat BiotechnoL,2006,24:455-460.
    [13]http://tupian.baike.com/a0_44_66_19300001176451130960664994233_jpg.html.
    [14]Finnin B C, Morgan T M. Transdermal penetration enhancers:applications, limitations, and potential [J]. J Pharm Sci, 1999,88:955-958.
    [15]Alexander A, Dwivedi S, Ajazuddin, et al, Approaches for breaking the barriers of drug permeation through transdermal drug delivery [J]. J Control Release,2012,164:26-40.
    [16]Choi J, Choi M K, Chong S, et al. Effect of fatty acids on the transdermal delivery of donepezil: in vitro and in vivo evaluation [J]. Int J Pharm,2012,422:83-90.
    [17]He W, Guo X, Xiao L, et al. Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers [J]. Int J Pharm,2009,382:234-243.
    [18]Vavrova K, Lorencova K, Novotny J, et al. Permeation enhancer dodecyl 6-(dimethylamino)hexanoate increases transdermal and topical delivery of adefovir:influence of pH, ion-pairing and skin species [J]. Eur J Pharm Biopharm,2008,70:901-907.
    [19]Zhang C F, Yang Z L, Luo J B, et al. Effects of cinnamene enhancers on transdermal delivery of ligustrazine hydrochloride [J].Eur J Pharm Biopharm,2007,67:413-419.
    [20]Nicolazzo J A, Morgan T M, Reed B L, et al. Synergistic enhancement of testosterone transdermal delivery [J].J Control Release,2005,103:577-585.
    [21]Singh B N, Singh R B, Singh J. Effects of ionization and penetration enhancers on the transdermal delivery of 5-fluorouracil through excised human stratum corneum [J]. Int J Pharm, 2005,298:98-107.
    [22]Masson M, Loftsson T, Masson G, et al. Cyclodextrins as permeation enhancers:some theoretical evaluations and in vitro testing [J]. J Control Release,1999,59:107-118.
    [23]Yamane M A, Williams A C, Barry B W. Effects of terpenes and oleic acid as skin penetration enhancers towards 5-fluorouracil as assessed with time; permeation, partitioning and differential scanning calorimetry [J]. International Journal of Pharmaceutics,1995,116:237-251.
    [24]Gumming K I, Winfield A J. In vitro evaluation of a series of sodium carboxylates as dermal penetration enhancers [J]. International Journal of Pharmaceutics,1994,108:141-148.
    [25]T.Marjukka Turunen S B, Nadir Buyuktimkin, Arto Urtti, Petteri Paronen, J.Howard Rytting,. Enhanced delivery of 5-fluorouracil through shed snake skin by two new transdermal penetration enhancers [J]. International Journal of Pharmaceutics,1993,92:89-95.
    [26]Bezema F R M, E.; Roemele, P.E.H.; Brussee, J.; Bodde, H.E.; deGroot, H.J.M. H-2 NMR Evidence for dynamic disorder in human skin induced by the penetration enhancer Azone [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,1996,52:785-791.
    [27]Aarti Naik L A R M P, Russell O. Potts, Richard H. Guy. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans [J]. Journal of Controlled Release,1995,37:299-306.
    [28]Francoeur M L, Golden G M, Potts R O. Oleic acid:its effects on stratum corneum in relation to (trans)dermal drug delivery [J]. Pharm Res,1990,7:621-627.
    [29]Narishetty S T, Panchagnula R. Transdermal delivery of zidovudine:effect of terpenes and their mechanism of action [J]. J Control Release,2004,95:367-379.
    [30]Vaddi H K, Ho P C, Chan Y W, et al. Terpenes in ethanol:hatoperidol permeation and partition through human skin and stratum corneum changes [J]. J Control Release,2002,81:121-133.
    [31]Vaddi H K, Ho P C, Chan S Y. Terpenes in propylene glycol as skin-penetration enhancers: permeation and partition of haloperidol, Fourier transform infrared spectroscopy, and differential scanning calorimetry [J].J Pharm Sci,2002,91:1639-1651.
    [32]Kuriliara-Bergstrom T, Knutson K, DeNoble L J, et al. Percutaneous absorption enhancement of an ionic molecule by ethanol-water systems in human skin [J]. Pharm Res,1990,7:762-766.
    [33]Akimoto T, Nagase Y. Novel transdermal drug penetration enhancer:synthesis and enhancing effect of alkyldisiloxane compounds containing glucopyranosyl group [J]. J Control Release,2003, 88:243-252.
    [34]Tas C, Mansoor S, Kalluri H, et al. Delivery of salmon calcitonin using a microneedle patch [J]. Int J Pharm,2012,423:257-263.
    [35]Herwadkar A, Sachdeva V, Taylor L F, et al. Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen [J]. Int J Pharm,2012,423:289-296.
    [36]Baek C, Han M, Min J, et al. Local transdermal delivery of phenylephrine to the anal sphincter muscle using microneedles [J]. J Control Release,2011,154:138-147.
    [37]Edens C, Collins M L, Ayers J, et al. Measles vaccination using a microneedle patch [J]. Vaccine, 2012.
    [38]Sachdeva V, Kim H D, Friden P M, et al. Iontophoresis mediated in vivo intradermal delivery of terbinafine hydrochloride [J]. Int J Pharm,2010,393:112-118.
    [39]Milewski M, Yerramreddy T R, Ghosh P, et al. In vitro permeation of a pegylated naltrexone prodrug across microneedle-treated skin [J].J Control Release,2010,146:37-44.
    [40]Donnelly R F, Morrow D I, McCarron P A, et al. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid:potential for enhanced topical photodynamic therapy [J]. J Control Release, 2008,129:154-162.
    [41]Denet A R, Vanbever R, Preat V. Skin electroporation for transdermal and topical delivery [J]. Adv Drug Deliv Rev,2004,56:659-674.
    [42]Mutoh M, Ueda H, Nakamura Y, et al. Characterization of transdermal solute transport induced by tow-frequency ultrasound in the hairless rat skin [J]. J Control Release,2003,92:137-146.
    [43]Junginger H E. Iontophoretic delivery of apomorphine:from in-vitro modelling to the Parkinson patient [J]. Adv Drug Deliv Rev,2002,54 Suppl 1:S57-75.
    [44]Lee W R, Shen S C, Wang K H, et al. The effect of laser treatment on skin to enhance and control transdermal delivery of 5-fluorouracil [J].J Pharm Sci,2002,91:1613-1626.
    [45]Boucaud A, Machet L, Arbeille B, et al. In vitro study of tow-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin [J]. Int J Pharm, 2001,228:69-77.
    [46]Vanbever R, Preat V V. In vivo efficacy and safety of skin electroporation [J]. Adv Drug Deliv Rev,1999,35:77-88.
    [47]Murthy S N. Magnetophoresis:an approach to enhance transdermal drug diffusion [J]. Pharmazie, 1999,54:377-379.
    [48]Chien Y W, Siddiqui O, Shi W M, et al. Direct current iontophoretic transdermal delivery of peptide and protein drugs [J]. J Pharm Sci,1989,78:376-383.
    [49]Fang J Y, Hwang T L, Huang Y B, et al. Transdermal iontophoresis of sodium nonivamide acetate. V. Combined effect of physical enhancement methods [J]. Int J Pharm,2002,235: 95-105.
    [50]Chien Y W, Banga A K. Iontophoretic (transdermal) delivery of drugs:overview of historical development [J]. J Pharm Sci, 1989,78:353-354.
    [51]Prausnitz M R, Bose V G, Langer R, et al. Electroporation of mammalian skin:a mechanism to enhance transdermal drug delivery [J]. Proc Natl Acad Sci U S A,1993,90:10504-10508.
    [52]Mitragotri S, Kost J. Low-frequency sonophoresis:a review [J]. Adv Drug Deliv Rev,2004,56: 589-601.
    [53]Friedland J A, Buchel E W. Skin care and the topical treatment of aging skin [J]. Clin Plast Surg, 2000,27:501-506.
    [54]Vandervoort J, Ludwig A. Microneedles for transdermal drug delivery:a minireview [J]. Front Biosci,2008,13:1711-1715.
    [55]Lee S, Kollias N, McAuliffe D J, et al. Topical drug delivery in humans with a single photomechanical wave [J]. Pharm Res,1999,16:1717-1721.
    [56]Tan Y T, Tillett D J, McKay I A. Molecular strategies for overcoming antibiotic resistance in bacteria [J]. Mol Med Today,2000,6:309-314.
    [57]Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin:isolation, characterization of two active forms, and partial cDNA sequence of a precursor [J]. Proc Natl Acad Sci U S A,1987,84:5449-5453.
    [58]Lai R, Liu H, Hui Lee W, et al. An anionic antimicrobial peptide from toad Bombina maxima [J]. Biochem Biophys Res Commun,2002,295:796-799.
    [59]Belokoneva O S, Satake H, Mal'tseva E L, et al. Pore formation of phospholipid membranes by the action of two hemoclytic arachnid peptides of different size [J]. Biochim Biophys Acta,2004, 1664:182-188.
    [60]Ehret-Sabatier L, Loew D, Goyffon M, et al. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood [J]. J Biol Chem,1996,271:29537-29544.
    [61]Blondelle S E, Takahashi E, Dinh K. T, et al. The antimicrobial activity of hexapeptides derived from synthetic combinatorial libraries [J]. J Appl Bacteriol, 1995,78:39-46.
    [62]Fehlbaum P, Bulet P, Chernysh S, et al. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides [J]. Proc Natl Acad Sci U S A,1996,93:1221-1225.
    [63]Frohm M, Agerberth B, Ahangari G, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders [J]. J Biol Chem, 1997,272:15258-15263.
    [64]Miyata T, Tokunaga F, Yoneya T, et al. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin Ⅱ, and polyphemusins Ⅰ and Ⅱ:chemical structures and biological activity [J]. J Biochem,1989,106:663-668.
    [65]Park C B, Lee J H, Park I Y, et al. A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus [J]. FEBS Lett,1997,411:173-178.
    [66]Thoren P E, Persson D, Karlsson M, et al. The antennapedia peptide penetratin translocates across lipid bilayers-the first direct observation [J]. FEBS Lett,2000,482:265-268.
    [67]Nakamura T, Furunaka H, Miyata T, et al. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure [J]. J Biol Chem,1988,263:16709-16713.
    [68]Heller W T, Waring A J, Lehrer R I, et al. Membrane thinning effect of the beta-sheet antimicrobial protegrin [J]. Biochemistry,2000,39:139-145.
    [69]Park Y, Park S N, Park S C, et al. Synergism of Leu-Lys rich antimicrobial peptides and chloramphenieol against bacterial cells [J]. Biochim Biophys Acta,2006,1764:24-32.
    [70]Agerberth B, Gunne H, Odeberg J, et al. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis [J]. Proc Natl Acad Sci U S A,1995,92: 195-199.
    [71]Lee I H, Zhao C, Cho Y, et al. Clavanins, alpha-helical antimicrobial peptides from tunicate hemocytes [J]. FEBS Lett,1997,400:158-162.
    [72]Selsted M E, Novotny M J, Morris W L, et al. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils [J]. J Biol Chem,1992,267:4292-4295.
    [73]Schittek B, Hipfel R, Sauer B, et al. Dermcidin:a novel human antibiotic peptide secreted by sweat glands [J]. Nat Immunol,2001,2:1133-1137.
    [74]Cornut I, Buttner K, Dasseux J L, et al. The amphipathic alpha-helix concept. Application to the de novo design of ideally amphipathic Leu, Lys peptides with hemolytic activity higher than that of melittin [J]. FEBS Lett,1994,349:29-33.
    [75]Wessman P, Morin M, Reijmar K, et al. Effect of alpha-helical peptides on liposome structure:a comparative study of melittin and alamethicin [J]. J Colloid Interface Sci,2010,346:127-135.
    [76]Hsu T, Mitragotri S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer [J]. Proc Natl Acad Sci U S A,2011,108:15816-15821.
    [77]Lopes L B, Brophy C M, Furnish E, et al. Comparative study of the skin penetration of protein transduction domains and a conjugated peptide [J]. Pharm Res,2005,22:750-757.
    [78]Rothbard J B, Garlington S, Lin Q, et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation [J]. Nat Med,2000,6:1253-1257.
    [79]Schutze-Redelmeier M P, Kong S, Bally M B, et al. Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes [J]. Vaccine,2004, 22:1985-1991.
    [80]Zheng Sun L W. Transdermal delivery of fusion green fluorescent protein mediated by covalently associated TD1 peptide [J]. JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA 2009,39:344-350.
    [81]王珊珊,透皮增强肽TD-1与表皮生长因子融合蛋白功能的研究,中国科学技术大学,2011.
    [82]Carmichael N M, Dostrovsky J O, Charlton M P. Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin [J]. Pain,2010,149: 316-324.
    [83]Zhang T, Qu H, Li X, et al. Transmembrane delivery and biological effect of human growth hormone via a phage displayed peptide in vivo and in vitro [J]. J Pharm Sci,2010,99:4880-4891.
    [84]Flemer S, Jr. Selenol protecting groups in organic chemistry:special emphasis on selenocysteine Se-protection in solid phase peptide synthesis [J]. Molecules,2011,16:3232-3251.
    [85]Miyoshi K, Otaka A, Kaneko M, et aL A new practical strategy for the synthesis of long-chain phosphopeptide [J]. Chem Pharm Bull (Tokyo),2000,48:1230-1233.
    [86]Stanger K J, Krchnak V. Incorporation of the Wang linker upon cleavage from polystyrene-based resin to form O-(4-hydroxy)benzyl derivatives [J]. J Comb Chem,2006,8:652-654.
    [87]Kocsis L, Ruff F, Orosz G. The effect of peptide length on the cleavage kinetics of 2-chlorotrityl resin-bound ethers [J]. J Pept Sci,2006,12:428-436.
    [88]Wang S S, Wang B S, Hughes J L, et al. Cleavage and deprotection of peptides on MBHA-resin with hydrogen bromide [J]. Int J Pept Protein Res,1992,40:344-349.
    [89]Yang X, Lin H, Lu W, et al. Compatibility study of Merrifield linker in Fmoc strategy peptide synthesis [J]. Protein Pept Lett,2013,20:140-145.
    [90]Rakosi K, Szolomajer-Csikos O, Kalmar L, et al. Synthesis of N-glycopeptides applying glycoamino Acid building blocks with a combined fmoc/boc strategy [J]. Protein Pept Lett,2011, 18:679-683.
    [91]Ghassemian A, Vila-Farres X, Alewood P F, et al. Solid phase synthesis of peptide-selenoesters [J]. Bioorg Med Chem,2013,21:3473-3478.
    [92]Chan L C, Cox B G. Kinetics of amide formation through carbodiimide/N-hydroxybenzotriazole (HOBt) couplings [J]. J Org Chem,2007,72:8863-8869.
    [93]Sureshbabu V V, Lalithamba H S, Narendra N, et al. New and simple synthesis of acid azides, ureas and carbamates from carboxylic acids:application of peptide coupling agents EDC and HBTU [J]. Org Biomol Chem,2010,8:835-840.
    [94]Chen L, Annis 1, Barany G. Disulfide bond formation in peptides [J]. Curr Protoc Protein Sci, 2001, Chapter 18:Unitl8 16.
    [95]Hilgers A R, Conradi R A, Burton P S. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa [J]. Pharm Res,1990,7:902-910.
    [96]Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport [J]. Adv Drug Deliv Rev,2001,46:27-43.
    [97]Toropainen E, Ranta V P, Vellonen K S, et al. Paracellular and passive transcellular permeability in immortalized human corneal epithelial cell culture model [J]. Eur J Pharm Sci,2003,20: 99-106.
    [98]Colombini A, Perego S, Ardoino I, et al. Evaluation of a possible direct effect by casein phosphopeptides on paracellular and vitamin D controlled transcellular calcium transport mechanisms in intestinal human HT-29 and Caco2 cell lines [J]. Food Funct,2013.
    [99]Ara K M, Akhoondpouramiri Z, Raofie F. Carrier mediated transport solvent bar microextraction for preconcentration and determination of dexamethasone sodium phosphate in biological fluids and bovine milk samples using response surface methodology [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2013,931C:148-156.
    [100]Zhu Z B, Makhija S K, Lu B, et al. Transport across a polarized monolayer of Caco-2 cells by transferrin receptor-mediated adenovirus transcytosis [J]. Virology,2004,325:116-128.
    [101]庾庆华,肠上皮细胞紧密连接调节的研究,南京农业大学,2009年.
    [102]http://www.cakon.com.cn/optical.htm.
    [103]Madl J, Rhode S, Stangl H, et al. A combined optical and atomic force microscope for live cell investigations [J]. Ultramicroscopy,2006,106:645-651.
    [104]San Paulo A, Garcia R. High-resolution imaging of antibodies by tapping-mode atomic force microscopy:attractive and repulsive tip-sample interaction regimes [J]. Biophys J,2000,78: 1599-1605.
    [105]Zhexue Lu L, Zhiling Zhang,Wanliang Shi,Zhixiong Xie,Haiyan Xie,Daiwen Pang, Ping Shen. Cell Damage Induced by Photocatalysis of TiO2 Thin Films [J]. Langmuir,2003,19:8765-8768.
    [106]Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts:an atomic force microscopy study [J]. Biophys J,2000,78:520-535.
    [107]Girasole M, Cricenti A, Generosi R, et al. Artificially induced unusual shape of erythrocytes:an atomic force microscopy study [J]. J Microsc,2001,204:46-52.
    [108]Girasole M, Pompeo G, Cricenti A, et al. Roughness of the plasma membrane as an independent morphological parameter to study RBCs:a quantitative atomic force microscopy investigation [J]. Biochim Biophys Acta,2007,1768:1268-1276.
    [109]Martens J C, Radmacher M. Softening of the actin cytoskeleton by inhibition of myosin II [J]. Pflugers Arch,2008,456:95-100.
    [110]Bremmell K E, Evans A, Prestidge C A. Deformation and nano-rheology of red blood cells:an AFM investigation [J]. Colloids Surf B Biointerfaces,2006,50:43-48.
    [111]Shaikh I M, Jadhav K R, Ganga S, et al. Advanced approaches in insulin delivery [J]. Curr Pharm BiotechnoL.2005,6:387-395.
    [112]Huang Y Y, Wang C H. Pulmonary delivery of insulin by liposomal carriers [J]. J Control Release,2006,113:9-14.
    [113]Li Y Z, Quan Y S, Zang L, et al. Transdermal delivery of insulin using trypsin as a biochemical enhancer [J]. Biol Pharm Bull,2008,31:1574-1579.
    [114]Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery [J]. Science,1995,269:850-853.
    [115]Kanikkannan N, Singh J, Ramarao P. Transdermal iontophoretic delivery of bovine insulin and monomeric human insulin analogue [J]. J Control Release,1999,59:99-105.
    [116]Boucaud A, Garrigue M A, Machet L, et al. Effect of sonication parameters on transdermal delivery of insulin to hairless rats [J]. J Control Release,2002,81:113-119.
    [117]Sen A, Daly M E, Hui S W. Transdermal insulin delivery using lip id enhanced electroporation [J]. Biochim Biophys Acta,2002,1564:5-8.
    [118]Zhou C P, Liu Y L, Wang H L, et al. Transdermal delivery of insulin using microneedle rollers. in vivo [J]. Int J Pharm,2010,392:127-133.
    [119]Hou Y W, Chan M H, Hsu H R, et al. Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides [J]. Exp Dermatol,2007,16: 999-1006.
    [120]Prausnitz M R. A peptide chaperone for transdermal drug delivery [J]. Nat Biotechnol,2006,24: 416-417.
    [121]Patel L N, Wang J, Kim K J, et al. Conjugation with cationic cell-penetrating peptide increases pulmonary absorption of insulin [J]. Mol Pharm,2009,6:492-503.
    [122]Derossi D, Joliot A H, Chassaing G, et al. The third helix of the Antennapedia homeodomain translocates through biological membranes [J]. J Biol Chem,1994,269:10444-10450.
    [123]Brooks H, Lebleu B, Vives E. Tat peptide-mediated cellular delivery:back to basics [J]. Adv Drug Deliv Rev,2005,57:559-577.
    [124]Hallbrink M, Floren A, Elmquist A, et al. Cargo delivery kinetics of cell-penetrating peptides [J]. Biochim Biophys Acta,2001,1515:101-109.
    [125]Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery [J]. J Biol Chem,2001,276:5836-5840.
    [126]Beerens A M, Al Hadithy A F, Rots M G, et al. Protein transduction domains and their utility in gene therapy [J]. Curr Gene Ther,2003,3:486-494.
    [127]Ohtake K, Natsume H, Ueda H, et al. Analysis of transient and reversible effects of poly-L-arginine on the in vivo nasal absorption of FITC-dextran in rats [J]. J Control Release, 2002,82:263-275.
    [128]Artursson P, Lindmark T, Davis S S, et al. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2)[J]. Pharm Res,1994,11:1358-1361.
    [129]Morita K, Miyachi Y. Tight junctions in the skin [J]. J Dermatol Sci,2003,31:81-89.
    [130]Todo H, Kimura E, Yasuno H, et al. Permeation pathway of macromolecules and nanospheres through skin [J]. Biol Pharm Bull,2010,33:1394-1399.
    [131]Matsuzaki K, Murase O,Fujii N,et al. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore [J]. Biochemistry,1995,34:6521-6526.
    [132]Abla N, Naik A, Guy R H, et al. Effect of charge and molecular weight on transdermal peptide delivery by iontophoresis [J]. Pharm Res,2005,22:2069-2078.
    [133]Pralle A, Keller P, Florin E L, et al. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells [J]. J Cell Biol,2000,148:997-1008.
    [134]Dietrich C, Yang B, Fujiwara T, et al. Relationship of lipid rafts to transient confinement zones detected by single particle tracking [J]. Biophys J,2002,82:274-284.
    [135]Lenne P F, Wawrezinieck L, Conchonaud F, et al. Dynamic molecular confinement in the plasma membrane by mierodomains and the cytoskeleton meshwork [J]. EMBO J,2006,25: 3245-3256.
    [136]夏之宁,李丽仙,杨靖,熊彩桥.药物与细胞膜相互作用的毛细管电泳方法研究[J].中国科学B辑:化学,2009,39:634-639.
    [137]程驿,李友,李荣昌,王燮.CeCl3灌胃时大鼠红细胞对Ce的摄入和红细胞膜通透性的改变[J].自然科学进展,1999,9:512-518.
    [138]Lesniewska E, Milhiet P E, Giocondi M C, et al. Atomic force microscope imaging of cells and membranes [J]. Methods Cell Biol,2002,68:51-65.
    [139]齐浩,刘颖,庄乐南.细胞的原子力显微镜最佳成像条件研究[J].光子学报,2007,36:138-143.
    [140]Espenel C, Giocondi M C, Seantier B, et al. Temperature-dependent imaging of living cells by AFM [J]. Ultramicroscopy,2008,108:1174-1180.
    [141]Schneider S W, Sritharan K C, Geibel J P, et al. Surface dynamics in living acinar cells imaged by atomic force microscopy:identification of plasma membrane structures involved in exocytosis [J]. Proc Natl Acad Sci U S A,1997,94:316-321.
    [142]Park K, Mao F W, Park H. Morphological characterization of surface-induced platelet activation [J]. Biomaterials,1990,11:24-31.
    [143]Kawaura C, Noguchi A, Furuno T, et al. Atomic force microscopy for studying gene transfection mediated by cationic liposomes with a cationic cholesterol derivative [J]. FEBS Lett, 1998,421:69-72.
    [144]Joanne P, Galanth C, Goasdoue N, et al. Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry [J]. Biochim Biophys Acta,2009,1788: 1772-1781.
    [145]Chang M, Li X, Sun Y, et al. Effect of cationic cyclopeptides on transdermal and transmembrane delivery of insulin [J]. Mol Pharm,2013,10:951-957.
    [146]Torres-Lugo M, Garcia M, Record R, et al. pH-Sensitive hydrogels as gastrointestinal tract absorption enhancers:transport mechanisms of salmon calcitonin and other model molecules using the Caco-2 cell model [J]. Biotechnol Prog,2002,18:612-616.
    [147]庄乐南,齐浩,孙润广,陈文芳,刘颖,朱杰.不同固定条件下细胞与活细胞的原子力显微镜实时观察[J].生物物理学报,2005,21:345-350.
    [148]孙全梅,陈龙,陈佩佩,韩东,冯喜增,赵克森.原子力显微镜磁驱动轻敲模式在活细胞成像中的应用研究[J].电子显微学报,2008,27:311-315.
    [149]张兰馨,张淑祥.穿膜肽的内化机制及其应用[J].中国生物化学与分子生物学报,2008,24:1092-1096.
    [150]赵健,肖伟,傅文斌,高鹏,袁勤生,刘建文.多聚精氨酸蛋白转导域-凋亡素融合蛋白的原核表达极其生物活性[J].中国生物制品学杂志,2009,22:448-451.
    [151]Maher S, Brayden D J, Feighery L, et al. Cracking the junction:update on the progress of gastrointestinal absorption enhancement in the delivery of poorly absorbed drugs [J]. Crit Rev Ther Drug Carrier Syst,2008,25:117-168.
    [152]Brasnjevic I, Steinbusch H W, Schmitz C, et al. Delivery of peptide and protein drugs over the blood-brain barrier [J]. ProgNeurobiol,2009,87:212-251.
    [153]Khafagy el S, Morishita M, Isowa K, et al. Effect of cell-penetrating peptides on the nasal absorption of insulin [J].J Control Release,2009,133:103-108.
    [154]Maher S, Devocelle M, Ryan S, et al. Impact of amino acid replacements on in vitro permeation enhancement and cytotoxicity of the intestinal absorption promoter, melittin [J]. Int J Pharm,2010, 387:154-160.
    [155]Grice J E, Cross S E, Brownlie C, et al. The application of molecular structural predictors of intestinal absorption to screening of compounds for transdermal penetration [J]. J Pharm Pharmacol,2010,62:750-755.
    [156]Gyurosiova L, Laitinen L, Raiman J, et al. Permeability profiles of M-akoxysubstituted pyrrolidinoethylesters of phenylearbamie acid across caco-2 monolayers and human skin [J]. Pharm Res,2002,19:162-168.
    [157]Kato K, Shirasaka Y, Kuraoka E, et al. Intestinal absorption mechanism of tebipenem pivoxil, a novel oral carbapenem:involvement of human OATP family in apical membrane transport [J]. Mol Pharm,2010,7:1747-1756.
    [158]Jarver P, Langel U. Cell-penetrating peptides--a brief introduction [J]. Biochim Biophys Acta, 2006,1758:260-263.
    [159]Zhu W L, Lan H, Park I S, et al. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1 [J]. Biochem Biophys Res Commun, 2006,349:769-774.
    [160]Kim Y C, Ludovice P J, Prausnitz M R. Transdermal delivery enhanced by magainin pore-forming peptide [J].J Control Release,2007,122:375-383.
    [161]Chen S, Han K, Yang J, et al. Bioreducible Polypeptide Containing Cell-Penetrating Sequence for Efficient Gene Delivery [J]. Pharm Res,2013.
    [162]Fu A, Zhao Z, Gao F, et al. Cellular Uptake Mechanism and Therapeutic Utility of a Novel Peptide in Targeted-Delivery of Proteins into Neuronal Cells [J]. Pharm Res,2013.
    [163]Wong V, Gumbiner B M. A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier [J].J Cell Biol,1997,136:399-409.
    [164]Tavelin S, Hashimoto K, Malkinson J, et al. A new principle for tight junction modulation based on occludin peptides [J]. Mol Pharmacol,2003,64:1530-1540.
    [165]Sonoda N, Furuse M, Sasaki H, et al. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands:Evidence for direct involvement of claudins in tight junction barrier [J]. J Cell Biol,1999,147:195-204.
    [166]Wang G, Zabner J, Deering C, et al. Increasing epithelial junction permeability enhances gene transfer to airway epithelia In vivo [J]. Am J Respir Cell Mol Biol,2000,22:129-138.
    [167]Hochman J H, Fix J A, LeCluyse E L. In vitro and in vivo analysis of the mechanism of absorption enhancement by palmitoylcarnitine [J]. J Pharmacol Exp Ther,1994,269:813-822.
    [168]Davis S S, Illum L. Absorption enhancers for nasal drug delivery [J]. Clin Pharmacokinet,2003, 42:1107-1128.
    [169]McEwan G T, Jepson M A, Hirst B H, et al. Polycation-induced enhancement of epithelial paracellular permeability is independent of tight junctional characteristics [J]. Biochim Biophys Acta,1993,1148:51-60.
    [170]Kondoh M, Yoshida T, Kakutani H, et al. Targeting tight junction proteins-significance for drug development [J]. Drug Discov Today,2008,13:180-186.
    [171]Shah P, Jogani V, Bagchi T, et al. Role of Caco-2 cell monolayers in prediction of intestinal drug absorption [J]. Biotechnol Prog,2006,22:186-198.
    [172]Ming X, Thakker D R. Role of basolateral efflux transporter MRP4 in the intestinal absorption of the antiviral drug adefovir dipivoxil [J]. Biochem Pharmacol,2010,79:455-462.
    [173]Wan-Ching Yen V H L L. Penetration enhancement effect of Pz-peptide, a paracellularly transported peptide, in rabbit intestinal segments and Caco-2 cell monolayers [J]. Journal of Controlled Release,1995,36:25-37.
    [174]Wang X D, Meng M X, Gao L B, et al. Permeation of astilbin and taxifolin in Caco-2 cell and their effects on the P-gp [J]. Int J Pharm,2009,378:1-8.
    [175]Yin Y M, Cui F D, Mu C F, et aL Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation [J]. J Control Release,2009,140:86-94.
    [176]Kawauchiya T, Takumi R, Kudo Y, et al. Correlation between the destruction of tight junction by patulin treatment and increase of phosphorylation of ZO-1 in Caco-2 human colon cancer cells [J].Toxicol Lett,2011,205:196-202.
    [177]Behrens I, Kissel T. Do cell culture conditions influence the carrier-mediated transport of peptides in Caco-2 cell monolayers? [J]. Eur J Pharm Sci,2003,19:433-442.
    [178]Krause G, Winkler L, Mueller S L, et aL Structure and function of claudins [J]. Biochim Biophys Acta,2008,1778:631-645.
    [179]Xu L F, Teng X, Guo J, et al. Protective effect of intestinal trefoil factor on injury of intestinal epithelial tight junction induced by platelet activating factor [J]. Inflammation,2012,35:308-315.
    [180]Thanabalasundaram G, Pieper C, Lischper M, et al. Regulation of the blood-brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro [J]. Brain Res,2010,1347:1-10.
    [181]Deli M A. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery [J]. Biochim Biophys Acta,2009,1788:892-910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700