用户名: 密码: 验证码:
彩色棉纤维发育特性以及基于细胞质雄性不育的彩色长绒棉育种研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大然彩色棉是一种纤维具有颜色的棉花,其颜色是植物色素在纤维细胞内沉积的结果。天然彩色棉织物以其舒适、环保的特性受到人们的广泛欢迎。但彩色棉在生产应用上存在两个不利因子:其产量偏低,品质偏差。如何提高彩色棉的产量和品质使其适应纺织工业的需求成为种植者和纺织企业共同关注的问题。杂种优势是提高作物产量和品质的有效手段,在棉花中海陆杂种和陆陆杂种已被广泛用于新品种的选育。海岛棉具有纤维长、细、强等突出特点,是纺织高支纱和特种织物不可缺少的原料。为此,本文在研究彩色棉纤维生长与发育的生理、生化和基因表达特性的基础上,对基于细胞质雄性不育的棕色棉陆陆杂种和海陆杂种的杂种优势表现进行了分析和研究,以期为指导彩色棉育种提供理论依据。本文主要研究结果如下:
     1田间和组织培养条件下彩色棉和白色棉纤维的发育特性
     彩色棉纤维快速伸长期较短,次生壁加厚停止较早,使得彩色棉纤维的长度和品质较差。与白色棉比较,彩色棉纤维细胞中的纤维素、总黄酮、葡萄糖、蔗糖和果糖的含量存在明显差异:1)、纤维素的含量,彩色棉纤维(仅为750mg/g左右)低于白色棉纤维(910mg/g);2)总黄酮含量,棕色棉和绿色棉5DPA纤维中总黄酮含量分别为8.4mg/g和6.9mg/g,显著高于白色棉5DPA纤维中的3.1mg/g;3)纤维中碳水化合物含量,彩色棉纤维中各种糖分的含量在纤维发育的早期均低于白色棉。棕色棉和绿色棉5DPA纤维中蔗糖,果糖和葡萄糖的含量比白色棉分别降低20%和25%,16.7和28.6,9.6%和6.4%。这与组培的研究结果相一致,表明糖分对离体纤维发育有显著的促进作用相一致。实验表明,不添加糖源的培养基中纤维基本不发育。蔗糖对纤维发育的促进作用最为明显,葡萄糖次之,果糖最差。因此,在彩色棉纤维发育的前期可溶性糖含量偏低,后期不但存在色素物质的合成,而且可溶性糖向纤维素的转化又不充分,这就使得最终彩色棉纤维中纤维素含量减少,而可溶性糖含量则相对升高,可能对棉花产量和品质均有不利影响。
     2培养基中外加呼吸抑制剂对离体彩色棉纤维发育及显色的影响
     用组织培养的方式,外加呼吸抑制剂硫脲和鱼藤酮观察离体彩色棉纤维胚珠在30天内的生长发育特性。研究发现,硫脲对彩色棉纤维细胞的发育影响较小,但对绿色棉纤维的显色影响较大。当培养基中硫脲浓度达到600μM及以上时,绿色棉纤维在30天内没有显色,而对照(不加硫脲绿色棉)在23天显色。硫脲对胚珠培养条件下棕色棉纤维的显色没有影响。鱼藤酮对彩色棉纤维生长的毒性较大,能显著抑制彩色棉胚珠的发育,与对照相比,高浓度鱼藤酮处理下彩色棉胚珠鲜重降低65%以上,纤维长度缩短55%左右。在鱼藤酮作用下,棕色棉和绿色棉虽然都能正常显色,但棕色棉纤维的颜色明显变淡,绿色棉纤维颜色变化不明显但显色提前,组培17天显色,比对照提前6天。同时对组织培养条件下30天后两个抑制剂不同浓度处理下三种纤维中多酚氧化酶活性测定发现,高浓度硫脲处理下,各个材料中多酚氧化酶活性均有降低。其中绿色棉中多酚氧化酶活性降低80%左右,这可能与高浓度硫脲处理下绿色棉纤维显色受到抑制有关。
     3基于细胞质雄性不育的棕色棉陆陆杂种和海陆杂种的杂种优势表现
     陆陆杂种ZZ2的皮棉产量最高,其次为ZZ3,ZZ1。ZZ2的产量相对G008提高了57.5%,与白色棉对照ZM29接近。ZZ2较高的产量得益于其单铃重上较大的杂种优势,这与ZZ2杂种的父本为优质高产的白色陆地棉有关。白色优质陆地棉基因的渗入使得ZZ2在单铃重、皮棉产量和衣分上比G008有显著提高。棕色棉海陆种间杂种ZZ3的单株结铃数最多,其对G008和ZM29的超标优势两年平均值为40.5%和60.3%。这使得海陆杂种的籽棉产量较高,比G008提高30%以上,为其皮棉产量的杂种优势提供了基础。ZZ1的杂种优势为三类杂种中最低。海陆杂种ZZ3的纤维长度与G008和ZM29相比提高了33.9%和11.2%。其纤维强度比棕色棉纯系G008提高40%左右,超过白色棉对照ZM29 10%以上。以白色棉做父本的陆陆杂种ZZ2和海陆杂种ZZ3成熟纤维中纤维素的含量(分别为906mg/g和897mg/g)显著高于G008(746mg/g),与白色棉对照ZM29接近。成熟纤维中纤维素与纤维品质的相关性分析表明,成熟纤维中纤维素的含量与纤维长度和强度都有极显著的正相关,这可能是棕色棉海陆杂种品质较好的原因之一。
     4叶片光合特性和纤维生理特征与棕色棉杂种产量和品质表现的关系
     海陆杂种ZZ3在整个生育时期平均具有较高的叶绿素水平,其盛花期的叶绿素含量与同时期的ZZ1,ZZ2,和G008叶片中叶绿素含量相比分别提高了22%,12%和57%。与叶绿素含量相对应,海陆杂种也具有较高的净光合速率,并且在生育后期其他材料光合速率下降明显时,海陆杂种净光合速率的降幅较小。海陆杂种ZZ3叶片中碳水化合物含量相对较高,这表明其光合能力相对较强,但其最终的皮棉产量不如ZZ2,可能与其营养生长过旺造成对碳水化合物利用分流有关。ZZ1、ZZ2、ZZ3和G008在纤维的生理特性上也有较大差异。纤维快速伸长期,ZZ3纤维中可溶性糖含量较高,而pH值相对较低,为纤维的快速伸长以及纤维素的合成提供较好条件。
     5纤维发育相关基因的表达与棕色棉杂种品质表现的关系
     棕色棉海陆杂种最大的优点是其对棕色棉纤维品质的极大提高,而好的纤维品质能使棕色棉适应纺织工业的需求。我们利用荧光定量PCR来研究不同棕色棉杂种纤维中渗透压相关基因和细胞壁形成相关基因表达量的差异。结果表明,在海岛棉H8714R和棕色棉海陆杂种Z11A×H8714R中六个基因表达量均相对较高。EXT基因和ACT1基因的表达量均为棕色棉G008的1.5倍以上。celA1基因与纤维素的合成直接相关,因此对纤维的强度影响亦较大。研究结果表明,棕色棉海陆杂种纤维中该基因的表达量要显著高于棕色棉陆陆杂种和棕色棉纯系,其20DPA中celA1基因的表达量是棕色棉纯系G008纤维中该基因表达量的2倍以上。由于20DPA是纤维素大量合成的时期,因此,该基因的大量表达可能与棕色棉海陆杂种纤维强度的明显提高相关联。海岛棉H8714R和棕色棉海陆杂种Z11AxH8714R在10DPA纤维中渗透压相关基因的表达量较高。蔗糖合酶基因(SuSy)在海岛棉纤维快速伸长期的表达量很高,达到内参基因的25倍左右。白色陆地棉ZM29、棕色棉陆陆杂种Z11A-L08R和棕色棉纯系G00810DPA纤维中蔗糖合酶基因(SuSy)的表达量相对较低,只有海岛棉和棕色棉海陆杂种的1/3左右。焦磷酸化酶基因(VPP)和质膜H+-ATPase基因(PMA)在海陆杂种和海岛棉10DPA纤维中的表达量也较高。基因表达量和成熟纤维品质性状的相关性分析表明,两者之间有极显著的正相关。因此,这些基因的高量表达可能有利于海岛棉和海陆杂种棉纤维的快速伸长和纤维次生壁的加厚。
Natural colored cotton becomes more and more attractive to textile industry because of their unique non-fading and environmentally friendly properties. But colored cotton is still not very popular in farming because of their lower lint yield and inferior fiber quality than white cotton. So, improvement of the colored cotton fiber yield and quality becomes an urgent need, which can directly influence its further development. Heterosis utilization is still a powerful way in cotton fiber yield and quality improvement. Because Sea Island cotton (Gossypium barbadense L.) has better fiber quality and Upland cotton (G hiesutum L.) has higher yield, its interspecific hybrid can combinate advantages of the parents in productivity and quality properties and reach the aim of simultaneous improvement of hybrid yield and fiber quality. Therefore, we used Upland and Sea Island cotton with different colored fibers as materials, and studied the characteristics of colored cotton fiber developmnt and their heterosis in hybrid colored cotton. The main results were showed as below:
     1 Development of colored cotton fiber and white cotton fiber in planta and in vitro
     There were significant differences between colored fiber cotton and white fiber cotton in fiber cellulose, pigment, and carbohydrate conten during fiber development.1) Cellulose content in mature fiber of colored cotton (750mg/g) was much lower than white cotton (910mg/g); 2) Total flavoid content in 5DPA brown fiber cotton (8.4mg/g) and green fiber cotton (6.9mg/g) was much higher than that of white fiber cotton (3.1mg/g); 3) Carbohydrate content in colored cotton fiber was lower than white cotton fiber at early stage of fiber development. The content of sucrose, glucose, and fructose in 5DPA fiber of brown cotton and green cotton fiber were 20% and 25%, 16.7% and 28.6%,9.6% and 6.4% lower than that of white cotton fiber. These resules were coinsistance with the study in ovule culture of colored cotton. The study showed that no sugars were added in ovule culure medium, no fiber was produced. Sucrose was the most effective C source for fiber development in vitro, followed by glucose and fructose. The pigment synthesis and depositon in colored fiber cotton may be responsible for the lower cellulose content and inferior fiber quality traits of colored cotton fiber.
     2 Impact of exogenous respiratory inhibitors on colored cotton fiber development in vitro
     Ovule and fiber development would be inhibited by both rotenone and thiourea (exogenous respiratory inhibitors) causing ovule fresh weight reduction and fiber shortening. But rotenone was more harmful to ovule and fiber development. The ovule weight and fiber length of brown cotton and green cotton cultured in medium with high concentration of rotenone was 65% and 55% lower than CK. There was no effect on coloration of brown and green fiber cotton while treated by rotenone. Rotenone also had significant influence on coloration of colored cotton and advanced color display for 6 days in green cotton fiber. Although thiourea had less effect on ovule and fiber development, it could result in no color display in green cotton fiber indicating pigment metabolism was inhibited by thiourea (600μM). Moreover, cytochrome coxidase activity rapidly decreased in fiber cells after rotenone treatment and polyphenoloxidase activity reduced by more than 80% in green cotton fiber after thiourea treatment.
     3 Improvements of yield and quality through inter-and intra-specific hybridization in brown fiber cotton
     ZZ2 produced the highest lint yield for two years among the intra-specific hybrids, which was 57.5% higher than G008 (CK1, a brown pure line) and almost near to the ZM29 (CK2, a commercial hybrid). The average boll numbers of three inter-specific hybrids exceeded G008 and ZM29 by 40.5% and 60.3%, respectively. More boll numbers per plant in ZZ3 produced the highest seed cotton yield, which exceed G008 by 30%. ZZ2 had better yield performance than ZZ1 because of the high yield performance of their male parents. Interspecific hybrids ZZ3 produced the best fiber quality traits. The mean fiber length of inter-specific hybrid increased by 33.9% and 11.2% compared with G008 and ZM29. The mean fiber strength of inter-specific hybrid lines increased almost by 40% and 10% compared with G008 and ZM29. The cellulose contents in mature fiber of ZZ2 (897mg/g) and ZZ3 (906mg/g) was much higher than G008 (746mg/g).
     4 Relationship between leaf photosynthetic, fiber physiological, yield and quality properties in brown cotton hybrids
     The changes in levels of leaf hlorophyll concentration, net photosynthesis rate, sucrose, glucose, and fructose content during fiber development were observed for brown hybrids. ZZ3 had the highest leaf chlorophyll concentrations, which were 22%,12%, and 57% higher than that of ZZ1, ZZ2 and G008, respecitivelly. The higher leaf hlorophyll concentration in ZZ3 indicated its active photosynthesis. High photosynthesis rate in ZZ3 didn't produce the high lint yield, which might be mainly caused by the excessively nutritional plant growth, less bolls per plant, and lighter boll mass. G008 had the lowest leaf chlorophyll concentration and other photosynthetic indexes, leading to a lower amount of photosynthetic product, yield and quality. There were significant differences among all materials in their fiber physiological characteristics. At the early stage of fiber development, the fiber of interspecific hybrids had the higher carbohydrate content and lower pH value than that of intraspecific hybrids.
     5 Relationship between genes expression level and fiber quality in brown fiber cotton hybrids
     The functional genes related to cotton fiber expansion and fiber secondary cell wall synthesis were selected to analyses heir expression level in different type (interspecific hybrid, G. barbadense and G. hirsutum) of brown cotton fibers at the key stage of fiber development by real-time quantitative technology. Five genes, one cell wall extensibility related genes (endo-xyloglucan transferase gene(EXT)), three cell turgor related genes (sucrose synthase gene (SuSy), H+-pyrophosphatase gene (VPP) and Plasma membrane H+-ATPase gene (PMA)) and one cytoskeleton related gene (ACTIN1 (ACT1)), were selected to evaluate their expression level in different type cotton fibers at 10 DPA. And one cell wall synthesis related gene cellulose synthase 1 gene (celAl) was also studied at 24 DPA. The results showed that H8714R (G. barbadense) and interspecific hybrid of brown fiber cotton Z11A×H8714R had the higher expression leves of all six genes than other materials. The expression levels of EXT and ACT1 in Z11A×H8714R were 1.5 times higher than G008. SuSy expressed higher level in interspecific hybrid and G. barbadense than in G. hirsutum. The correlation between genes expression level and related fiber quality of mature cotton fiber was calculated. The expression level was positively associated with the fiber quality traits in different type cotton. It refered that the cell wall extensibility related genes played an important role in fiber length and fiber strength formation.
引文
1. 安田齐著.1989.花色的生理生物化学.北京林业出版社.
    2. 曹新川,何良荣,蔡臻伟,.郑德明,梅拥军,胡守林,熊仁慈.2003.彩色棉与海岛棉种间F1杂种优势分析.棉花学报,15,3:191-192
    3.陈旭升,刘剑光,狄佳睿,许乃银,肖松华.2001.棕色棉纤维色度与产量性状相关分析.中国棉花,28,10:12-13
    4.程超华,王学德,姚艳玲.2005.IAA和GA3对棉花短纤维突变体纤维长度的离体诱导作用.作物学报,31,2:229-233
    5.董合忠,李维江,唐薇,李振怀.2002.2个彩色棉材料的农艺性状和纤维发育特点.山东农业科学,4:6-9
    6.郝再彬,苍晶,徐仲.2002.植物生理实验技术,哈尔滨:哈尔滨出版社
    7.华水金,王学德,赵向前,倪密,袁淑娜,蒋立希.2008.棕色棉纤维发育过程中碳水化合物和色素的变化特征.棉花学报.20,3:239—封三
    8.黄淑莉,郑湘汝,汪矛,贾君镇,徐楚年.1994.棉花胚珠培养研究初级.全国第二届青年农学学术年会论文集:299-301
    9.黄淑莉.1996.棉花胚珠离体培养条件下纤维发育的研究:硕士学位论文,北京农业大学.
    10.蒋淑丽,王学德.2002.5个棉花纤维突变体胚珠和纤维的离体诱导.棉花学报,14,2:71-75
    11.李海燕.1994.温度对离体条件下棉纤维发育效应的研究:硕士学位论文.北京农业大学
    12.李美茹,李洪清,孙梓健,陈贻竹.2003.影响蓝色花着色的因素.植物生理学通讯,39,1:51-55
    13.刘继华.1993.棉花纤维素沉积特性的遗传分析.核农学报,7,2:117-120
    14.马轩,杜雄明,孙君灵.2003.18个彩色棉品系的SSR指纹分析.植物遗传资源学报,4,4:305-310
    15.潘兆娥,杜雄明,孙君灵,周忠丽,庞保印.2006.遮光对彩色棉的色泽和纤维品质的影响.棉花学报,18,264-268
    16.钱思颖,黄骏麒.1992.棉花高纤维品质新种质系培育研究初报.江苏农业科学,3:19-20
    17.钱思颖,黄骏麒,周保良。1996.陆地棉(G. hirsutum L.)和克劳茨基棉(G. klotzschianum)的研究和利用.江苏农业学报,12,4:18-22
    18.邱新棉,俞碧霞,朱乾浩,赵连英,傅杏花.1999.天然彩色棉育种研究。浙江农业学报,11,238-241
    19.邱新棉,俞碧霞。2000.天然彩色棉育种初报.中国棉花,27,1:24-25
    20.邱新棉,周文龙,李茂松,马永根.2002.天然彩色棉纤维色素的遗传基础形成及湿处理色素变化规律的研究.中国农业科学,35,6:610-615
    21.邵莉,李毅,杨美珠,宋云,陈章良,萧师辉.1996.查尔酮合酶基因对转基因植物花色和育性的影响.植物学报,38,7:517-524
    22.邵莉,李毅,梁晓文,陈章良.1995.查尔酮合酶基因转化矮牵牛——改变花色的新途径.生物学通报,30,6:11-12
    23.石玉真,杜雄明.2002.天然有色棉纤维和短绒色泽遗传分析.棉花学报,14,4:242-248
    24.石玉真,刘爱英,李俊文,王淑芳,袁有禄.2008.陆海种间杂交纤维品质性状的遗传及其F.群体优势分析.棉花学报.20,1:56—61
    25.宋宪亮,刘继华,刘英欣,张勇.2000.陆地棉隐性核不育系与海岛棉种间杂种优势研究。中国棉花.27,11:13-15
    26.孙东磊,杜雄明,马峙英.2006.应用特异引物对彩色棉花色苷合成关键酶基因初步研究.棉花学报,18,315-316
    27.孙东磊,孙君灵,杜雄明,马峙英.2008.彩色棉种质资源农艺性状和纤维品质鉴定与分析.植物遗传资源学报,9,4:469—474
    28.孙济中,刘金兰,张金发.1994.棉花杂种优势的研究和利用.棉花学报,6,3:135-139
    29.孙彩霞,齐华,孙加强,张丽莉,缪璐.2007.转基因棉花苗期光合特性的研究.作物学报,33,3:469-475
    30.王曼,王小菁.2000.蓝光、紫外光的受体及其对CHS表达诱导的研究.植物学通报,19,3:265-271
    31.王学德,李悦有.2002.彩色棉纤维发育的特性.浙江大学学报:农业与生命科学版,28,237-242
    32.王学德,李悦有.2002.彩色棉纤维色素提取和测定方法的研究.浙江大学学报:农业与生命科学版,28,596-600
    33.王学德,李悦有.2002.彩色棉雄性不育系、保持系和恢复系的选育及DNA指纹图谱构建.浙江大学学报:农业与生命科学版,28,1-6
    34.王冬梅,李建平,黄乐平,李仁敬,郭江勇,吴明刚,田颍川,国洪年.2003.转抗虫基因彩色棉的获得.农业生物技术学报,11,101-102
    35.王冬梅,胡守江,姚正培,李建平,刘清明,王玉珍,焦明钰.2005.转基因抗虫彩色棉对棉蚜抗性的初步鉴定.核农学报,19,01:24-28
    36.王国祥.1998.彩色棉的色彩及遗传分析.甘肃农业科技,11,7-9
    37.王国祥.2004.彩色棉与海岛棉远缘杂交后代表现.中国棉花,31,1:10-11
    38.王璞,王志敏,周顺利,田晓莉译.2001.作物产量——生理学及形成过程
    39.王义琴,陈大军,危晓薇,吴明刚,王冬梅,姚正培,黄全生,刘丰疆,美丽古丽,李仁敬,孙勇如.2003.天麻抗真菌蛋白基因(gafp)转化彩色棉的研究.植物学通报,20,6:703-712
    40.西蒙古良.1984.陆地棉纤维色泽的遗传.国外农学--棉花,3:17-19
    41.徐楚年,董合忠.2006.棉纤维发育与棉胚珠培养纤维.中国农业大学出版社
    42.许智宏,刘春明主编.1998.植物发育的分子机理.科学出版社,P:107-119
    43.杨佑明.1999.棉胚珠继代培养纤维体系及其生理基础:博士学位论文.中国农业大学
    44.杨佑明,徐楚年,贾君镇.2001.棉胚珠继代培养纤维体系的建立.作物学报.27,6:694—703
    45.杨佑明,徐楚年,周海鹰,贾君镇.2002.基因型在胚珠继代培养过程中对棉纤维发育的影响.棉花学报,24,5:259—263
    46.杨伯祥,周宜军,王治斌.1999.彩色棉主要经济性状研究.中国棉花,26,1:9-10
    47.袁钧,张铎,刘巷禄,郝秀忍,王惠芳.1996.“晋A”棉花质核不育材料的发现与观察.中国棉花,23,4:6-7.
    48.杨兴洪,邹琦,赵世杰.2005.遮荫和全光下生长的棉花光合作用和叶绿素荧光特征.植物生态学报,29,1:8-15
    49.詹少华,林毅,蔡永萍,汪曙.2004.天然棕色棉色素提取、纯化及UV光谱研究.激光生物学报,13,324-328
    50.詹少华,林毅,蔡永萍.2005.彩色棉棉铃生长发育动态研究简报.棉花学报,17,127-128
    51.詹少华,林毅,吕凯.2005.天然彩色棉过氧化物酶·丙二醛及硝酸还原酶的测定.安徽农业科学,33,17-18
    52.詹少华,林毅,张倩.2005.天然棕、绿彩色棉叶片光合色素分析.安徽农业大学学报,
    32,174-177
    53.詹少华,林毅.2005.天然彩棉棕色素定量测定方法的建立.分子植物育种,3,3:439-444
    54.詹少华,林毅,蔡永萍,李正鹏.2006.天然彩棉棕色素稳定性及其机理研究.激光生物学报,15,354-358
    55.詹少华,林毅,蔡永萍,吴甘霖,李正鹏.2006.棕色棉纤维中酚类物质动态变化与色素合成的关系.作物学报,32,1684-1688
    56.张天真.2000.棉花纤维品质分子育种的现状及展望.棉花学报.12,6:321-326
    57.张金发,邓忠,孙济中,刘金兰.1994a.陆地棉与海岛棉种间杂种优势和配合力分析.华中农业大学学报,13,1:9-14
    58.张金发,冯纯大.1994b.陆地棉与海岛棉种间杂种产量品质优势的研究.棉花学报,6,3:140-145
    59.张小均,田新惠,李明月,刘海峰,李少昆,宋武,孙杰.2008.天然彩色棉纤维色素提取及光谱特性研究.棉花学报.20,2:133—136
    60.张雪林.1996.彩色棉引种试验小结.中国棉花,23,23
    61.张雪林.1998.彩色棉选育初报.中国棉花,25,18
    62.张正圣,李先碧,刘大军,肖月华,罗明,黄顺礼,张凤鑫.2002.陆地棉高强纤维品系和Bt基因抗虫棉的配合力与杂种优势研究.中国农业科学,35,12:1450-1455
    63.赵向前,王学德.2002.纤维颜色作为指示性状的三系杂交棉制种技术.浙江大学学报:农业与生命科学版,28,123-126
    64.赵向前,王学德.2005.天然彩色棉纤维色素成分的研究.作物学报,31(4),456-462
    65.赵向前,王学德.2005.细胞质雄性不育彩色棉的杂种优势利用和制种研究.棉花学报,17,8-11
    66.郑顺林,李首成.2007.彩色棉干物质积累和养分吸收的模拟分析.西北农业学报.16,5:100—104
    67.朱伟,王学德,华水金,张小全,蒋培东.2005.鸡脚叶标记的三系杂交棉光合特性的研究.中国农业科学,38,2211-2218
    68。朱竹青,赵国忠,苏丽君,张艳丽,冯恒文.2007.棉花杂种优势与亲本表现的关系研究.棉花学报,19,4:312-314
    69. Anne MJ, Spencer MS.1981. The effect of rotenone on respiration in pea cotyled on mitochondria. Plant Physiol,68:1211-1217
    70. Arpat A, Waugh M. Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing R, Wilkins T.2004. Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol,54:911-929
    71. Basra A, Malik CP.1984. Development of the cotton fiber. International review of cytology-a survey of cell biology,89,65-113
    72. Bauer PJ, Frederic JR, Bradow JM, Sadler EJ. Evans DE.2000. Canopy photosynthesis and fiber properties of normal-and late-planted cotton. Agronomy Journal,92,518-523
    73. Beasley CA.1971. In vitro culture of ferfilized cotton ovules. Bio Science,21:906
    74. Beasley CA.1973. Hormonal regulation of growth in unfertilizered cotton ovules. Science, 179,1003-1005
    75. Beasley CA, Ting IP.1973. The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. American Journal of Botany,60,130-139
    76. Beasley CA.1977. Temperature-dependent response to indoleacetic acid is altered by NH4+ in cultured cotton ovules. Plant Physiology,59,203-206
    77. Beasley CA, Egli MA, Chang S, Radin JW.1979. Independent control fiber development and nitrate reduction in cultured cotton ovules. Plant Physiology,63,57-60
    78. Beatrice M.1936. Effect of ethylene chlorhydrin and thiourea on elodea and nitella. Plant Physiology,207-212
    79. Beld M, Martin C, Huits H.1989. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol 4-reductase genes. Plant Mol. Biol.13:491-502
    80. Benedict CR, McCree KJ, Kohel RJ.1972. High photosynthetic rate of a chlorophyll mutant of cotton. Plant Physiol,49:968-971
    81. Bhatt JG, Rao MRK.1979. Heterosis in growth and photosynthetic rate in hybrids of cotton. Euphytica,30:129-133
    82. Brenda WS.2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell Biology, and biotechnology. Plant Physiology,126:485-493
    83. Briggs WR, Olney MA.2001. Photoreceptors in plant photomorphogenesis to date:Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol. 125:85-88
    84. Britsch L, Ruhnau-Brich L, Forkmann G.1992. Molecular cloning, sequence analysis, and in vitro expression of flavanone 3-hydroxylases from Petunia hybrida. J Biol Chem,367: 5380-5387
    85. Bruce W, Folkerts O, Garnaat C, Crasta O, Roth B, Bowen B.2000. Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. Plant Cell,12:65-79
    86. Bouma TJ, De Visser R, Van Leeuwen PH, De Kock MJ, Lambers H.1995. The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature leaves and their contribution to leaf dark respiaration. Journal of Experimental Botany,46, 1185-1194
    87. Buer CS, Muday GK.2004. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of arabidopsis roots to gravity and light. Plant Cell, 16:1191-1205
    88. Burbulis IE, lacobucci M, Winkel-Shirley B.1996. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell,8,1013-1025
    89. Campanero-Rhodes MA, Childs RA, Kiso M, Komba S, Le Narvor C, Warren J, Otto D, Feizi T.2006. Carbohydrate microarrays reveal sulphation as a modulator of seglec binding. Biochemcial and Biophysical Research Communications,344,1141-1146
    90. Cinzia Solfanelli, Alessandra Poggi.2006. Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Plant Physiology,140:637-646
    91. Creasy LL, Maxie EC, Chichester CO.1965. Anthocyanin production in strawberry leaf disks. Phytochem,4:517-521
    92. Culp TW, Harrell DC, Kerr T. Some genetic implications in the transfer of high fiber strength genes to upland cotton. Crop Science,979,19:481-484
    93. Davidonis GH, Hinojosa O.1994. Influence of seed location on cotton fiber development in planta and in vitro. Plant Sci,203:107-113
    94. Davis DD.1978. Hybrid cotton:specific problem and potentials. Advances in Agronomy. 30::129-157
    95. Delmer DP, Amor A.1995. Cellulose biosynthesis. Plant Cell,7:987-1000
    96. Dickerson DK, Lane EF, Rodriguez DF.1999. Naturally colored cotton:resistance to changes in color and durability when refurbished with selected laundry aids. California Agricultural Technology Institute, California State University, Fresno,1-42
    97. Dixon P, Weinig C, Schmitt J.2001. Susceptibility to UV damage in Impatiens Carpensis(Balsaminaceae):Testing for opportunity costs to shade-avoidance and population defferentiation. American Journal of Botany,88:1401-1408
    98. Dong HZ, Li WJ, Tang W, Li ZH, Zhang DM, Niu YH.2006. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Field Crops Research,98:106-115
    99. Dong YH, Beuning L, Davies K.1998. Expression of pigmentation genes and photo-regulation of anthocyanin biosynthesis in developing Royal GAsla apple flowers. Aust J Plant Physio),25:245-252
    100. Dutt Y, Wang XD, Zhu YG, Li YY.2004. Breeding for high yield and fibre quality in coloured cotton. Plant Breeding,123,145-151
    101.Ehmann B, Ocker B, Schafer E.1991. Development and light-dependent regulation of the expression of two different chalcone synthase transcripts in mustard cotyledons. Planta,183: 410-422
    102. Edmondson YH, Thimann KV.1950. The Biogenesis of the anthocyanins. Ⅱ. Evidence for mediation of copper in anthocyanin synthesis. Arch. Biochem,25:79-90
    103. Galal H E, Miller P A, Lee J A. Heterosis in relation to development in upland cotton, Gossypium hirsutum. L. Crop Science,1966,6:555-559.
    104. Galanopoulou-Sendouca S, Roupakias D.1999. Performance of cotton F1 hybrids and its relation to the mean yield of advanced bulk generations. European Journal of Agronomy,11: 53-62
    105. Grabber JH.2005. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Science,45,820-831
    106. Griesbach RJ.1992. Correlation of pH and light intensity on flower color in potted Eustoma grandiflorum. Hort Science,27:817-818
    107. Harland SC.1932. The genetices of cotton Part V. Reversal of dominance in the interspecific cross G. barbadense L. ×G. hirsutum L. and its bearing on Fisher's Theory of Dominance. J.Genet,25:262-270
    108. Harland S C.1935. The genetics of cotton. ⅩⅣ. The inheritance of brown lint in New World Cottons. J. Genets,31-37
    109. Haigler CH, Rao NR, Roberts EM, Huang J, Upchurch DR, Trolinder NL.1991. Cultured ovules as models for cotton fiber development under low temperature. Plant Physiology,95, 88-96
    110. He CX, Yan JH, Shen GX, Fu LH, Holaday AS, Dick Auld, Eduardo Blumwald, Zhang H.2005. Expression of an arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber Yield in the field. Plant and Cell Physiology,46,11:1848-1854
    111.Hearn AB.1980. Water relationship in cotton. Outlook Agric,10:159-166
    11.2. Heitholt JJ.1993. Cotton boll retention and its relationship to lint yield. Crop Sci,33: 486-490
    113. Heitholt JJ.1994. Canopy characteristics associated with deficient and excessive cotton plant densities. Crop Sci,34:1291-1297
    114. Heitholt JJ, Pettigrew WT, Meredith WR Jr.1992. Light interception and lint yield of narrow row cotton. Crop Sci,32:728-733
    115. Holton TA, Cornish EC.1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell,7:1071-1083
    116. Hua SJ, Wang XD, Yuan SN, Shao MY, Zhu SJ, Jiang LX.2007. Characterization of pigmentation and cellulose synthesis in colored cotton fiber. Crop Science,47,1540-1546
    117. Hua SJ, Yusn SN, Shamsi IH, Zhao XQ, Zhang XQ, Liu YX, Wen GJ, Wang XD, Zhang HP.2009. A comparison of three isolines of cotton differing in fiber color for yield, quality, and photosynthesis. Crop Sci,49:983-989
    118. Jez JM, BowmanME, Dixon RA, Noel JP.2000. Structure and mechanism of chalcone isomerase:an evolutionarily unique enzyme in plants. Nat Struct Biol,7:786-791
    119. Ji SJ, Lu YC, Feng JX, Wei G, Li J, Shi YH, Fu Q, Liu D, Luo JC, Zhu YX.2003. Isolation and analysis of genes preferentially expressed during early cotton fiber development by substractive PCR and cDNA array. Nucleic Acids Research.31,2534-2543
    120. Jones D F. Heterosis resulting from degenerative changes. Genetics.1945,30:527-542
    121. Kang SY, Epps HH.2008. Effect of scouring on the color of naturally-colored cotton and the mechanism of color change. AATCC REVIEW,8,7:38-43
    122. Katrina Cornish, Radin JW, Turcotte EL, Lu Z, Zeiger E.1991. Enhanced photosynthesis and stomatal conductance of pima cotton (Gossypium barbadense L.) bred for increased yield. Plant Physiol,97:484-489
    123.Katz A, Weiss D.1998. Photocontrol of chs gene expression in petunia flowers. Physiol Plant,102:210-216
    124. Kerckhoffs LHJ, Kendrick RE.1993. Photocontrol of anthocyanin biosynthesis in tomato. J Plant Res. Tokyo,110:141-149
    125. Koes RE, Spelt CE, van der Elzen PJM.1989. Cloning and molecular characterization of the chalcone synthase multigene family of petunia hybrida. Gene,81:245-257
    126. Koes RE, Spelt CE, Mol JNM.1989. The chalcone synthase multigene family of petunia hybrida(V30):Differential light-regulated expression during flower development and UV light induction. Plant Mol.Biol,12:213-225
    127. Kohel RJ. Genetic analysis of fiber color variants in cotton. Crop Science,1985,25:793-797
    128. Krishnaswai R, Kothandaraman R. Favorable influence of Gossypium raimondii genes on fibre properties of cultivated cotton. Genetica Agraria,1975,29:277-281
    129. Li X, Wang XD, Zhao X, Dutt Y.2004. Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Rep,22:691-697
    130. Li XB, Fan XP, Wang XL, Cai L, Yang WC.2005. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell,17,3:859-875
    131. Lippman ZB, Zamir D.2006. Heterosis:revisiting the magic. Trends in Genetics,23,2: 60-66
    132. Loden HD, Richmond TR. Hybrid vigor in cotton-cytogenetic aspects and practical applications. Economic Botany,1915,5:387-408
    133. Luo LJ, Li ZK, Mei HW.2001. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice II.Grain yield components. Genetics.158: 1755-1771
    134. Marani A.1968a. Inheritance of lint quality characteristics in intraspecific crosses among varieties of G. hirsutum L. and of G.barbadense L. Crop Science,8:36-38
    135. Marani A.1968b. Heterosis and inheritance of quantitative characters in interspecific crosses of cotton. Crop Science,8:299-303
    136. Marani A.1968c. Heterosis of lint quality characteristics in interspecific crosses of cotton. Crop Science,8:653-657
    137. Martin C, Gerats T.1993. Ccontrol of pigment biosynthesis genes during petal development. Plant cell,5:1253-1264
    138. Meinert MC, Delmer DP.1977. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiology.59,1088-1097
    139. Mellon JE.1991. Purification and characterization of isoperoxidases elicited by aspergillus flavus in cotton ovule cultures. Plant Physiol,95:14-20
    140. Menz RI, David AD.1998. Day§Purification and characterization of a 43-kDa rotenone-insensitive NADH dehydrogenase from plant Mmitochondria. The journal of biological chemistry,271,38:23117-23120
    141. Meredith WR.984. Quantitative genetics in cotton. Edited by RJ Kohel. Agron Mongr, 24:131-150
    142. Meredith WRJr.1992. Cotton breeding for fiber strength. In Proceedings from cotton fiber cellulose:function, and utilization conference. National Cotton Council of American, PP 289-302
    143. Meredith WRJr, Brown, JS.1998. Heterosis and combining ability of cotton originating from different regions of the United States. Journal of Cotton Science,2:77-84
    144. Meyer VG, Meyer JR. Cytoplasmically controlled male sterility in cotton. Crop Science, 1965,5:444-448.
    145. Meyer VG. Male sterility from G. harknessii. Journal of Heredity,1975,66:23-27
    146. Miller PA, Lee JA.1964. Heterosis and combining ability in varietal top crosses of upland cotton, Gossypium hirsutum L. Crop Sci,4:646-649
    147. Moalem D, Tamari G, Leitner Y.1997. Sugar-dependment gibberellin-induced chalcone synthase gene expression in petunia corollas. Plant Physiol,113:419-424
    148. Moscobici S, Moalem-Beno D, Weiss D.1996. Leaf-mediated light responses in petunia flowers. Plant Physiol,1110:1275-1282
    149. Moyano E, Martinez-Garcia JF, Cathie M.1996. Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis n antirrhinum flowers. Plant Cell, 8,1519-1532
    150. Murthy MSS.2001. Never say dye:the story of coloured cotton. Resonance,12:29-35
    151. Muramoto H. Hexaploid cotton:Some fiber and spinning properties. Crop Science,1973, 13:396-397
    152. Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM.2001. Flavonoids:a review of probable mechanisms of action and potential applications. American Journal of Clinic Nutrition,74,418-425
    153. Ohto M, Onai K, Furukawa Y.2001. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Phsiol,127:252-261
    154. Pear JR, Kawagoe Y, Schreckengost WE.1996. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. The Proceedings of the National Academy of Sciences USA,93,22:12637-12642
    155. Pettigrew WT.1994. Sucrose-to-sink manipulations on cotton lint yield and yield compoents. Agron J,86:731-735
    156. Pettigrew WT.2001. Environmental effects on cotton fiber hydrate concentration and quality. Crop Science,41,1108-1113
    157. Pettigrew WT.2004. Cotton genotypic variation in the photosynthetic response to irradiance. Photosynthetica,42:567-571
    158.Peng SB, Khush GS, Virk P, Tang QY, Zou YB.2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Research,108:32—38
    159. Pharis RP, King RW.1985. Gibberellins and reproductive development in seed plants. Annu. rev. plant physiol,36:517-568
    160. Quattrocchio F, Wing J, Woude K.1999. Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color. Plant Cell.11:1433-1444
    161. Rayle DL, Cleland R.1972. The in vitro acid-growth response:relation to in vivo growth response and auxi action. Planta,104,282-296
    162. Romo S, Jimenez T, Labrador E, Dopico B.2005. The gene for a xyloglucan endotransglucosylase/hydrolase from Cicer arietinum is strongly expressed in elongating tissues. Plant Physiology and Biochemistry,43:169-176
    163. Ruan YL, Chourey PS.1998. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds.. Plant Physiology,118:399-406
    164. Ruan YL, Llewellyn DJ, Furbank RT.2001. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and k (+) transporters and expansin. The Plant Cell,13:47-60
    165. Ruan YL, Llewellyn DJ, Furbank RT.2003. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. The Plant Cell,15: 952-964
    166. Ruan YL, Xu SM, White R, Furbank RT.2004. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiology,136,4104-4113
    167. Ruan YL, Llewellyn DJ, Furbank RT, Chourey PS.2005. The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton. Journal of Experimental Botany,413:977-984
    168. Rufty JTW, MacKown CT, Volk RJ.1989. Effects of altered carbohydrate avalibility on whole-plant assimilation of 15NO3-. Plant Physiology,89,457-463
    169. Ryser U.1985. Cell wall biosynthesis in differentiating cotton fibres. Eur. J. Cell Biol.39: 236-256
    170. Saxena IM, Brown RM.2005. Cellulose biosynthesis:current views and evolving concepts. Annals of Botany,96,9-21
    171. Schwendiman J. Hybrid lines from the cross between Ghirsutum and Gbarbadense: Separation and relative importance of the genetic effects for fiber yield and length. Cotton Fiber Tropic,1975,30:185-194
    172. Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu XY.2006. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber elongation. Plant Cell,18,651-664
    173.Shimizu Y, Aotsuka S, Hasegawa O, Kawada.1997. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant and Cell Physiology,38,3:375-378
    174. Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Seguin A.2005. CINNAMYL ALCOHOL DEHYDROGENASE-C and-D are the primary genes involved in lignin biosynthesis in thr floral stem of Arabidopsis. Plant Cell,17,2059-2076
    175. Singh A, Selvi MT, Sharma R.1999. Sunlight-induced anthocyanin pigmentation in maize vegetative tissues. Journal of Experimental Botany,50,339:1619-1625
    176. Singh K, Rani A, Kumar S, Sood P, Mahajan M, Yadav SK, Singh B, Ahuja PS.2008. An early gene of the flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis). Tree Physiol,28:1349-1356
    177. Smart LB, Vojdani F, Maeshima M, et al.1998. Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiology,116,4:1539-1549
    178. Smith OS, Smith JSC, Bowen SL.1990. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, heterosis, and RFLPs. Theoretical and Applied Genetics,80:833-840
    179. Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P.2006. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology,140,637-646
    180. Splet C, Quattrocchio F, Mol JN.2000. Anthicyaninl of Petunia encodes a Basic Helix-Loop-Helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell,12:1619-1631
    181. Stewart JMCD. A new male sterlity from G. trilobum. Proceedings Beltwide Cotton Conferences,1992,610
    182. Sun DL, Sun JL, Jia YH, Ma ZY, Du XM.2009. Genetic diversity of colored cotton analyzed by simple sequence repeat markers. International Journal of Plant Sciences,170,1:76-84
    183.Tang B, Jenkins JN, McCarty JC, Watson CE.1993a. F2 hybrids of host plant germplasm and cotton cultivars:I. Heterosis and combining ability for lint yield and yield components. Crop Sci,33:700-705
    184. Tauber MM, Guebitz GM, Rehorek A.2005. Degradation of azo dyes by laccase and ultrasound treatment. Applied and Environmental and Microbiology,71,2600-2607
    185. Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens.2005. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiology,139,1840-1852
    186. Tiwari SC, Wilkins TA.1995. Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Canadian Journal of Botany,73,746-757
    187. Tsaftaris AS.1995. Molecular aspects of heterosis in plants. Physiologia Plantarum,94: 362-370
    188. Tsaftaris AS, Kafka M. Mechanisms of heterosis in crop plants. Journal of Crop Production, 1998,1:95-111
    189. Tsukaya H, Ohshima T, Naito S, Chino M, Komeda Y.1991. Sugar-dependent expression of the CHS-A gene for chalcone synthase from Petunia in transgenic Arabidopsis. Plant Physiol,97:1414-1421
    190. Turner JH.1953. A study of heterosis in upland cotton. Ⅱ. Combining ability and inbreeding effects. Agron. J,45:487-490
    191. Van Tunen A J, Koes RE, Spelt CE.1988. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: Coordinate, light-regulated and differential expression of flavonoid genes. EMBOJ,7:1257-1263
    192. Vertapetian BB, Andreeva IN, Generozova IP, Polyakova L, Maslova IP, Dolgikh YI, Stepanova AY.2003. Functional electron microscopy in studies of plant response and adaption to anaerobic stress. Annals of Botany,91,155-172
    193. Vreeland JMJ.1993. Naturally colored and organically grown cotton:anthropological and historical perspectives. Beltwide Cotton Conferences, National Cotton Council, Memphis, 1533-1535
    194. Vreeland JMJ.1999. The revival of colored cotton. Scientific America,280,112-119
    195. Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY.2004. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell,16,2323-2334
    196. Ware JO. Inheritance of lint colours in upland cotton. J. Am. Soc. Agron.1932,24: 550-562
    197. Weaver JB. Marakby E. Esmail AM. Yield, fiber and spinning performance of interspecific cotton hybrids having a common parent. Crop Science,1984,24:637-640
    198. Weiss D.2000. Regulation of flower pigmentation and growth:Multiple signaling pathways control anthocyanin synthesis in expanding petals. Plant Physiol,110:152-157
    199. Weiss D, Blokland R, Kooter MJ, Mol JNM, Tunen AJV.1992. Gibberellin acid regulates chalcone synthase gene transcription in the corolla of petunia hybrida. Plant Physiol 98: 191-197
    200. Weiss D, Tunen AJ, Halevy AH, Mol JNM, Gerats AGM.1990. Stamens and gibberellin acid in the regulation of flavonoid gene expression in the corolla of petunia hybrida Plant physiol,94:511-515
    201. Wells RM, eredith WRJr. Heterosis in upland cotton I. Growth and leaf area partitioning. Crop Sci,1986,6:253-255
    202. White TG, Richmond TR. Heterisos and combining ability in top and diallel crosses among prinitive, foreign and cultivated American upland cottons. Crop Sci,1963,3:58-63
    203. White TG, Kohel RJ.1964. A diallel analysis of agronomic characters in selected lines of cotton, Gossypium hirsutum L. Crop Sci,4:254-257
    204. Whittaker DJ, Triplett BA.1999. Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. Plant Physiology,121,1:181-188
    205. Wilkins TA, Jernstedt JA.1999. Molecular genetics of developing cotton fibers. In:Basra AS (ed) Cotton fibers:developmental biology, quality improvement, and textile processing. New York:Food Products Press,231-269
    206. Winkel-Shirley B.2001. Flavonoid biosynthesis:a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology,126,485-493
    207. Xiao JH, Li JM, Yuan LP, Tanksley SD.1995. Dominance is the major genetic basis of heterosis in rice as released by QTL analysis using molecular markers. Genetics,140: 745-754
    208. Xiao YH, Zhang ZS, Yin MH, Luo M, Li XB, Hou L, Pei Y.2007. Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochemical and Biophysical Research Communications,358,73-78
    209. Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA.2003. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science.299,396-399
    210. Yang W, Peng SB, Laza RC, Visperas RM, Dionisio-Sese ML.2007. Grain yield and yield attributes of new plant type and hybrid rice. Crop Sci,47:1393-1400
    211.Yatsu LY, Espelie KE, Kolattukudy PE.1983. Ultrastructral and chemical evidence that the cell wall of green cotton fiber is suberized. Plant Physiology,73,521-524
    212. Yatsu LY, Mod RR, Kolattukudy PE. Cytochemical studies of green-colored cotton fibers. Plant Physioal,1983,72-73
    213. Yu XU, Li HB, Zhu YX.2007. Molecular biological and biochemical studies reveal new pathways important for cotton fiber development. Journal of Experimental Botany,49,1: 69-74
    214. Zachary BL, Dani Z.2006. Heterosis:revisiting the magic. Trends in Genetics,23:60-66
    215. Zhang XQ, Wang XD.2005. Preliminary study on heterosis of interspecific hybrid cotton (Gossypium hirsutum·G. barbadense) based on cytoplasmic male sterility system. Acta Gossypii Sin,17:79-83
    216. Zhang XQ, Wang XD, Jiang PD, Hua SJ, Zhang HP, Dutt Y.2007. Relationship between molecular marker heterozygosity and hybrid performance in intra-and interspecific hybrids of cotton. Plant Breed,126:385-391
    217. Zhao D, Oosterhuis D.1998. Cotton Responses to Shade at Different Growth Stages: Nonstructural Carbohydrate Composition. Crop Sci,38:1196-12032

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700