用户名: 密码: 验证码:
融合肽minTBP-1-PRGDN涂层影响钛表面成骨细胞粘附、增殖及分化功能的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属钛因其良好的耐腐蚀性、生物相容性和骨整合性,在临床上已广泛用作于牙科修复种植体、正畸支抗种植体或人工关节。钛种植体稳定性是其植入成功的关键,多种活性肽和蛋白已被用于修饰钛种植体表面,以促进骨与种植体之间的达到稳定的骨性整合。RGD (Arg-Gly-Asp)肽作为大部分细胞外基质蛋白(包括一些矿化相关蛋白)的共有序列,是目前最有效和应用广泛和的促进生物材料表面细胞粘附的肽,而如何将肽固定于生物材料的表面是提高细胞粘附的前提。学者们试图借助于羟基、氨基或羧基等功能基团,将RGD通过共价结合的方式固定在生物材料的表面。然而,这些偶联方式存在一些缺点:除了复杂的处理过程外,偶联剂的毒性或者活性基团因水解而失活等现象均不容忽视。TBP-1 (RKLPDAPGMHTW)是一种新的从12肽噬菌体库中分离出来的肽适体,其具有与金属钛特异性相互作用的能力,其N端的RKLPDA (minTBP-1)序列是钛结合的重要位点。鉴于其对钛强大的特异性识别能力,minTBP-1常以与其他基序相结合形成融合肽,使得这些融合肽被赋予了同样的对钛特异性识别的能力。鉴于此,本研究合成一种含有RGD和minTBP-1序列的融合—RKLPDAPRGDN,探讨其与钛表面的相互作用;以及用该融合肽作为钛表面涂层,探讨对成骨细胞附着、伸展、增殖、分化及矿化功能方面的影响。
     第一部分融合肽minTBP-1-PRGDN与钛表面相互作用的研究
     目的探讨融合肽minTBP-1-PRGDN、minTBP-1及PRGDN在不同浓度时对钛亲和性的影响;氧化和未氧化钛表面对三种肽结合能力的影响;FITC标记对肽结合能力影响。
     方法实验一:钛片经顺序打磨、清洗、消毒备用,三种肽以不同浓度(1μg/ml,10μg/ml, 100μg/ml, 1000μg/ml)孵育钛片过夜,双蒸水洗去未结合的肽。实验二:钛片经顺序打磨、清洗、一部分经30%硝酸氧化(另一部分不氧化)、消毒备用,XPS检测氧化与未氧化钛片表面元素成分;三种肽以100μg/ml浓度分别孵育氧化和未氧化的钛片过夜,双蒸水洗去未结合的肽。实验三:钛片经顺序打磨、清洗、氧化、消毒备用,三种肽以100μg/ml浓度按照未标记与标记比例为0:1(None)、10:1、100:1分别孵育钛片过夜,双蒸水洗去未结合的肽。荧光显微镜拍照,IPP图像分析软件采集荧光照片的像素点、以平均每个钛片上的荧光像素点的数量作为结合到钛片表面的肽数量的间接反映。
     结果实验一:三种肽随着浓度的增加其结合到钛片上的数量均逐渐增加,100μg/ml时各种肽在钛片的结合接近饱和。实验二:经氧化后的钛片表面氧元素含量增加;minTBP-1-PRGDN和minTBP-1在氧化的钛片表面的结合数量增加,而PRGDN肽数昊减少。实验三:随着未标记肽掺入到标记肽中的比例增加,钛片表面荧光数量减少。
     第二部分融合肽minTBP-1-PRGDN对成骨细胞粘附的影响
     目的探讨不同肽涂层的钛表面对成骨细胞附着数量、伸展形态及面积、粘附相关基因表达的影响。
     方法钛片经顺序打磨、清洗、氧化、消毒备用,三种肽以100μg/ml浓度孵育钛片表面过夜,未有肽孵育组作为空白对照;PBS洗去未结合的肽;成骨细胞在钛片表面生长一定时间后(实验四、五为1h,实验六为24h),PBS洗去未粘附细胞。实验四:Alamar Blue比色法检测附着细胞的数量;实验五:FITC-鬼笔环肽染色粘附细胞,荧光显微镜照相,IPP软件分析细胞伸展面积;实验六:RT-PCR荧光定量检测Integrinβ1和Cadherin-11基因表达。
     结果实验四:minTBP-1-PRGDN涂层钛片上附着的成骨细胞数量最多、PRGDN涂层组的细胞数量最少:实验五:minTBP-1-PRGDN融合肽涂层的钛片表面的成骨细胞伸展充分、面积最大,但细胞伪足少;PRGDN涂层的钛片表面成骨细胞伸展最不充分,多接近于立方形,伸展面积与其他各组相比也是最小;实验六:Integrinβ1和Cadherin-11基因表达量在PRGDN组均为最高。
     第三部分融合肽minTBP-1-PRGDN对成骨细胞增殖的影响
     目的探讨不同肽涂层的钛表面对成骨细胞增殖数量、形态及相关基因表达的影响。
     方法实验七:MTT比色法检测四组成骨细胞在24h、48h、72h时的增殖数量;细胞经Giemsa's染色后金相显微镜观察在增殖72h时的形态;实验八:RT-PCR荧光定量检测Collagen la 1和Cyclin D1基因表达。
     结果实验七:各组细胞随时间延长数量逐渐增加,24h时minTBP-1-PRGDN涂层钛片表面的成骨细胞数量最多;72h时各组细胞大部分呈长梭形,伸展充分,并沿着钛片表面打磨的痕迹方向排列;实验八:cyclin D1:对照组外,其余各组表达量随时间延长而增加;达到72h时,minTBP-1-PRGDN组的cyclin D1表达量最大。CollagenⅠα1:各组表达量随时间延长降低后又有所增高;24 h时,PRGDN组的表达量最高;48h时,空白对照组表达量最低;72h时,minTBP-1组表达量最高。
     第四部分融合肽minTBP-1-PRGDN对成骨细胞分化及功能的影响
     目的探讨不同肽涂层的钛表面对成骨细胞分化过程中ALP酶活性、矿化相关基因表达、矿化结节形成数量及面积大小的影响。
     方法实验九:PNPP法检测成骨细胞诱导分化第3,7,10,14,21,28d时的ALP酶活性;实验十:RT-PCR荧光定量检测ALP、OPN、BSP、OC基因表达;实验十一:细胞诱导矿化28d后,茜素红染色矿化结节,金相显微镜照相,IPP软件分析各组结节数量及平均面积。
     结果实验九:各组成骨细胞诱导3-10d内,ALP活性值缓慢递增,从14d开始,ALP量的增加开始加速,28d时达到峰值;实验十:minTBP-1-PRGDN涂层表面成骨细胞分泌的OPN、OC、BSP及ALP四种基因的表达趋势均为:随着时间的延长,表达量先上升后降低,且在第14天时达到高峰。而minTBP-1涂层表面成骨细胞分泌的这四种基因的表达趋势均为随着时间的延长,表达量逐渐上升。空白对照组中,除了OC表达先降低后增高以外,其余三种基因的表达均为逐渐升高。而PRGDN组中除了BSP的表达先增加后减少外,其他三种基因的表达均为先降低升高。四种基因在第7d时,PRGDN组的表达均为最高;第14d时minTBP-1-PRGDN组表达量最高;实验十一:minTBP-1-PRGDN组的结节面积最大而minTBP-1组的平均面积最小;结节数量在PRGDN组最多而minTBP-1组最少。
Titanium (Ti) has been widely used as an embedding biomaterial in dental implants, artificial joints and so on, owing to its good biocompatibility, osseointegration, resistance to corrosion and low allergenicity. The key point of successful implant is the achievement of fine stability between Ti and bone tissue. Various kinds of natural or artificial peptides and proteins have been widely investigated to promote osseointegration. The RGD (Arg-Gly-Asp) sequence, which can be found in most extracellular matrix (ECM) proteins, including some mineralized-related proteins, is the most effective and most often employed peptide sequence for improving cell adhesion on biomaterial surfaces. Stable immobilization of peptides on the surface of biomaterials is essential to promote strong cell adhesion. RGD peptides commonly covalently bind to the surface of biomaterials via functional moieties such as hydroxyl, amino, and carboxyl radicals. However, many problems may arise in these coupling methods:besides the complex treatment procedures, the coupling reagent may be cytotoxic or the active group may be deactivated quickly by hydrolysis. A new peptide aptamer, named TBP-1 (RKLPDAPGMHTW) which is isolated from a linear 12-mer peptide phage library, has been proved to have the character of specifically interacting with the surface of Ti. Its N-terminal, RKLPDA (minTBP-1), is sufficient for Ti binding. Considering its specific and strong binding ability, minTBP-1 has been used in the form of combination with other motifs, which endowed the chimeric peptides with specific binding ability to Ti. In this study, we synthesized a chimeric peptide with double motifs containing a RGD and a minTBP-1 sequence, and investigated its binding ability to Ti and its effect to osteoblast on attachment, spreading, proliferation, differentiation and mineralization ability as well.
     Part One:The interaction between minTBP-1-PRGDN and titanium
     Object To explore the affinities of minTBP-1-PRGDN, minTBP-1and PRGDN to Ti at different concentrations; the different affinities of three peprtides to unoxidized and oxidized Ti; the influence of FITC labling on peptide affinity.
     Methods Experiment one:Ti disks were wet-polished, washed and sterilized sequentially, and incubated overnight with three peptides separativly at four different concentrations of 1μg/ml,10μg/ml,100μg/ml and 1000μg/ml, then washed with ddH2O to remove unbound peptides. Experiment two:Ti disks were wet-polished, washed and sterilized sequentially. Half numbers of disks were oxidized with 30% HNO3 and the others were not oxidized. The elements on the surfaces of oxidized and unoxidized Ti disks were detected by XPS. Then all disks were incubated overnight with three peptides separativly at concentration of 100μg/ml, and then washed with ddH2O to remove unbound peptides. Experiment three:Ti disks were wet-polished, washed, oxidized and sterilized sequentially, and then incubated overnight with the combination of unlabeled and FITC-labeled peptides in the proportion of 0:1,10:1, and 100:1, washed with ddH2O to remove unbound peptides. Photos of coated disks were taken by fluorescence microscope and analyzed by Image-Pro(?) Plus software package by measuring the average number of fluorescent pixels per disk.
     Results Experiment one:The numbers of binding prptides rose with the concentrations increasing, and the binding of three peptides were close to saturation at 100μg/ml. Experiment two:The propotion of oxygen on oxidized disks increased. The affinity of minTBP-1-PRGDN and minTBP-1 to oxidized Ti disks increased while that of PRGDN dramatically decreased. Experiment three:With the increasing proportion of unlabeled peptide mixing into labeled peptide, fluorescent pixels in three groups all decreased, the FITC labling did not affect the peptide.binding ability.
     Part Two:The effect of minTBP-1-PRGDN on osteoblast adhension
     Object To explore the effects of different Ti coatings with minTBP-1-PRGDN, minTBP-land PRGDN on osteoblast attachment, spreading and the expression of adhension-relative gene. Methods Ti disks were wet-polished, washed, oxidized and sterilized sequentially, and then incubated overnight with three kinds of unlabled peptides separativly, washed with ddH2O to remove unbound peptides. Osteoblast were seeded on Ti disks and adhered for some time(1h in experiment 4 and 5,24h in experiment 6), and then non-adhesive cells were washed with PBS. Experiment four:The quantification of adhesive cells was colorimetry using Alamar Blue. Experiment five:The morphous of adhered adhesive cells were stained with phalloidin-FITC and taken photos with fluorescence microscope. And then the extent of cell spreading on Ti disks was measured quantitatively by measuring the cell areas with Image-Pro? Plus software package. Experiment six:The adhension-relative gene integrinβ1 and cadherin-11 were detected by RT-PCR.
     Results Experiment four:The number of attached cells was most on minTBP-1-PRGDN pre-coated disks and least on PRGDN pre-coated disks. Experiment five:Cells adhering on minTBP-1-PRGDN pre-coated disks exhibited active spreading and mainly oblate or round shape, lacking in pseudopodia. Cells in PRGDN pre-coated group were almost cuboidal with a few pseudopodias and had the least spreading area. Experiment six:The adhension-relative gene Integrinβ1 and Cadherin-11 were expressed most obviously in PRGDN group.
     Part Three:The effect of minTBP-1-PRGDN on osteoblat proliferation
     Object To explore the effects of different Ti coatings with minTBP-1-PRGDN, minTBP-1and PRGDN on osteoblast proliferation, including cell numbers and the expression of proliferation-relative gene.
     Methods Experiment seven:MC3T3-E1 osteoblasts proliferated on different pre-coated disks for 24h,48h and 72h, and then cell numbers were evaluated by MTT assay, and cell shape and density were observed with metallurgical microscope after Giemsa's staining. Experiment eight:The proliferation-relative gene collagen Iα1 and cyclin Dl were detected by RT-PCR.
     Results Experiment seven:Cell numbers in all groups were increasing with the time in four groups. At 24h, cell number of minTBP-1-PRGDN group was the maximum and significant difference was found by comparing with control group. Osteoblasts presented fusiform shape and lined according with the orientation of Ti disk burnishing. Experiment eight:The expression of cyclin D1 gene were increasing with the time in all groups except control group. At 72h, the gene expression of cyclin Dl was most conspicuous. For the expression of collagen Iα1 gene, PRGDN group was the most at 24h, and control group was the least at 48h, and minTBP-1 group was the most at 72h.
     Part Four:The effect of minTBP-1-PRGDN on osteoblat differentiation and function
     Object To explore the effects of different Ti coatings with minTBP-1-PRGDN. minTBP-1and PRGDN on osteoblast differentiation and function, including ALP activity, expression of differentiation-relative gene, and formation of mineralized nodules.
     Methods Experiment nine:Osteoblasts were incubated, ALP activity was determined as the rate of p-nitrophenol release from p-nitrophenylphosphate substrate at day 3,7,10,14, 21 and 28. Experiment ten:The differentiation-relative gene were detected by RT-PCR, including ALP, OPN, BSP and OC. Experiment eleven:After being incubated with differentiation medium for 28d, osteoblasts were stained with Alizarin red-S for displaying mineralized nodules. And then nodules were taken photos with metallurgical microscope and their numbers and size were measured quantitatively with Image-Pro? Plus software package.
     Results Experiment nine:ALP activity increased slowly from day 3 to 10, and increased acceleratively from day 14 and reached the peak value at day 28. Experiment ten: OPN、OC、BSP and ALP genes in minTBP-1-PRGDN group all increased firstly and dropped afterwards. However, the four genes in minTBP-1 group increased sustainedly with time. In control group, OPN、BSP and ALP genes increased sustainedly, but OC gene decreased firstly and raised then. In PRGDN group, OPN、OC and ALP genes decreased firstly and raised then, but BSP increased firstly and dropped afterwards. The expression of four genes highestly in PRGDN group on day 7, and in minTBP-1-PRGDN group on day 14. Experiment eleven:The average area of mineralized nodules was the biggest in minTBP-1-PRGDN group and the smallest in minTBP-1-group. The numbers of nodules were the most in PRGDN group and the least in minTBP-1-group.
引文
1. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003;67(8):932-49.
    2. Branemark PI. Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies.Scand J Plast Reconstr Surg 1969; 3(2):81-100.
    3. Martin JY, Schwartz Z, Hummert TW, et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 1995,29(3):389-401.
    4.1 Brunette DM, Tengvall P, Textor M, Thomsen P. Titanium in Medicine. Eds, Springer, Berlin.2001:pp 1019.
    5. Roberts WE, Marshall KJ, Mozsary PG. Rigid endosseous implant utilized as anchorage to protract molars and close an atrophic extraction site. Angle Orthod 1990; 60(2):135-52.
    6. Kashiwagi K, Tsuji T, Shiba K. Directional BMP-2 for functionalization of titanium surfaces. Biomaterials 2009; 30(6):1166-75.
    7. Deguchi T, Takano-Yamamoto T, Kanomi R, et al. The use of small titanium screws for orthodontic anchorage. J Dent Res 2003; 82:377-381.
    8. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater.2007 Jul; 23(7):844-54.
    9. Understanding and controlling the bone-implant interface. Puleo DA, Nanci A. Biomaterials.1999 Dec;20(23-24):2311-21. Review.
    10. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, lost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res.2000 Feb;49(2):155-66.
    11. Li D, Ferguson SJ, Beutler T, Cochran DL, Sittig C, Hirt HP, Buser D. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J Biomed Mater Res 2002; 60(2):325-32.
    12. Szmukler-Moncler S, Perrin D, Ahossi V, Magnin G, Bernard JP. Biological properties of acid etched titanium implants:effect of sandblasting on bone anchorage. J Biomed Mater Res B Appl Biomater 2004 Feb 15;68 (2):149-59.
    13. Li LH, Kong YM, Kim HW, et al. Improved biologicalperformance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004; 25:2867-2875.
    14. Davies JE, Baldan N. Scanning electron microscopy of the bone-bioactive implant interface. J Biomed Mater Res.1997 Sep 15; 36(4):429-40.
    15. Nakamura HK, Butz F, Saruwatari L, Ogawa T. A role for proteoglycans in mineralized tissue-titanium adhesion. J Dent Res.2007 Feb;86(2):147-52.
    16. Grzesik WJ, Robey PG. Bone matrix RGD glycoproteins:immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Min Res 1994; 9:487-493.
    17. Ferris DM, Moodie GD, Dimond PM, Gioranni CW, Ehrlich MG, Valentini RF. RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 1999; 20:2323-2331.
    18. Sawyer AA, Hennessy KM, Bellis SL. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials.2007 Jan; 28(3):383-92.
    19. Van den Dolder J, Bancroft GN, Sikavitsas VI, Spauwen PH, Mikos AG, Jansen JA. Effect of fibronectin-and collagen I-coated titanium fibre mesh on proliferation and differentiation of osteogenic cells. Tissue Eng 2003; 9:505-515.
    20. Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol 2004; 1:24-34.
    21.Morra M, Cassinelli C, Cascardo G, Mazzucco L, Borzini P, Fini M, Giavaresi G, Giardino R. Collagen I-coated titanium surfaces:mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. J Biomed Mater Res A 2006 Sep 1;78(3):449-58.
    22. Hook F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H. Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking:a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem.2001 Dec 15;73(24):5796-804.
    23. Sawyera AA, Weeksb DM, Kelpkec SS, et al. The effect of the addition of a polyglutamate motif to RGD on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion. Biomaterials 2005; 26:7046-7056.
    24. LeBaron RG. Athanasiou KA. Extracellular matrix cell adhesion peptides:functional applications in orthopedic materials. Tissue Eng,2000; 6:85-103.
    25. Hersel U, Dahmen C, Kessler H. RGD modified polymers:biomaterials for stimulated cell adhesion and beyond. Biomaterials,2003; 24:4385-4415.
    26. Baneyx F, Schwartz DT. Selection and analysis of solid-binding peptides. Curr Opin Biotechnol.2007 Aug;18(4):312-7. Epub 2007 Jul 5.
    27. Sano K, Shiba K. A hexapeptide motif that electrostatically binds to the surface of titanium. J Am Chem Soc,2003,125:14234-14235.
    28. Sano K, Ajima K, Iwahori K, et al. Endowing a ferritin-like cage protein with high affinity and selectivity for certain inorganic materials. Small,2005,1:826-832
    29. Perlin L, MacNeil S, Rimmer S. Production and performance of biomaterials containing RGD peptides. Soft Matter,2008; 135.196.210.195
    30. Verrier S, Pallu S, Bareille R, et al. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials,2002,23:585-596.
    31. Krijgsman B, Seifalian AM, Salacinski HJ, Tai NR, Punshon G, Fuller BJ, Hamilton G.An assessment of covalent grafting of RGD peptides to the surface of a compliant poly(carbonate-urea)urethane vascular conduit versus conventional biological coatings: its role in enhancing cellular retention. Tissue Eng.2002 Aug; 8(4):673-80.
    32. Geva M, Eisenstein M, Addadi L. Antibody recognition of chiral surfaces. Structural models of antibody complexes with leucine-leucine-tyrosine crystal surfaces. Proteins. 2004 Jun 1;55(4):862-73.
    33. Sano K, Sasaki H, Shiba K. Specificity and biomineralization activities of Ti-binding peptide-1 (TBP-1).Langmuir.2005 Mar 29; 21(7):3090-5.
    34. Fisher LW, Whitson SW, Avioli LV, Termine JD. Matrix sialoprotein of developing bone. J Biol Chem.1983 Oct 25; 258(20):12723-7.
    35. Oldberg A, Franzen A, Heinegard D. The primary structure of a cell-binding bone sialoprotein. J Biol Chem.1988 Dec 25; 263 (36):19430-2.
    36. Oldberg A, Franzen A, Heinegard D, Pierschbacher M, Ruoslahti E. Identification of a bone sialoprotein receptor in osteosarcoma cells. J Biol Chem.1988 Dec 25;263(36):19433-6.
    37. Baht GS, Hunter GK, Goldberg HA. Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation.Matrix Biol.2008 Sep; 27(7):600-8. Epub 2008 Jun 24.
    38. Hsu SH, Liu BS, Lin WH, Chiang HC, Huang SC, Cheng SS. Characterization and biocompatibility of a titanium dental implant with a laser irradiated and dual-acid etched surface. Biomed Mater Eng.2007; 17(1):53-68.
    39. Lange CD, Putter CD. Strueture of the bone interface to dental implants in vivo. J oral Implantol,1993; 19(2):123-133
    40. Kawahara H, Mimura Y, Oki M. In vitro study on cell adhesive strength to titanium with anodic oxidation and nitridation, In:H. Kawahara (Eds.), Oral implantolody and biomaterials, Elsevier Science Publishers BV, Amsterdam,1989. pp.169-176.
    41. Akin FA, Zreiqat H, Jordan S, Wijesundara MB, Hanley L Preparation and analysis of macroporous TiO2 films on Ti surfaces for bone-tissue implants. J Biomed Mater Res. 2001 Dec 15;57(4):588-96.
    42. Mante FK, Little K, Mante MO, Rawle C, Baran GR. Oxidation of titanium, RGD peptide attachment, and matrix mineralization rat bone marrow stromal cells. J Oral Implantol.2004; 30(6):343-9.
    43. Fujisawa R, Mizuno M, Nodasaka Y, Kuboki Y. Attachment of osteoblastic cells to hydroxyapatite crystals by a synthetic peptide (Glu7-Pro-Arg-Gly-Asp-Thr) containing two functional sequences of bone sialoprotein. Matrix Biol.1997 Apr; 16(1):21-8.
    44. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000; 21:667-81.
    45. Anselme K, Noel B, Hardouin P. Human osteoblast adhesion on titanium alloy, stainless steel, glas and plastic substrates with same surface topography. J Mater Sci Mater Med 1999; 10:815-9.
    46. Underwood PA. Bean PA. Mitchell SM. pecific affinity depletion of cell adhesion molecules and growth factors from serum. Whitelock JM. J Immunol Methods.2001 Jan 1;47(1-2):217-24.
    47. Yamashita I, Kirimura H, Okuda M, et al. elective nanoscale positioning of ferritin and nanoparticles by means of target-specific peptides. Small.2006 Oct;2(10):1148-52.
    48. Yamazaki S, Morita T, Endo H, et al. Isoliquiritigenin suppresses pulmonary metastasis of mouse renal cell carcinoma. Cancer Lett,2002,183:23-30.
    49. Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P. Comparison of alamar blue and MTT assays for high through-put screening. Toxicol in Vitro.2004 Oct; 8(5):703-10.
    50. Zhang J, Yun J, Shang Z, Zhang X, et al. Design and optimization of a linker for fusion protein construction. Progress in Natural 2009.
    51. Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses. Ann N Y Acad Sci,1999,875:24-35.
    52. Itoh D, Yoneda S, Kuroda S, et al. Enhancement of osteogenesis on hydroxyapatite surface coated with synthetic peptide (EEEEEEEPRGDT) in vitro [J]. J Biomed Mater Res A,2002,62:292-298.
    53. Aota S, Nagai T, Yamada KM. Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis. J Biol Chem,1991,266: 15938-15943.
    54. Bagno A, Piovan A, Dettin M, et al. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides.Bone.2007 Mar;40(3):693-9.
    55. Irvine DJ, Hue KA, Mayes AM, Griffith LG. Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands. Biophys J.2002 Jan; 82(1 Pt 1):120-32.
    56. Meyers SR, Khoo X, Huang X, Walsh EB, Grinstaff MW, Kenan DJ. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials. Biomaterials.2009 Jan; 30(3):277-86.
    57. Woodruff MA, Jones P, Farrar D, Grant DM, Scotchford CA. Human osteoblast cell spreading and vinculin expression upon biomaterial surfaces. J Mol Histol.2007 Oct;38(5):491-9.
    58. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion:RGD and integrins. Science.1987 Oct 23; 238(4826):491-7.
    59. Huang H, Zhao Y, Liu Z, Zhang Y, Zhang H, Fu T, et al. Enhanced osteoblast functions on RGD immobilized surface. J Oral Implantol 2003; 29(2):73-9.
    60. Truskey GA., Proulx TL., Relationship between 3T3 cell spreading and the strength of adhesion on glass and silane surfaces. Biomaterials,1993,14:243-254.
    61. Webb K, Hlady V, Tresco PA. Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mater Res A,2000,49:362-368.
    62. Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials.2004 Aug;25(18):4087-103.
    63. Hao HF, Naomoto Y, Bao XH, et al. Progress in researches about focal adhesion kinase in gastrointestinal tract.orld J Gastroenterol.2009 Dec 21; 15(47):5916-23. Review.
    64. Zigmond SH. Signal transduction and actin filament organization. Curr Opin Cell Biol 1996; 8:66-73.
    65. Zreiqat H, Akin FA, Howlett CR, et al. Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. J Biomed Mater Res A,2003.64: 105-113.
    66. Oya K, Tanaka Y, Saito H. et al. Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG [J]. Biomaterials,2009.30: 1281-1286.
    67. Kroese-Deutman HC, van den Dolder J, Spauwen PH, et al. Influence of RGD-loaded titanium implants on bone formation in vivo. Tissue Eng,2005,11:1867-1875.
    68. Rammelt S, Illert T, Bierbaum S, et al. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials,2006,27:5561-5571.
    69. Gronthos S, Stewart K, Graves SE, Hay S. Simmons PJ. Integrin expression and function on human osteoblast-like cells. J Bone Miner Res 1997; 12:1189-97.
    70. Saito T, Albelda SM, Brighton CT. Identification of integrin receptors on cultured human bone cells. J Orthop Res.1994 May; 12(3):384-94.
    71. Rezania A, Healy KE. Integrin subunits responsible for adhesion of human osteoblast-like cells to biomimetic peptide surfaces. J Orthop Res.1999 Jul;17(4):615-23.
    72. de Ruijter JE, ter Brugge PJ, Dieudonne SC, van Vliet SJ, Torensma R, Jansen JA. Analysis of integrin expression in U2OS cells cultured on various calcium phosphate ceramic substrates. Tissue Eng.2001 Jun;7(3):279-89.
    73. Ko HC, Han JS, Bachle M, Jang JH, Shin SW, Kim DJ. Initial osteoblast-like cell response to pure titanium and zirconia/alumina ceramics.Dent Mater.2007 Nov; 23(11).1349-55.
    74. Schneider GB, Zaharias R, Stanford C. Osteoblast integrin adhesion and signaling regulate mineralization. J Dent Res.2001 Jun;80(6):1540-4.
    75. Dee KC, Rueger DC, Andersen TT, Bizios R. Conditions which promote mineralization at the bone-implant interface:a model in vitro study. Biomaterials 1996; 17:209-15.
    76. Okasaki M, Takeshita S, Kawai S, et al. Molecular cloning and characterization of OB-cadherin, a new member of cadherin family expressed in osteoblasts. J Biol Chem 1994; 269:12092-8.
    77. Yamada KM, Geiger B. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol 1997; 9:76-85.
    78. Lecanda F, Cheng SL, Shin CS, et al. Differential regulation of cadherins by dexamethasone in human osteoblastic cells. J Cell Biochem 2000; 77:499-506.
    79. Ferrari SL, Traianedes K, Thorne M, et al. A role for N-cadherin in the development of the differentiated osteoblastic phenotype. J Bone Miner Res.2000 Feb; 15(2):198-208.
    80. Kawaguchi J, Azuma Y, Hoshi K, et al. Targeted disruption of cadherin-11 leads to a reduction in bone density in calvaria and long bone metaphyses. J Bone Miner Res. 2001 Jul; 16(7):1265-71.
    81. Hunter A, Archer CW, Walker PS, et al. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. Biomaterials.1995,16:287-295.
    82. Den Braber ET, De Ruijter JE, Smits HTJ, et al. Effect of parallel surface microgrooves and surface energy on cell growth. J Biomed Mater Res 1995; 29:511-8.
    83.杨抚华,胡以平.细胞生物学[M].北京:科学出版社,2002.260-264
    84. Sherr CJ. D-type cyclins. Trends Biochem Sci,1995,20:1672-1677.
    85. Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro:reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol.1990 Jun; 143(3):420-30.
    86. De Angelis E, Ravanetti F, Cacchioli A, et al. Attachment, proliferation and osteogenic response of osteoblast-like cells cultured on titanium treated by a novel multiphase anodic spark deposition process. J Biomed Mater Res B Appl Biomater.2009 Jan;88(1):280-9.
    87. Hennessy KM, Pollot BE, Clem WC, et al. The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation. and on bone formation al hydroxyapatite surfaces. Biomaterials.2009 Apr; 30(10):1898-909.
    88. Sudo H, Kodama H, Amagi Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse cavaria. J Cell Biol 1983;96:191-198.
    89. Quarles D, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture:An in vitro model of osteoblast development. J Bone Miner Res 1992; 7:683-692.
    90. Choi JY, Lee BH, Song KB, Park RW. Kim IS, Sohn KY, Yo JS, Ryoo HM. Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3 El cells. J Cell Biol 1996; 61:609-618.
    91. Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K. Drug-loaded carbon nanohorns:adsorption and release of dexamethasone in vitro. Mol Pharm.2004 Nov-Dec;1(6):399-405
    92. Barbara A, Delannoy P, Denis BG, Marie PJ. Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism.2004 Apr;53(4):532-7.
    93. Irino T, Matsushita M, Sakagishi Y, Komoda T. Phosphorylcholine as a unique substrate for human intestinal alkaline phosphatase. Int J Biochem.1994 Feb;26(2):273-7.
    94. Genge BR, Sauer GR, Wu LN, McLean FM, Wuthier RE. Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization.Biol Chem.1988 Dec 5; 263(34):18513-9.
    95. Hoshi K, Ejiri S, Ozawa H. Localizational alterations of calcium, phosphorus, and calcification-related organics such as proteoglycans and alkaline phosphatase during bone calcification. J Bone Miner Res.2001 Feb; 16(2):289-98.
    96.余克强.补肾中药血清对体外培养成骨细胞合成碱性磷酸酶及骨钙素的调控.中国临床康复,2005,9(34):124-126.
    97. Kuboki Y, Kudo A, Mizuno M, Kawamura M. Time-dependent changes of collagen cross-links and their precursors in the culture of osteogenic cells. Calcif Tissue Int 1992; 50:473-80.
    98. Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differation interrelationship during progressive development of the osteo-blastic phenotype. Endocr Rev.1993,14(4):424-444.
    99. Chol JY. Expression patterns of bone-related proteins during osteoblastic differation in MC3T3-E1 cells. J Cell Biochem.1996; 61(4):609-918.
    100.Kong Y Y, Penninger J M.Molecular control of bone remodeling and osteoporosis. Experi Gerontol,2000,35:947-956.
    101.McCabe LR, Last TJ, Lynch M, Lian J, Stein J, Stein G. Expression of cell growth and bone phenotypic genes during the cell cycle of normal diploid osteoblasts and osteosarcoma cells. J Cell Biochem.1994 Oct; 56(2):274-82.
    102.McCabe LR, Banerjee C, Kundu R, et al. Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation:role of Fra-2 and Jun D during differentiation. Endocrinology.1996 Oct; 137(10):4398-408.
    103.Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials.1993 Apr; 14(5):359-64.
    104.Andrea I.Alford,Kurt D.Hankenson.Matricellular proteins:Extracellular modulators of bone development, remodeling, and regeneration [J]. Bone,2006,38:749-757.
    105.Ganss B, Kim RH, Sodek J. Bone sialoprotein. Crit. Rev. Oral Biol. Med.1999; 10, 79-98.
    106.Marom R, Shur I, Solomon R, Benayahu D. Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. J Cell Physiol 2005; 48:202-241.
    107.Denhardt DT. Guo X. Osteopontin:A protein with diverse functions. FASEB J 1993; 7:1475-1482.
    108.Safran JB, Butler WT, Farach-Carson MC. J Biol Chem. Modulation of osteopontin post-translational state by 1,25-(OH) 2-vitamin D3. Dependence on Ca2+influx.1998 Nov 6;273(45):29935-41.
    109.Nagata T, Todescan R, Goldberg HA, Zhang Q, Sodek J. Sulphation of secreted phosphoprotein I (SPPI, osteopontin) is associated with mineralized tissue formation. Biochem Biophys Res Commun.1989 Nov 30; 165(1):234-40.
    110.刘宏,王勤涛,吴织芬,等rhBMP-2对人牙牙周细胞骨桥蛋白表达的影响.中华口腔医学志,2000,35(5):330-332
    111.Wu X,Itoh N, Taniguchi T,et al. Requirement of calcium and phosphate ions in expression of sodium-dependent vitamin C transporter 2 and osteopontin in MC3T3-E1 osteoblastic cells. Biochimica et Biophysica Acta,2003,1641:65-70.
    112.Beck GR, Zerler B, Moran E. Phosphate is a specific signal for induction of osteopontin gene expression. PNAS 2000; 97:8352-8357.
    113.Beck GR Jr. Sullivan EC. Moran E, Zerler B. Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. J Cell Biochem.1998 Feb 1; 68(2):269-80.
    114.Tye CE, Hunter GK, Goldberg HA. Identification of the type I collagen-binding domain of bone sialoprotein and characterization of the mechanism of interaction. J Biol Chem.2005 Apr 8; 280(14):13487-92.
    115.Baht GS, Hunter GK, Goldberg HA. Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation. Matrix Biol.2008 Sep; 27(7):600-8.
    116.Bianco P, Riminucci M, Silvestrini G, et al. Localization of bonesialoprotein (BSP) to Golgi and post-Golgi secretory structures in osteoblasts and to discrete sites in early bone matrix. J Histochem Cytochem.1993; 41:193-203.
    117.Riminucci M, Silvestrini G, Bonucci E, et al. The anatomy of bone sialoprotein immunoreactive sites in bone as revealed by combined ultrastructural histochemistry and immunohistochemistry. Calcif. Tissue Int.1995; 57:277-284,
    118.Yanai T, Katagiri T, Akiyama S, et al. Expression of mouse osteocalcin transcripts, OG1 and OG2, is differently regulated in bone tissue and osteoblast cultures. J Bone Miner Metab.2001;19:345-351
    119.Ogawa T, Nishimura I. Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes.Int J Oral Maxillofac Implants.2003 Mar-Apr; 18(2):200-10.
    12O.DecIercq HA, Verbeeck RMH, De Ridder LI, Schacht EH, Cornelissen MJ. Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures. Biomaterials 2005; 26:4964-4974.
    121.Gilmore SK, Whitson SW, Bowers DE Jr. A simple method using alizarin red S for the detection of calcium in epoxy resin embedded tissue. Stain Technol.1986 Mar; 61(2):89-92.
    122.Bonewald LF, Harris SE, Rosser J, et al. Von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int.2003 May; 72(5):537-47.
    123.Boskey AL. Biomineralization:conflicts, challenges, and opportunities. J Cell Biochem Suppl.1998; 30-31:83-91.
    124.Traub, W., Arad, T., Weiner, S.,1992. Origin of mineral crystal growth in collagen fibrils. Matrix 12,251-255.
    125.Hunter GK, Poitras MS, Underhill TM, Grynpas MD, Goldberg HA. Induction of collagen mineralization by a bone sialoprotein--decorin chimeric protein.J Biomed Mater Res.2001 Jun 15; 55(4):496-502.
    126.Hoshi K, Ejiri S, Ozawa H. Ultrastructural analysis of bone calcification by using energy-filtering transmission electron microscopy. Ital J Anat Embryol.2001; 106(2 Suppl 1):141-50.
    127.Sawyer AA, Hennessy KM. Bellis SL. The effect of absorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials (2007), doi:10.1016/j.biomaterials.2006.08.031
    128.Chen HG, Wu XD. Yu QQ, et al. Self-assembled monolayers of n-hexadecanoic acid and alphahydroxyl n-hexadecanoic acid on titanium surfaces. Chinese Journal of Chemistry.2002; 20 (12):146
    129.Qing Liu, Jinag Ding, Francis K, et al. The role of surface functional groups in calcium phosphate nucleation on titanium foil:a self-assembled monolayer techinique. Biomaterials.2002; 23 : 3103
    130.Hayashi T, Sano K. Shiba K, Kumashiro Y, Iwahori K, Yamashita I, Hara M. Mechanism underlying specificity of proteins targeting inorganic materials. Nano Lett. 2006 Mar; 6(3):515-9.
    131.Tamerler C, Sarikaya M. Molecular biomimetics:utilizing nature's molecular ways in practical engineering. Acta Biomater.2007 May; 3(3):289-99.
    132.Willett RL, Baldwin KW, West KW, Pfeiffer LN. Differential adhesion of amino acids to inorganic surfaces. Proc Natl Acad Sci U S A.2005 May 31; 102(22):7817-22.
    133.Sano Ken-Ichi, Shiba Kiyotaka. Utilizing two capabilities of a single aptamer for constructing nanostructures. Polymer Preprints. Vol.48, no.2. Aug.2007
    134.Kokubun K, Kashiwagi K, Yoshinari M, Inoue T, Shiba K. Motif-programmed artificial extracellular matrix. Biomacromolecules.2008 Nov; 9(11):3098-105.
    135.Leahy DJ, Aukhil I, Erickson HP.2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell.1996 Jan 12; 84(1):155-64.
    136.Liu Y, de Groot K, Hunziker EB. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone 2005; 36(5):745-57.
    137.Adden N, Gamble LJ, Castner DG, Hoffmann A, Gross G, Menzel H. Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir 2006; 22(19):8197-204.
    138.Morin R, Kaplan D, Perez-Ramirez B. Bone morphogenetic protein-2 binds as multilayers to a collagen delivery matrix:an equilibrium thermodynamic analysis. Biomacromolecules 2006; 7(1):131-8.
    139.Saito N, Okada T, Horiuchi H, Murakami N, Takahashi J, Nawata M, et al. A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat Biotechnol 2001; 19(4):332-5.
    140.Takahashi Y, Yamamoto M, Yamada K, Kawakami O, Tabata Y. Skull bone regeneration in nonhuman primates by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. Tissue Eng 2007;13(2):293-300.
    141.Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A 2004; 71(3):528-37.
    142.Naik RR, Brott LL, Clarson SJ, Stone MO. Silica-precipitating peptides isolated from a combinatorial phage display peptide library. J Nanosci Nanotechnol.2002 Feb; 2(1):95-100.
    143.Brown S, Sarikaya M, Johnson E. A genetic analysis of crystal growth. J Mol Biol. 2000 Jun 9;299(3):725-35.
    144.Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO. Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater.2002 Nov; 1(3):169-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700