用户名: 密码: 验证码:
力达霉素诱导细胞裂亡的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
力达霉素(Lidamycin,LDM)又称C1027,是一种烯二炔类(enediyne)抗生素。它以其强烈的杀伤肿瘤细胞的活性和独特的切割DNA方式而备受重视。LDM分子由一个发色团和一个酸性的辅基蛋白非共价结合而组成。发色团是LDM的活性部分,能够引起DNA分子断裂,该作用具有核苷酸和序列的特异性;辅基蛋白起保护作用。以往的研究表明,LDM既能在体内外强烈的抑制肿瘤生长、抗肿瘤转移,又具有一定的抗病毒作用。LDM因其突出的临床应用前景而值得深入研究。
     细胞裂亡即有丝分裂性细胞死亡(mitotic cell death),在肿瘤治疗中已渐受关注,其精确机制尚不清楚。我们曾经报道过LDM在低浓度下可诱导人肝癌BEL-7402细胞和人乳腺癌MCF-7细胞裂亡。本文的研究目的在于探索LDM诱导细胞裂亡的分子机制及其可能的信号转导通路。
     我们用低浓度LDM(0.1 nmol/L和0.5 nmol/L)分别处理人肝癌BEL-7402细胞和正常人肝L-02细胞2 h,发现LDM能够明显的诱导BEL-7402细胞和L-02细胞发生裂亡,其主要特征为:细胞体积增大、发生G2-M期阻断、出现多核化等。用MTT法测定生长曲线,发现与不加药的对照组细胞相比,加药组细胞生长速率均明显降低,细胞倍增时间延长,增殖受到抑制。低浓度LDM处理细胞后72 h,用Hoechst33342和PI联染观察到一种与典型凋亡不同的染色质凝集方式:核膜一直保持完整,细胞仍贴壁,染色质呈散点状凝集,不形成凋亡小体。琼脂糖凝胶电泳检测不到DNA梯带。流式细胞术也检测不到凋亡相关的“亚G1峰”。用Giemsa染色发现,加入低浓度LDM培养2 h,BEL-7402细胞于撤药后12 h出现多核化细胞,而L-02细胞出现多核化现象要比其滞后大约36 h。多核化细胞的形态各异,LDM作用下多核化的BEL-7402细胞微核数可达12-15个;而LDM引起的L-02细胞多核化一般不超过10个微核。0.5 nmol/L LDM作用后72 h,BEL-7402细胞和L-02细胞的多核化比例分别达到35.7%和14.1%,G2-M期阻滞分别达23.7%和60.9%。有丝分裂指数检测表明,在低浓度LDM作用下两种细胞的M期细胞百分数均明显增加。线粒体膜电位的检测结果显示,经低浓度LDM作用后,发生裂亡的细胞线粒体膜电位并未下降。细胞间接免疫荧光实验首次发现,低浓度LDM作用后细胞的中心体过复制,多极有丝分裂纺锤体形成。线粒体信号转导通路是凋亡的主要通路之一,Western blotting结果显示其在裂亡过程中未被激活。这些结果提示,经力达霉素诱导所致的BEL-7402细胞和L-02细胞裂亡与中心体过复制有关,并且不依赖于线粒体通路。异常的中心体导致多极有丝分裂纺锤体形成,进而引发染色体的不均等分配和以多核化或微核化大细胞为特
Lidamycin (also designated C1027) is a member of the enediyne antibiotic family, has highly potent cytotoxicities toward tumor cells. It consists of a chromophore and an apoprotein, and the former has the ability to attack DNA, whereas the latter plays the role as a protecting protein. It has been observed that lidamycin can directly cleave DNA strands with preference of nucleotide and sequence. In addition to antitumor activities, lidamycin can inhibit the replication of viruses. The accumulation evidences indicate that lidamycin is a promising drug for clinical usage and valuable to be further studied.
    Mitotic cell death has been focused on in tumor therapy. However, the precise mechanisms underlying it remain unclear. We have reported previously that enediyne antibiotic lidamycin induces mitotic cell death at low concentrations in human epithelial tumor cells. The aim of this study was to investigate the molecular mechanism and signal transduction of lidamycin-induced mitotic cell death.
    With 0.1 nmol/L or 0.5 nmol/L lidamycin for 2 h, followed by a 72-hour incubation in drug-free medium, the treated human hepatoma BEL-7402 cells and normal human liver L-02 cells both displayed mitotic cell death characterized by enlargement of cell volume, appearance of multinucleation, and arrest in G2-M phase of cell cycle. We measured the cells growth curves by the MTT assay. Compared with the control cells, the treated cells showed the marked growth rate decrease and the delay in double time of proliferation. Subconfluent cells were continuously incubated for 72 h after exposure to low concentration of lidamycin for 2 h, and then were co-stained with the DNA-specific fluorescent dyes Hoechst 33342 and propidium iodide. A unique and atypical chromatin condensation occurred. The cells with this kind of condensation are characterized by integrated karyotheca, adhering on the bottom, and appearance of small "dots" representing segregated condensed chromatin without apoptotic bodies. The genomic DNA samples were extracted from the BEL-7402 cells and L-02 cells incubated continuously for 72 h after 2-hour treatments of lidamycin. The DNA ladder was never obtained in each sample whatever the exposure to 0.1 nmol/L or 0.5 nmol/L lidamycin. Neither BEL-7402 cells nor L-02 cells displayed apoptotic peaks after treatment of lidamycin at a low concentration. With Giemsa staining, the multinucleation was observed in BEL-7402 cells at the 12th hour after lidamycin treatment, whereas the appearance of
引文
1. Nicolaou KC, Simth AL, Yue EW. Chemistry and biology of natural and designed enediynes. Proc Natl Acad Sci USA 1993; 90: 5881-5888
    2. Shono M, Sato N, Mizumoto K, Minamishima YA, Nakamura M, Maehara N, Urashima T, Saimura M, Qian LW, Nishio S, Nagai E, Tanaka M. Effect of serum depletion on centrosome overduplication and death of human pancreatic cancer cells after exposure to radiation. Cancer Lett 2001; 170: 81-89
    3. Dziegielewski J, Beerman TA. Cellular responses to the DNA strand-scission enediyne C-1027 can be independent of ATM, ATR, and DNA-PK kinases. J Biol Chem 2002; 277: 20549-20554
    4. Hu JL, Xue YC, Xie MY, Zhang R, Otani T, Minami Y, Yamada Y, Marunaka T. A new macromolecular antitumor antibiotic, C-1027. I. Discovery, taxonomy of producing organism, fermentation and biological activity. J Antibiot (Tokyo) 1988: 41:1575-1579
    5. Otani T, Minami Y, Marunaka T, Zhang R, Xie MY. A new macromolecular antitumor antibiotic, C-1027. Ⅱ. Isolation and physico-chemical properties. J Antibiot (Tokyo) 1988; 41: 1580-1585
    6. Shao RG, Zhen YS. Relationship between the molecular composition of C1027, a new macromolecular antibiotic with enediyne chromophore, and its antitumor activity. Yaoxue Xuebao 1995; 30: 336-342
    7. Shao RG, Zhen YS. Antitumor activity of new antitumor antibiotic C1027 and its monoclonal antibody assembled conjugate. Yao Xue Xue Bao 1992; 27: 486-491
    8. Xu YJ, Zhen YS, Goldberg IH. C1027 chromophore, a potent new enediyne antitumor antibiotic, induces sequence-specific double-strand DNA cleavage. Biochemistry 1994; 33: 5947-5954
    9. Zhen YS, Ming XY, Yu B, Otani T, Saito H, Yamada Y. A new macromolecular antitumor antibiotic, C-1027. Ⅲ. Antitumor activity. J Antibiot (Tokyo) 1989; 42: 1294-1298
    10.甄永苏,薛玉川,邵荣光.烯二炔类新的抗肿瘤作用研究.中国抗生素杂志1994;19:164-168
    11.甄红英,薛玉川,甄永苏.抗肿瘤抗生素 C1027 抑制血管生成及其抗肿瘤作用.中华医学杂志 1997;77:657-660
    12.王心华,吴淑英,甄永苏.力达霉素抑制内皮细胞增殖和诱导细胞凋亡.中国抗生素杂志 2003;28:605-612
    13. McHugh MM, Woynarowski JM, Gawron LS, Otani T, Beerman TA. Effects of the DNA-damaging enediyne C-1027 on intracellular SV40 and genomic DNA in green monkey kidney BSC-1 cells. Biochemistry 1995; 34: 1805-1814
    14. McHugh MM, Beerman-TA. C-1027-induced alterations in Epstein-Barr viral DNA replication in latently infected cultured human Raji cells: relationship to DNA damage. Biochemistry 1999; 38: 6962-6970
    15.李军智,江敏,薛玉川,甄永苏.抗癌抗生素 C1027 与单克隆抗体片断偶联物的抗肝癌作用.药学学报 1993;28:260-265
    16. Xu YJ, Xi Z, Zhen YS, Goldberg IH. A single binding mode of activated enediyne C1027 generates two types of double-strand DNA lesions: deuterium isotope-induced shuttling between adjacent nucleotide target sites. Biochemistry 1995; 34: 12451-12460
    17. Xu YJ, Xi Z, Zhen YS, Goldberg IH. Mechanism of formation of novel covalent drug.DNA interstrand cross-links and monoadducts by enedivne antitumor antibiotics. Biochemistry 1997; 36: 14975-14984
    18. Zein N, Solomon W, Colson KL, Schroeder DR. Maduropeptin: an antitumor chromoprotein with selective protease activity and DNA cleaving properties. Biochemistry 1995; 34: 11591-11597
    19.姜兵.新抗癌抗生素 C1027 诱导细胞凋亡以及对癌基因表达的影响.博士论文 1995
    20.许永杰,李电东,甄永苏.具有杀伤肿瘤细胞活性的新抗肿瘤抗生素 C1027分子作用机制.中国科学 1992;8:814-819
    21. Cobuzzi RJ Jr, Kotsopoulos SK, Otani T, Beerman TA. Effects of the enediyne C- 1027 on intracellular DNA targets. Biochemistry 1995; 34: 583-592
    22. Xu YJ, Li DD, Zhen YS. Mode of action of C-1027, a new macromolecular antitumor antibiotic with highly potent cytotoxicity, on human hepatoma BEL-7402 cells. Cancer Chemother Pharmacol 1990; 27: 41-46
    23. Totsuka R, Aizawa Y, Uesugi M, Okuno Y, Matsumoto T, Sugiura Y. RNA cleavage by Co-1027 chromophore, an enediyne antitumor antibiotic: high selectivity to an anticodon arm. Biochem Biophys Res Commun 1995; 208: 168-173
    24. Sugiura Y, Totsuka R, Araki M, Okuno Y. Selective cleavages of tRNAPhe with secondary and tertiary structures by enediyne antitumor antibiotics. Bioorg Med Chem 1997; 5: 1229-1234
    25. Sakata N, Tsuchiya KS, Moriya Y, Hayashi H, Hori M, Otani T, Nagai M, Aoyagi T. Aminopeptidase activity of an antitumor antibiotic, C-1027. J Antibiot (Tokyo) 1992; 45: 113-117
    26. Cui DP, Wang Z, Li DD. Effect of lidamycin on the expression of genes involved in invasion regulation in HCT-8 human colon cancer cells. Yao Xue Xue Bao 2001; 36: 246-249
    27. Jiang B, Li DD, Zhen YS. Induction of apoptosis by enediyne antitumor antibiotic C1027 in HL-60 human promyelocytic leukemia cells. Biochem Biophys Res Commun 1995; 208: 238-244
    28. Wang Z, He Q, Liang Y, Wang D, Li YY, Li D. Non-caspase-mediated apoptosis contributes to the potent cytotoxicity of the enediyne antibiotic lidamycin toward human tumor cells. Biochem Pharmacol 2003; 65: 1767-1775
    29. Liang YX, Zhang W, Li DD, Liu HT, Gao P, Sun YN, Shao RG. Mitotic cell death in BEL-7402 cells induced by enediyne antibiotic lidamycin is associated with centrosome overduplication. World J Gastroenterol 2004; 10: 2632-2636
    30. He QY, Liang YY, Wang DS, Li DD. Characteristics of mitotic cell death induced by enediyne antibiotic lidamycin in human epithelial tumor cells. Int J Oncol 2002; 20: 261-266
    31. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456-1462
    32. Smith JR. Pereira-Smith OM. Replicative senescence: implications for in vivo aging and tumor suppression. Science 1996; 273: 63-67
    33. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129-1132
    34. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405-413
    35. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479-489
    36. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391: 43-50
    37. Nicholson DW, Thorbbery NA. Caspases: killer proteases. Trends in Biochem Sci 1997; 257: 299-306
    38. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270: 1326-1331
    39. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res 2000; 256: 42-49
    40.李电东.一种细胞新型死亡方式——细胞裂亡.国外医学·老年医学分册2003;24:145-147
    41. Lock RB, Galperina OV, Feldhoff RC, Rhodes LJ. Concentration-dependent differences in the mechanisms by which caffeine potentiates etoposide cytotoxicity in HeLa cells. Cancer Res 1994; 54: 4933-4939
    42. Hendry JH, West CM. Apoptosis and mitotic cell death: their relative contributions to normal-tissue and tumour radiation response. Int J Radiat Biol 1997; 71: 709-719
    43. Shi YJ, Gong JP, Liu CA, Li XH, Mei Y, Mi C, Huo YY. Construction of a targeting adenoviral vector carrying AFP promoter for expressing EGFP gene in AFP-producing hepatocarcinoma cell. World J Gastroenterol 2004; 10: 186-189
    44. Jonathan EC, Bernhard EJ, McKenna WG. How does radiation kill cells? Curr Opin Chem Biol 1999; 3: 77-83
    45. Ianzini F, Mackey MA. Spontaneous premature chromosome condensation and mitotic catastrophe following irradiation of HeLa S3 cells. Int J Radiat Biol 1997; 72: 409-421
    46. Lock RB, Stribinskiene L. Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Res 1996; 56: 4006-4012
    47. Allen CE, Wu LC. Downregulation of KRC induces proliferation, anchorage independence, and mitotic cell death in HeLa cells. Exp Cell Res 2000; 260: 346-356
    48. Erenpreisa J, Cragg MS. Mitotic death: a mechanism of survival? A review. Cancer Cell Int 2001; 1: 1-7
    49.周明华,陈思颖,李美芳,等.生理科学进展 1996;27:319-323
    50. Chen XB, Wang YC, Li YZ, Cui JT. Identification of a novel resident protein in centrosome. Kexue Tongbao 2000; 45: 1302-1307
    51. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medranos EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92: 9363-9367
    52. Liang Y, Yah CH, Schor NE Apoptosis in the absence of caspase 3. Oncogene 2001; 20: 6570-6578
    53. Chang BD, Broude EV, Dokmanovic M, Zhu HM, Ruth A, Xuan YZ. A senescence-like phenotype distinguishes rumor cells that undergo terminal proliferation arrest after exposure to anticancer agent. Cancer Res 1999; 59: 3761-3767
    54. Lademann U, Cain K, Gyrd-Hansen M, Brown D, Peters D, Jaattela M. Diarylurea compounds inhibit caspase activation by preventing the formation of the active 700-kilodalton apoptosome complex. Mol Cell Biol 2003; 23: 7829-7837
    55. Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis 1999; 19: 271-285
    56. Grafi G. Cell cycle regulation of DNA replication: the endoreduplication perspective. Exp Cell Res 1998; 244: 372-378
    57. Winey M. Keeping the centrosome cycle on track. Genome stability. Curr Biol 1996; 6: 962-964
    58. Ianzini F, Mackey MA. Spontaneous premature chromosome condensation and mitotic catastrophe following irradiation of HeLa S3 cells, lnt J Radiat Biol 1997; 72: 409-421
    59. Shono M, Sato N, Mizumoto K, Minamishima YA, Nakamura M, Maehara N, Urashima T, Saimura M, Qian LW, Nishio S, Nagai E, Tanaka M. Effect of serum depletion on centrosome overduplication and death of human pancreatic cancer cells after exposure to radiation. Cancer Lett 2001; 170: 81-89
    60. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J lmmunol Meth 1983; 65: 55-63
    61. He QY, Zhang HQ, Pang DB, Chi XS, Xue SB. Resistance to apoptosis of harringtonine-resistant HL60 cells induced by tetrandrine. Zhongguo Yao Li Xue Bao 1996; 17: 545-549
    62.李素文 主编.细胞生物学实验指导.北京:高等教育出版社 施普林格出版社,第1版,2001;pp151-152
    63. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254
    64. Lohr D, Tatchell K, Van Holde KE. On the occurrence of nucleosome phasing in chromatin. Cell 1977; 12: 829-836
    65. Duchen MR. Roles of mitochondria in health and disease. Diabetes 2004; 53 Suppl 1: S96-102
    66. Chang WP, Little JB. Delayed reproductive death in X-irradiated Chinese hamster ovary cells, lnt J Radiat Biol 1991; 60: 483-496
    67. Prise KM, Davies S, Michael BD. Cell killing and DNA damage in Chinese hamster V79 cells treated with hydrogen peroxide, lnt J Radiat Biol 1989; 55: 583-592
    68. Tounekti O, Pron G, Belehradek J Jr, Mir LM. Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res 1993; 53: 5462-5469
    69. Nabha SM, Mohammad RM, Dandashi MH, Coupaye-Gerard B, Aboukameel A, Pettit GR, Al-Katib AM. Combretastatin-A4 prodrug induces mitotic catastrophe in chronic lymphocytic leukemia cell line independent of caspase activation and poly(ADP-ribose) polymerase cleavage. Clin Cancer Res 2002; 8: 2735-2741
    70. Kappler M, Bache M, Barrel F, Kotzsch M, Panian M, Wurl P, Blumke K, Schmidt H, Meye A, Taubert H. Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther 2004; 11: 186-193.
    71.梁越欣,李电东.有丝分裂细胞死亡.细胞生物学杂志 2004;26:26-28
    72. Schultz DR, Harrington WJ Jr. Apoptosis: programmed cell death at a molecular level. Semin Arthritis Rheum 2003; 32: 345-369
    73. Collins JA, Schandi CA, Young KK, Vesely J, Willingham MC. Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem 1997; 45: 923-934
    74. Dorstyn L, Read SH, Quinn LM, Richardson H, Kumar S. DECAY, a novel Drosophila caspase related to mammalian caspase-3 and caspase-7. J Biol Chem 1999; 274: 30778-30783
    75. Wolf BB, Green DR. Apoptosis: letting slip the dogs of war. Curr Biol 2002; 12: R177-179
    76. Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol 2002; 192: 131-137
    77. Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F. Features of apoptotic cells measured by flow cytometry. Cytometry 1992; 13: 795-808
    78. Dodson H, Bourke E, Jeffers LJ, Vagnarelli P, Sonoda E, Takeda S, Earnshaw WC, Merdes A, Morrison C. Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J 2004; 23: 3864-3873
    79. Hinchcliffe EH, Cassels GO, Rieder CL, Sluder G. The coordination of centrosome reproduction with nuclear events of the cell cycle in the sea urchin zygote. J Cell Biol 1998; 140: 1417-1426
    80. Lacey KR, Jackson PK, Steams T. Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci USA 1999; 96: 2817-2822
    81. Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 1995; 130: 105-115
    82. Nitta M, Kobayashi O, Honda S, Hirota T, Kuninaka S, Marumoto T, Ushio Y, Saya H. Spindle checkpoint function is required for mitotic catastrophe induced by DNA-damaging agents. Oncogene 2004; 23: 6548-6558
    83. Bedi A, Barber JP, Bedi GC, el-Deiry WS, Sidransky D, Vala MS, Akhtar AJ, Hilton J, Jones PJ. BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 1995; 86: 1148-1158
    84. Kahlem P, Dorken B, Schmitt CA. Cellular senescence in cancer treatment: friend or foe? J Clin Invest 2004; 113: 169-174
    85. Rebbaa A, Zheng X, Chou PM, Mirkin BL. Caspase inhibition switches doxorubicin-induced apoptosis to senescence. Oncogene 2003; 22: 2805-2811
    86. Hyun JW, Cheon GJ, Kim HS, Lee YS, Choi EY, Yoon BH, Kim JS, Chung MH. Radiation sensitivity depends on OGG1 activity status in human leukemia cell lines. Free Radic Biol Med 2002; 32: 212-220
    87. Hyun JW, Cheon GJ, Kim HS, Lee YS, Choi EY, Yoon BH, Kim JS, Chung MH. Radiation sensitivity depends on OGG1 activity status in human leukemia cell lines. Free Radic Biol Med 2002; 32: 212-220
    88. Nabha SM, Mohammad RM, Dandashi MH, Coupaye-Gerard B, Aboukameel A, Pettit GR, Al-Katib AM. Combretastatin-A4 prodrug induces mitotic catastrophe in chronic lymphocytic leukemia cell line independent of caspase activation and poly(ADP-ribose) polymerase cleavage. Clin Cancer Res 2002; 8: 2735-2741
    89. Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato JY. D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 1994; 14: 2066-2076
    90. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ. The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999; 18: 1571-1583
    91. Drayton S, Rowe J, Jones R, Vatcheva R, Cuthbert-Heavens D, Marshall J, Fried M, Peters G. Tumor suppressor p16(INK4a) determines sensitivity of human cells to transformation by cooperating cellular oncogenes. Cancer Cell 2003; 4: 301-310
    92. Mesaeli N, Phillipson C. Impaired p53 expression, function, and nuclear localization in calreticulin-deficient cells. Mol Biol Cell 2004; 15: 1862-1870
    93. Vij N, Roberts L, Joyce S, Chakravarti S. Lumican suppresses cell proliferation and aids Fas-Fas ligand mediated apoptosis: implications in the cornea. Exp Eye Res 2004; 78: 957-971
    94. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817-825
    95. Dulic V, Stein GH, Far DF, Reed SI. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol Cell Biol 1998; 18: 546-557
    96. Maeda T, Chong MT, Espino RA, Chua PP, Cao JQ, Chomey EG, Luong L, Tron VA. Role of p21(Waf-1) in regulating the G1 and G2/M checkpoints in ultraviolet-irradiated keratinocytes. J Invest Dermatol 2002; 119: 513-521
    97. Verdoodt B, Decordier I, Geleyns K, Cunha M, Cundari E, Kirsch-Volders M. Induction of polyploidy and apoptosis after exposure to high concentrations of the spindle poison nocodazole. Mutagenesis 1999; 14: 513-520
    98. Chang BD, Xuan YZ, Broude EV, Zhu HM, Schott B, Fang J, Roninson IB. Role of p53 and p21~(waf1/cip1) in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 1999; 18: 4808-4818
    99. Soloveva V, Linzer DI. Differentiation of placental trophoblast giant cells requires downregulation of p53 and Rb. Placenta 2004; 25: 29-36
    100. Kim OH, Lim JH, Woo KJ, Kim YH, Jin IN, Han ST, Park JW, Kwon TK. Influence of p53 and p21Waf1 expression on G2/M phase arrest of colorectal carcinoma HCT116 cells to proteasome inhibitors. Int J Oncol 2004; 24: 935-941
    101. Beltrami E, Plescia J, Wilkinson JC, Duckett CS, Altieri DC. Acute ablation of survivin uncovers p53-dependent mitotic checkpoint functions and control of mitochondrial apoptosis. J Biol Chem 2004; 279: 2077-2084
    102. Bozko P, Larsen AK, Raymond E, Skladanowski A. Influence of G2 arrest on the cytotoxicity of DNA topoisomerase inhibitors toward human carcinoma cells with different p53 status. Acta Biochim Pol 2002; 49: 109-119
    103. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell JE. Molecular cell biology. W. H. Freeman and Company, New York, 4~(th) ed, 2002; pp588
    104. Okuno S, Shimizu S, Ito T, Nomura M, Hamada E, Tsujimoto Y, Matsuda H. Bcl-2 prevents caspase-independent cell death. J Biol Chem 1998; 273: 34272-34277
    105. Roninson IB, Broude EV, Chang BD. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 2001; 4: 303-313
    106. Castedo M. Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: a molecular definition. Oncogene 2004; 23: 2825-2837
    107. Tu X, Wang CC. The involvement of two cdc2-related kinases (CRKs) in Trypanosoma brucei cell cycle regulation and the distinctive stage-specific phenotypes caused by CRK3 depletion. J Biol Chem 2004; 279: 20519-20528
    108. Scheid MP, Woodgett JR. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett 2003; 546: 108-112
    109. Yang J, Cron P, Thompson V, Good VM, Hess D, Hemmings BA, Barford D. Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol Cell 2002; 9: 1227-1240
    110. Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 2004; 29: 233-242
    111. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857-868
    112. Downward J. How BAD phosphorylation is good for survival. Nat Cell Biol 1999; 1: E33-35
    113. Kuemmerle JF. Endogenous IGF-I protects human intestinal smooth muscle cells from apoptosis by regulation of GSK-3 beta activity. Am J Physiol Gastrointest Liver Physiol 2005; 288: G101-110
    1. Jakoby M, Schnittger A. Cell cycle and differentiation. Curr Opin Plant Biol 2004; 7: 661-669
    2. Tessema M, Lehmann U, Kreipe H. Cell cycle and no end. Virchows Arch 2004; 444: 313-323
    3. Morgan DO. Principles of CDK regulation. Nature 1995; 374: 131-134
    4. Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995; 11: 211-219
    5. Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF, Sherr CJ. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 1993; 7: 1559-1571
    6. Kaldis P. The Cdk-activating kinase (CAK): from yeast to mammals. Cell Mol Life Sci 1999; 55: 284-296
    7. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP. Mechanism of Cdk activation by the structure of a cyclin A-Cdk2 complex. Nature 1995; 376: 313-320
    8. Desai D, Wessling HC, Fidher RP, Morgan DO. Effects of phosphorylation by CAK on cyclin binding by Cdc2 and Cdk2. Mol Cell Biol 1995; 15: 345-350
    9. Hannon G, Casso C, Beach D. KAP: a dual specificity phosphatase that interacts with cyclin-dependent kinases. Proc Natl Acad Sci USA 1994; 91: 1731-1735
    10. Serizawa H, Makela TP, Conaway JW, Conaway RC, Weinberg RA, Young RA. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 1995; 374: 280-282
    11. Reinberg D, Orphanides G, Ebright R, Akoulitchev S, Carcamo J, Cho H, Cortes P, Drapkin R, Flores O, Ha I, Inostroza JA, Kim S, Kim TK, Kumar P, Lagrange T, LeRoy G, Lu H, et al. The RNA polymerase general transcription factors: past, present and future. Cold Spring Harb Symp Quant Biol 1998; 63: 83-103
    12. McGowan CH, Russell P. Human Weel kinase inhibits cell division by phosphorylating p34Cdc2 exclusively on Tyr15. EMBO J 1933; 12: 75-85
    13. Mueller PR, Coleman TR, Kumagai A, Dunphy WG. Myt1: a membrane-associated inhibitory kianse that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 1995; 270: 86-90
    14. Hoffmann I, Draetta G, Karsenti E. Activation of the phosphatase avtivity of human cdec25A by a Cdk2-cyclinE dependnet phosphorylation at the G1/S transition. EMBO J 1994; 13: 4302-4310
    15. Notbury C, Blow J, Nurse P. Regulatoryphosphoryaltion of the p34Cdc2 protein kinase in vertebrates. EMBO J 1991; 10: 3321-3329
    16. Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato J. D-type cyclin-dependent kinase activity in mammalian Cells. Mol Cell Biol 1994; 14: 2066-2076
    17. Cheng M, Olivier P, Diehl JA, Roberts JM, Sherr CJ. The p21Cip1 and p27 Kip1 Cdk inhibitors are essential activators of cyclin-dependent kinasesin murine fibroblasts. EMBO J 1999; 18: 1571-1583
    18. Yochem J, Gu T, Han M. A new marker for mosaic analysis in Caenorhabditis elegans indicates a fusion between hyp6 and hyp7, two major components of the hypodermis. Genetics 1998; 149: 1323-1334
    19. Reed SI. The role of p34 kinases in the G1 to S-phase transition. Annu Rev Cell Biol 1992; 8: 529-561
    20. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 1983; 33: 389-396
    21. Gautier J, Norbury C, Lohka M, Nurse P, Mailer J. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 1988; 54: 433-439
    22. Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Mailer JL. Cyclin is a component of maturation-promoting factor from Xenopus. Cell 1990; 60: 487-494
    23. Labbe JC, Picard A, Peaucellier G, Cavadore JC, Nurse P, Doree M. Purification of MPF from starfish: identification as the H1 histone kinase p34cdc2 and a possible mechanism for its periodic activation. Cell 1989; 57: 253-263
    24. Labbe JC, Capony JP, Caput D, Cavadore JC, Derancourt J, Kaghad M, Lelias JM, Picard A, Doree M. MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J 1989; 8: 3053-3058
    25. Dai Z, Huang Y, Sadee W. Growth factor signaling and resistance to cancer chemotherapy. Curr Top Med Chem 2004; 4: 1347-1356
    26. Leahy DJ. Structure and function of the epidermal growth factor (EGF/ErbB) family of receptors. Adv Protein Chem 2004; 68: 1-27
    27. Nakamura T, Ueno T, Sakamoto M, Sakata R, Torimura T, Hashimoto O, Ueno H, Sata M. Suppression of transforming growth factor-beta results in upregulation of transcription of regeneration factors after chronic liver injury. J Hepatol 2004; 41: 974-982
    28. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366: 701-704
    29. Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994; 78: 67-74
    30. Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 1995; 9: 650-662
    31. Missero C. Di Cunto F, Kiyokawa H, Koff A. Dotto GP. The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev 1996; 10: 3065-3075
    32. Harper JW, Elledge SJ. Cdk inhibitors in development and cancer. Curr Opin Genet Dev 1996; 6: 56-64
    33. Luo Y. Hurwitz J, Massague J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 1995; 375: 159-161
    34. Jiang H. Lin J. Su ZZ, Collart FR, Huberman E, Fisher PB. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 1994; 9: 3397-3406
    35. Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, Givol D. Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res 1994; 54: 3391-3395
    36. Parker SB, Eichele G, Zhang R Rawls A, Sands AT, Bradley A. Olson EN. Harper JW, Elledge SJ. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 1995; 267: 1024-1027
    37. Steinman RA, Hoffman B, Iro A, Guillouf C, Liebermann DA, el-Houseini ME. Induction of p21 (WAF-1/CIP1) during differentiation. Oncogene 1994; 9: 3389-3396
    38. Waga S, Hannon GJ, Beach D, Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 1994; 369: 574-578
    39. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P. Massague J. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994; 78: 59-66
    40. Sherr CJ. GI phase progression: cycling on cue. Cell 1994; 79: 551-555
    41. Harmon GJ, Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994; 371: 257-261
    42. Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 1998; 395: 237-243
    43.梁越欣,李电东.有丝分裂细胞死亡.细胞生物学杂志 2004;26:26-28
    44. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817-825
    45. eI-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA. Burrell M, Hill DE, Wang Y, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994; 54: 1169-1174
    46. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS. Vogelstein B. Fomace AJ Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992: 71: 587-597
    47. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 1992: 89: 7491-7495
    48. Matsushime H, Roussel ME Ashmun RA, Sherr CJ. CoIony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 1991; 65: 701-713
    49. Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G, Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 1993; 7: 812-821
    50. Lukas J, Muller H, Bartkova J, Spitkovsky D. Kjerulff AA, Jansen-Durr R Strauss M, Bartek J. DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell's requirement for cycIin D1 function in G1. J Cell Biol 1994; 125: 625-638
    51. Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF, Sherr CJ. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 1993; 7: 1559-1571
    52. Jiang W, Kahn SM, Zhou P, Zhang YJ, Cacace AM, Infante AS, Doi S, Santella RM, Weinstein IB. Overexpression of cyclin D1 in rat fibroblasts causes abnormalities in growth control, cell cycle progression and gene expression. Oncogene 1993; 8: 3447-3457
    53. Resnitzky D, Gossen M, Bujard H, Reed SI. Acceleration of the G1/S phase transition by expression of cyclins Dl and E with an inducible system. Mol Cell Biol 994; 14: 1669-1679
    54. Lukas J, Pagano M, Staskova Z, Draetta G, Bartek J. Cyclin Dl protein oscillates and is essential for cell cycle progression in human tumour cell lines. Oncogene 1994; 9: 707-718
    55. Li Y, Graham C, Lacy S, Duncan AM, Whyte P. The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev 1993; 7: 2366-2377
    56. Mayol X, Grana X, Baldi A, Sang N, Hu Q, Giordano A. Cloning of a new member of the retinoblastoma gene family (pRb2) which binds to the E1A transforming domain. Oncogene 1993; 8: 2561-2566
    57. Ginsberg D, Vairo G, Chittenden T. Xiao ZX, Xu G Wydner KL. DeCaprio JA, Lawrence JB, Livingston DM. E2F-4, a new member of the E2F transcription factor family, interacts with p107. Genes Dev 1994; 8: 2665-2679
    58. Ohtsubo M. Roberts JM. Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 1993; 259: 1908-1912
    59. Girard F. Strausfeld U, Fernandez A, Lamb NJ. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 1991; 67: 1169-1179
    60. Roberts JM. Turning DNA replication on and off. Curr Opin Cell Biol 1993; 5: 201-206
    61. Kas E, Poljak L, Adachi Y, Laemmli UK. A model for chromatin opening: stimulation of topoisomerase II and restriction enzyme cleavage of chromatin by distamycin. EMBO J 1993; 12: 115-126
    62. Roberts JM. Turning DNA replication on and off. Curr Opin Cell Biol 1993; 5: 201-206
    63. Pines J, Hunter T. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 1989; 58: 833-846
    64. Draetta G, Beach D. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 1988; 54: 17-26
    65. Gould KL, Nurse P. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 1989; 342: 39-45
    66. Ohsumi K, Katagiri C, Kishimoto T. Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 1993; 262: 2033-2035
    67. Goebl MG, Yochem J, Jentsch S, McGrath JP, Varshavsky A, Byers B. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 1988; 241: 1331-1335
    68. Cikala M, Wilm B, Hobmayer E, Bottger A, David CN. Identification of caspases and apoptosis in the simple metazoan Hydra. Curr Biol 1999; 9: 959-962
    69. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-257
    70. Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999; 96: 245-254
    71. Sugamura K. Makino M. Shirai H, Kimura O, Maeta M. Itoh H, Kaibara N. Enhanced induction of apoptosis of human gastric carcinoma cells after preoperative treatment with 5-fluorouracil. Cancer 1997; 79: 12-17
    72. Dorstyn L, Read SH, Quinn LM, Richardson H, Kumar S. DECAY, a novel Drosophila caspase related to mammalian caspase-3 and caspasc-7. J Biol Chem 1999; 274: 30778-30783
    73. Wolf BB, Green DR. Apoptosis: letting slip the dogs of war. Curr Biol 2002; 12: R177-179
    74. Ravagnan L, Roumier T. Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol 2002; 192: 131-137
    75. Budihardjo I, Oliver H. Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15: 269-290
    76. Cikala M. Wilm B, Hobmayer E, Bottger A, David CN. Identification of caspases and apoptosis in the simple metazoan Hydra. Curr Biol 1999; 9: 959-962
    77. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999; 68: 383-424
    78. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998; 281: 1312-1316
    80. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992; 356: 768-774
    81. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 1998; 92: 501-509
    82. Brown R. The bcl-2 family of proteins. Br Med Bull 1997; 53: 466-477
    83. Reed JC. Double identity for proteins of the Bcl-2 family. Nature 1997; 387: 773-776
    84. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323-331
    85. Basu A, Haldar S. The relationship between Bcl2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod 1998; 4: 1099-1109
    86. Hirao A, Kong YY, Matsuoka S, Wakeham A. Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 2000; 287: 1824-1827
    87. Bellamy CO. p53 and apoptosis. Br Med Bull 1997; 53: 522-538
    88. Jin S. Kalkum M, Overholtzer M. Stoffel A. Chait BT, Levine AJ. CIAP1 and the serine protease HTRA2 are involved in a novel p53-dependent apoptosis pathway in mammals. Genes Dev 2003; 17: 359-367
    89. Srinivasula SM, Hegde R, Saleh A. Datta P. Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T. Shi Y. Alnemri ES. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001; 410: 112-116
    90. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X. Shi Y. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000 Dec; 408: 1008-1012
    91. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T. Herrmann J, Wu JC, Fesik SW. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 2000; 408: 1004-1008
    92. Linder ME, Gilman AG. G proteins. Sci Am 1992; 267: 56-61, 64-65
    93. Deacon EM, Pongracz J, Griffiths G, Lord JM. Isoenzymes of protein kinase C: differential involvement in apoptosis and pathogenesis. Mol Pathol 1997; 50: 124-131
    94. Widmann C. Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79: 143-180
    95. Peter AT, Dhanasekaran N. Apoptosis of granulosa cells: a review on the role of MAPK-signalling modules. Reprod Domest Anim 2003; 38: 209-213
    96. Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI, Peterson LF, Shuai K, Zhang DE. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev 2003; 17: 455-460
    97. Hosui A, Ohkawa K, Ishida H, Sato A, Nakanishi F, Ueda K, Takehara T. Kasahara A, Sasaki Y, Hori M, Hayashi N. Hepatitis C virus core protein differently regulates the JAK-STAT signaling pathway under interleukin-6 and interferon-gamma stimuli. J Biol Chem 2003; 278: 28562-28571
    98. Miscia S, Marchisio M, Grilli A, Di Valerio V. Centurione L, Sabatino G, Garaci F, Zauli G, Bonvini E, Di Baldassarre A. Tumor necrosis factor alpha (TNF-alpha) activates Jak1/Stat3-Stat5B signaling through TNFR-1 in human B cells. Cell Growth Differ 2002; 13: 13-18
    99. Gamero AM, Larner AC. Vanadate facilitates interferon alpha-mediated apoptosis that is dependent on the Jak/Stat pathway. J Biol Chem 2001; 276: 13547-13553
    100. Murray AW. Creative blocks: cell-cycle checkpoints and feedback controls. Nature 1992; 359: 599-604
    101. Hartwell LH, Weinert TA, Checkpoints: controls that ensure the order of cell cycle events. Science 1989; 246: 629-634
    102. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science 1996; 274: 1664-1672
    103. Enoch T, Nurse P. Coupling M phase and S phase: controls maintaining the dependence of mitosis on chromosome replication. Cell 1991; 65: 921-923
    104. Joshi GP, Nelson WJ, Revell SH, Shaw CA. X-ray-induced chromosome damage in live mammalian cells, and improved measurements of its effects on their colony-forming ability. Int J Radiat Biol Relat Stud Phys Chem Med 1982; 41: 161-181
    105. Chang WP, Little JB. Delayed reproductive death in X-irradiated Chinese hamster ovary cells. Int J Radiat Biol 1991; 60: 483-496
    106. Prise KM, Davies S, Michael BD. Cell killing and DNA damage in Chinese hamster V79 cells treated with hydrogen peroxide. Int J Radiat Biol 1989; 55: 583-592
    107. Tounekti O, Pron G, Belehradek J Jr, Mir LM. Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res 1993; 53: 5462-5469
    108. Nabha SM, Mohammad RM, Dandashi MH, Coupaye-Gerard B, Aboukameel A, Pettit Gr. Al-Katib AM. Combretastatin-A4 prodrug induces mitotic catastrophe in chronic lymphocytic leukemia cell line independent of caspase activation and poly(ADP-ribose) polymerase cleavage. Clin Cancer Res 2002; 8: 2735-2741
    109. He QY, Liang YY, Wang DS, Li DD. Characteristics of mitotic cell death induced by enediyne antibiotic lidamycin in human epithelial tumor ceils, lnt J Oncol 2002; 20: 261-266
    110. Erenpreisa J, Cragg MS. Mitotic death: a mechanism of survival? A review. Cancer Cell lnt 2001; 1: 1
    111. Nagl W. Polyploidy in differentiation and evolution, lnt J Cell Cloning 1990; 8: 216-223
    112.周明华,陈思颖,李美芳,等.细胞周期与细胞凋亡.生理科学进展1996:27:319-323
    113. King KL, Cidlowski JA. Cell cycle and apoptosis: common pathways to life and death. J Cell Biochem 1995; 58: 175-180
    114. Lucas M, Sanchez-Margalet V. Protein kinase C involvement in apoptosis. Gen Pharmacol 1995; 26: 881-887
    115. Sato N, Mizumoto K, Nakamura M, Ueno H, Minamishima YA. Farber JL, Tanaka M. A possible role for centrosome overduplication in radiation-induced cell death. Oncogene 2000; 19: 5281-5290
    116. DeLuca JG, Moree B, Hickey JM, Kilmartin JV, Salmon ED. hNu(?)2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J Cell Biol 2002; 159: 549-555
    117. Maeda T, Chong MT, Espino RA, Chua PP, Cao JQ, Chomey EG, Luong L, Tron VA. Role of p21(Waf-1) in regulating the G1 and G2/M checkpoints in ultraviolet-irradiated keratinocytes. J lnvest Dermatol 2002; 119: 513-521
    118. Allen CE, Wu LC. Downregulation of KRC induces proliferation, anchorage independence, and mitotic ceil death in HeLa cells. Exp Cell Res 2000; 260: 346-356
    119. Lee SJ, Choi SA, Lee KH, Chung HY, Kim TH, Cho CK, Lee YS. Role of inducible heat shock protein 70 in radiation-induced cell death. Cell Stress Chaperones 2001; 6: 273-281
    120. Multani AS, Ozen M, Narayan S, Kumar V, Chandra J, McConkey DJ, Newman RA, Pathak S. Caspase-dependent apoptosis induced by telomere cleavage and TRF2 loss. Neoplasia 2000; 2: 339-345
    121. Chang BD, Broude EV, Dokrnanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 1999; 59: 3761-3767
    122. Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternatie mechanisms. Nat Rev Mol Cell Biol 2001; 2: 589-598
    123. Lockshin RA, Zakeri Z. Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol 2001; 2: 545-550
    124. Xue L, Fletcher GC, Tolkovsky AM. Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol 2001; 11: 361-365
    125. Raff MC, Whitmore AV, Finn JT. Axonal self-destruction and neurodegeneration. Science 2002; 296: 868-871
    126. Distelhorst CW. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ 2002; 9: 6-19
    127. Lockshin RA, Zakeri Z. Caspase-independent cell deaths. Curr Opin Cell Biol 2002; 14: 727-733
    128. Orlowski RZ. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ 1999; 6: 303-313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700