用户名: 密码: 验证码:
T细胞免疫功能及线粒体凋亡途径变化在多次妊娠TA2小鼠自发性乳腺癌中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     1.通过观察TA2小鼠不同次数妊娠期间及分娩后不同时间脾细胞中T淋巴细胞亚群以及IL-2、IL-4、IL-10、IFN-γ四种细胞因子的变化规律,揭示妊娠及分娩与TA2小鼠T细胞免疫功能的关系。通过比较经产、未产及自发瘤组TA2小鼠机体T细胞免疫状况,初步探讨T细胞免疫功能与TA2小鼠自发性乳腺癌的发生机制。
     2.通过将TA2小鼠不同次数妊娠期间及分娩后不同时间T细胞免疫状况与其机体雌二醇(E2)、孕酮(P)分泌水平进行相关性分析,初步揭示E2、P与T细胞免疫功能的关系,并采用外源性注射雌激素与孕激素的实验验证其间关系。
     3.通过观察TA2小鼠不同次数妊娠期间及分娩后不同时间乳腺上皮细胞增殖指数以及凋亡指数的变化,初步推断TA2小鼠发瘤前乳腺上皮细胞的状态;同时,通过检测线粒体凋亡通路中,Bcl-2、Bax、Caspase-3和Caspase-9蛋白表达,以及乳腺上皮细胞中雌激素受体(ER)和孕激素受体(PR)的表达,对比发瘤前及发瘤后的状态,探讨TA2小鼠自发性乳腺癌发生的可能机制。
     研究方法
     1.收集TA2小鼠不同次数妊娠期间及分娩后不同时间以及自发瘤小鼠脾细胞和血清,采用流式细胞术检测脾细胞CD3+、CD4+、CD8+T淋巴细胞亚群,计算CD4+/CD8+T细胞比值。利用ELISA方法检测血清中IL-2、IL-4、IL-10、IFN-γ四种细胞因子水平,并计算Th1/Th2。
     2.采用相关性分析,分析E2、P与CD3+、CD4+、CD8+T淋巴细胞亚群以及IL-2、IL-4、IL-10、IFN-γ四种细胞因子之间的相关性。
     3.对成年TA2雌鼠行卵巢切除术(OVX),外源性给与雌激素、孕激素干预,观察E2和/或P对OVX小鼠T细胞免疫功能的影响。
     4.收集TA2小鼠不同次数妊娠期间及分娩后不同时间以及自发瘤小鼠乳腺组织,采用免疫组化方法检测乳腺上皮细胞中PCNA的表达,计算增殖指数;采用TUNEL方法检测乳腺上皮细胞中的细胞凋亡,计算凋亡指数;采用免疫组化、Real-time PCR和Western blotting方法检测组织中ER、PR、Bcl-2、Bax、Caspase-3和Caspase-9蛋白表达及mRNA相对表达水平。
     结果
     1.妊娠及分娩对TA2小鼠T细胞免疫功能的影响
     (1)对T淋巴细胞亚群的影响:TA2小鼠妊娠及分娩后不同时间内CD3+、CD4+、CD8+和CD4+/CD8+差别具有统计学意义(P<0.01)。其中CD3+、CD4+T淋巴细胞在P10下降至最低(12.79±3.64,58.36±6.57,P<0.01),在P20,CD4+/CD8+降至最低(1.81±0.14),CD8+T升至最高(32.68±2.93)。分娩后,CD4+、CD8+和CD4+/CD8+逐渐恢复,但CD3+T仍有下降趋势,在分娩后42天时才恢复正常。多次妊娠不同时段与8月龄处女鼠(8MV)和自发乳腺癌(SBC)小鼠比较,CD3+、CD4+T在各次妊娠P10、P20均显著低于8MV(P<0.05),且P10CD3+T与SBC无差别(P>0.05),P10、P20 CD4+T均接近SBC (P>0.05),CD4+T在3PP42、4PP42时亦与SBC无差别(P>0.05)。CD4+/CD8+在1P20、2P10和3P、4P各时段均低于8MV (P<0.01)。CD3+、CD4+、CD8+T和CD4+/CD8+在4P各时段均低于或高于8MV(P<0.01),而与SBC无差别(P>0.05)。4次妊娠中,4P CD3+、CD4+和CD4+/CD8+明显低于1P、2P(P<0.05)。
     (2)对细胞因子的影响:TA2小鼠妊娠及分娩后不同时间内IL-2、IL-4、IL-10、IFN-γ和Th1/Th2差别具有统计学意义(P<0.05)。IL-2、IL-4、IFN-γ和Th1/Th2在妊娠期间有所下降,IL-10有所上升,以10天和20天显著(P<0.05)。分娩后,IL-4、IL-10和Th1/Th2逐渐恢复,IL-2于分娩后1天恢复至正常未妊娠水平,但随后又逐渐下降,在分娩后42天时才恢复正常,IFN-γ在分娩后仍有下降,在分娩后42天虽有所恢复但未达正常。IL-2和IFN-γ在2P10、3P10、3P20、4P各时段均显著低于8MV(P<0.05),IL-4仅在4P10和4P20低于8MV(P<0.05),IL-10在1P10、1P20、2P20显著高于8MV, Th1/Th2在各妊娠次数P10以及4P各个时段均低于8MV (P<0.05)。4P各时段几乎均与SBC无差别(P>0.05),且4P各时段指标均不同程度低于1P~3P。
     2.雌激素与孕激素对TA2小鼠T细胞免疫功能的影响
     (1)妊娠及分娩对TA2小鼠E2和P的影响:TA2小鼠妊娠及分娩后不同时间内E2和P差别均具有统计学意义(P<0.01)。随着妊娠天数的增加,血清E2和P的浓度逐渐升高,以P20最为明显(E2:184.48±72.94,P:78.32±34.17,P<0.01)。分娩后,E2逐渐下降恢复正常,P立即下降后又有所波动,最后于PP21恢复正常(P>0.05)。多次妊娠间,以4P20血清E2和P浓度最高,且明显高于1P、2P(P<0.01)。
     (2)相关性分析结果显示:E2、P与CD8+T和IL-10呈正相关(P<0.01),而E2与CD3+、CD4+、CD4+/CD8+、IL-2、IL-4、IFN-γ呈负相关(P<0.05);P与CD3+、CD4+、CD4+/CD8+、IL-2呈负相关(P<0.01)。P与IL-4、IFN-γ之间相关关系不明显(P>0.05)。
     (3)外源性给与雌激素、孕激素干预结果显示:与对照组比较,E2+P联合作用组各指标均与对照有差别,且具有统计学意义(P<0.01);E2单独作用组CD3+T淋巴细胞、CD4+/CD8+和IL-2、IL-4均明显低于对照(P<0.05或P     3.妊娠及分娩对TA2小鼠乳腺上皮细胞增殖和凋亡的影响TA2小鼠妊娠及分娩后不同时间内增殖指数(PI)和凋亡指数(AI)差别均具有统计学意义(P<0.01)。随着妊娠天数的增加,AI逐渐增加,以P20最为明显(47.23±15.89,P<0.01)。分娩后,AI并未立即下降,在PP1和PP7仍然持续较高水平,PP21以后逐渐下降。AI在妊娠期间较低,分娩后有所升高,以PP1最高(59.48±11.37,P<0.01),随后有所下降。多次妊娠间,以4P20 PI和AI最高(86.20±7.09,74.80±10.99),且明显高于1P、2P(P<0.01)。
     4.ERα和PR在TA2小鼠乳腺上皮细胞中的表达
     (1)免疫组化染色结果显示:妊娠和分娩不同阶段乳腺上皮细胞ERα和PR表达差异具有统计学意义(P<0.01)。妊娠后乳腺上皮细胞中ERα和PR表达明显高于未妊娠小鼠,到妊娠20天达到最大(ERa:84.60±9.40, PR:2.52±0.81, P<0.01)。分娩后表达水平逐渐下降,到第42天,基本与未妊娠小鼠相近。多次妊娠间,4P小鼠各时段ERα和PR表达明显高于1P、2P(P<0.01或P<0.05)。
     (2) Real-time PCR结果显示:不同妊娠次数TA2小鼠ERαmRNA和PR mRNA表达之间差异具有统计学意义(P<0.01或P<0.05),且4P小鼠各时段ERαmRNA和PR mRNA表达均不同程度明显高于1P~3P(P<0.01或P<0.05)。
     5. Bcl-2、Bax、Caspase-3和Caspase-9在不同妊娠次数TA2小鼠乳腺上皮细胞中的表达
     (1)免疫组化染色结果显示:正常TA2小鼠乳腺上皮细胞中Bcl-2、Bax、Caspase-3和Caspase-9均呈低表达。妊娠期时均有所升高,其中以妊娠20天时最为明显(P<0.01或P<0.05);在分娩后,Bcl-2、Bax、Caspase-3继续升高,到了分娩后21天,达到最大值(Bcl-2:8.04±0.83; Bax:9.92±0.77; Caspase-3: 9.60±0.40, P=0.000), Caspase-9变化不大。到分娩后42天基本恢复至正常。不同妊娠次数TA2小鼠Bcl-2、Bax、caspase-3和caspase-9表达之间差异具有统计学意义(P<0.01)。4P小鼠各时段Bcl-2和Bax表达明显高于1P~3P (P<0.01), Caspase-3和Caspase-9表达明显高于1P、2P(P<0.01或P<0.05)。
     (2)Real-time PCR结果显示:不同妊娠次数TA2小鼠四个基因表达差异具有统计学意义(P<0.01或P<0.05)。其中,4P小鼠各时段bcl-2, bax, caspase-3和caspase-9 mRNA表达明显高于1P~3P(P<0.01或P<0.05)。
     (3) Western blotting结果显示:基本与免疫组化结果一致。3P、4P小鼠各时段Bcl-2、Bax、Caspase-3和Caspase-9表达明显高于1P、2P(P<0.01或P<0.05),其中以妊娠20天最为显著。
     6. ER、PR、Bcl-2、Bax、Caspase-3和Caspase-9在正常乳腺、癌前乳腺及乳腺癌组织中的表达免疫组化染色,Real-time PCR以及Western blotting结果一致显示:与8MV比较,除PR低于8MV(P<0.01)外,SBC小鼠乳腺ERa, Bcl-2, Bax, Caspase-3和Caspase-9表达均明显高于8MV(P<0.01或P<0.05);自发瘤组织中ERα, PR, Bcl-2, Bax, Caspase-3和Caspase-9蛋白表达均明显低于8MV(P<0.01),但bcl-2,,bax和caspase-3 mRNA表达均显著高于正常8MV小鼠(P<0.01), caspase-9 mRNA略高于8MV,但无统计学意义(P>0.05)。ERα和PR mRNA在肿瘤组织中表达均低于正常8MV小鼠(P<0.01),其中PR更为明显(P<0.01)。
     结论
     多次妊娠及分娩使TA2小鼠体内雌激素与孕激素持续处于高水平,如此,一方面使TA2小鼠机体长期处于细胞免疫被抑制的状态,而造成体液免疫机制被慢性激活;另一方面刺激乳腺上皮细胞增殖,并通过线粒体途径的特殊机制调节乳腺上皮细胞凋亡。雌激素与孕激素分别经其各自受体,破坏TA2小鼠Th1/Th2的平衡以及乳腺上皮细胞增殖和凋亡的平衡,以致TA2小鼠自发乳腺癌成为可能。
Objective
     1. To confirm the relationship between pregnancy/delivery and the immune function of T lymphocytes in TA2 mice by investigating T lymphocyte subsets in spleens and the concentration of serum IL-2, IL-4, IL-10 and IFN-γduring different stages of multiple pregnant and postpartum. To reveal the effect of T lymphocytes function on genesis of spontaneous breast cancer in TA2 mice by comparing the immune function of T lymphocyte in non-pregnant, pregnant and spontaneous cancer groups.
     2. To reveal the relationship between the level of serum estradiol(E2), progesterone(P) and T lymphocytes function in TA2 mice by correlating the changes in some parameters indicating quantity and function of T lymphocytes with the different level of E2 and P during different stages of pregnancy and puerperium. And to further confirm their relationship through the exogenous injection of E2 and P.
     3. To study the status of mammary epithelium before genesis of breast cancer in TA2 mice by observing the change of proliferation and apoptotic index of mammary epithelium during different stages of pregnancy and puerperium. To reveal the possible mechanism of genesis of spontaneous breast cancer in TA2 mice by detecting the expression of Bcl-2, Bax, caspase-3 and caspase-9 proteins in mitochondrial apoptosis pathway and estrogen receptor(ER) and proestogen receptor(PR) in mammary epithelium, and by comparing these index in different status of mammary epithelium during pre-/post-oncogenesis.
     Methods
     1. Sera and spleens were collected from pregnant or postpartum TA2 mice at different time points and also from cancer-bearing TA2 mice. We investigated the T lymphocyte subsets including CD3+, CD4+ and CD8+T using flow cytometry and calculated the CD4+/CD8+ ratio. The concentration of IL-2, IL-4, IL-10 and IFN-γin sera was analyzed by enzyme-linked immunosorbent assay (ELISA) and Th1/Th2 ratio was calculated.
     2. We correlated the level of E2/P with the changes of CD3+, CD4+ and CD8+T lymphocyte subsets and the concentration of IL-2, IL-4, IL-10 and IFN-γ.
     3. Non-tumor adult TA2 mice after ovariectomy received exogenous injection of E2 and P. Their effects on T lymphocyte function of OVX mice were analyzed.
     4. We collected the mammary gland tissue from pregnant or postpartum TA2 mice at different time points and also from cancer-bearing TA2 mice. The expression of PCNA in mammary epithelial cells was measured by immunohistochemistry and proliferation index was calculated. Apoptosis of mammary epithelial cells was detected by TUNEL and apoptotic index was analyzed. The expression of proteins including ER, PR, Bcl-2, Bax, caspase-3 and caspase-9 was measured using immunohistochemistry and Western blotting. Their levels of mRNA were detected by Real-time PCR.
     Results
     1. The effect of pregnancy/delivery on immune function of T lymphocytes in TA2 mice
     (1) The effect of pregnancy/delivery on immune function of T lymphocytes:CD3+, CD4+, CD8+ and CD4+/CD8+ ratio were significantly different during different stages of pregnancy and puerperium (P<0.01). The level of CD3+, CD4+ T lymphocytes was the lowest on P10 (12.79±3.64,58.36±6.57, P<0.01). CD4+ /CD8+ ratio reached the minimum (1.81±0.14) and CD8+ T lymphocytes did the maximum (32.68±2.93) on P20. CD4+, CD8+ and CD4+/CD8+ ratio increased gradually. However, CD3+ still had a tendency to decrease and it recovered to the normal until 42 days after delivery. CD3+, CD4+ T lymphocytes on P10, P20 in different gravidities were significantly lower than those in 8MV (P<0.05). There was no difference between CD3+ lymphocytes on P10 and those in SBC (P>0.05). The level of CD4+lymphocytes on both P10 and P20 was close to that in SBC (P>0.05). And no difference was found between CD4+ lymphocytes on 3PP42,4PP42 and those in SBC (P>0.05). CD4+/CD8+ ratios on 1P20,2P10 and on different time during 3P,4P were lower than those in 8MV (P<0.01). Significant difference in the level of CD3+, CD4+, CD8+ T lymphocytes and CD4+/CD8+ ratio was showed between each time point in 4P and in 8MV (P<0.01), while it was not found between each time point in 4P and in SBC (P>0.05). Among the four pregnancy, CD3+, CD4+ and CD4+/CD8+ ratio in 4P were significantly lower than those in 1P and 2P (P<0.05).
     (2) The effect of pregnancy/delivery on cytokines:Concentration of Serum IL-2, IL-4, IL-10, IFN-γand Th1/Th2 ratio were significantly different between different time during pregnancy and puerperium in TA2 mice (P<0.05). IL-2, IL-4, IFN-γand Th1/Th2 ratio decreased during pregnancy while IL-10 went up, especially in Day10 and Day20 with a significance (P<0.05). IL-4, IL-10 and Th1/Th2 ratio recovered gradually after delivery. IL-2 reached the normal progestation level one day after delivery, and then went down gradually. It recovered to the normal 42 days after delivery. IFN-γcontinued to decrease after delivery and did not reached the normal 42 days after delivery although it started to increase. IL-2, IFN-γon 2P10,3P10, 3P20 and on different time during 4P were significantly lower than those in 8MV (P <0.05). IL-4 only in 4P10,4P20 was lower than that in 8MV (P<0.05). IL-10 on 1P10,1P20 and 2P20 was significantly higher than that in 8MV. Th1/Th2 ratios on P10 in different gravities and on different time point in 4P were lower than those in 8MV (P<0.05). There was almost no difference in the level of Th1/Th2 ratios between each time point in 4P and in SBC (P>0.05) while Th1/Th2 ratios in 4P were lower than those in 1P~3P.
     2. Effect of estradiol and progesterone on T lymphocyte function in TA2 mice
     (1) the effect of pregnancy/delivery on the level of E2 and P in TA2 mice:Significant difference was found between different time during pregnancy and puerperium in TA2 mice (P<0.01). Concentration of Serum E2and P increased gradually with the time of pregnancy, with the highest level on P20 (E2:184.48±72.94, P:78.32±34.17, P<0.01). After delivery, E2 was reduced gradually to the normal level. P decreased quickly just after delivery, then went up and down for a period of time, and finally recovered to the normal on PP21 (P>0.05). Concentration of Serum E2and P on 4P20 showed the highest level on 4P20 during multiple pregnancy, dramatically higher than that of 1P and 2P (P<0.01).
     (2) Correlation analysis:Positive correlations between E2/P and IL-10 were observed (P<0.01). Negative correlations between E2 and CD3+, CD4+, CD4+/CD8+, IL-2, IL-4, and IFN-γwere showed (P<0.05). Similarly, there were negative correlations between P and CD3+, CD4+, CD4+/CD8+ and IL-2 (P<0.01). No correlations were showed between P and IL-4, IFN-γ(P>0.05).
     (3) Treatment with exogenous injection of E2 and P:Each index in combination group showed a significant difference comparing with the control (P<0.01). CD3+T lymphocytes in single E2 group were much lower than those of control (P<0.05) and CD4+/CD8+ ratio and IL-2、IL-4 were the same (P<0.01). Only CD3+ T lymphocytes and IL-2 in single P group were dramatically lower than the control (P <0.05) while other index in this group were not different from the control. E2 in combination with P had the strongest effect. And the higher concentration of them resulted in a marked effect than the lower.
     3. Proliferation and apoptosis of mammary epithelial cells in different gravidities Significant difference in proliferation index (PI) and apoptosis index (AI) was showed on different time during pregnancy and puerperium in TA2 mice (P<0.01). AI increased gradually with the time of pregnancy, with the highest level on P20 (47.23±15.89, P<0.01). After delivery, AI did not decreased immediately with a still high level on PP1 and PP7, and then started to go down gradually until after PP21. AI remained at a low level during pregnancy, which increased after delivery and reached the highest level on PP1 (59.48±11.37, P<0.01). It started to go down after that. PI and AI on 4P20 were the highest during multiple pregnancy (86.20±7.09, 74.80±10.99), much higher than those in 1P and 2P (P<0.01).
     4. Expression of ERa and PR in mammary epithelium in TA2 mice
     (1) Immunohistochemistry results showed that significant difference was found in the Expression of ERαand PR in mammary epithelium between different stages of pregnancy and puerperium (P<0.01). ERa and PR in mammary epithelium during pregnancy had much higher expression than those in nonpregnant mice, which reached the maximum on P20 (ERa:84.60±9.40, PR:2.52±0.81, P<0.01). Their expressions started to decrease gradually after delivery and were very close to the level of nonpregnant mice on P42. ERαand PR on different time points in 4P were significantly higher expressed than those in 1P and 2P (P<0.01 or P<0.05).
     (2) Real-time PCR results showed that there was a significant difference in the expression of ERαmRNA and PR mRNA between in different gravidities in TA2 mice (P<0.01 or P<0.05). ERαmRNA and PR mRNA on different time points in 4P were significantly higher expressed than those in 1P~3P (P<0.01orP<0.05).
     5. Expression of Bcl-2, Bax, Caspase-3 and Caspase-9 in mammary epithelium in TA2 mice in different gravidities
     (1) Immunohistochemistry results showed that Bcl-2, Bax, Caspase-3 and Caspase-9 were lower expressed in mammary epithelium in nonpregnant TA2 mice. All of them increased during pregnancy, with the maximum on P20 (P<0.01 or P<0.05). Bcl-2, Bax and Caspase-3 went up continuously after delivery, which reached the maximum on P21 (Bcl-2:8.04±0.83, P=0.000; Bax:9.92±0.77, P=0.000; Caspase-3:9.60±0.40, P=0.000). Caspase-9 did not show much change. All these indexes recovered to the normal 42 days after delivery. Significant difference was showed in the expression of Bcl-2, Bax, Caspase-3 and Caspase-9 between in different gravidities in TA2 mice (P<0.01). The expression of Bcl-2 and Bax in 4P was obviously higher than that in 1~3P (P<0.01). Caspase-3 and Caspase-9 in 4P were also higher than those in 1P and 2P(P<0.01 or P<0.05).
     (2) Real-time PCR results showed that the expression of these four genes had a significant difference in different gravidities in TA2 mice (P<0.01 or P<0.05). The expression of bcl-2, bax, caspase-3 and caspase-9 mRNA on each time point in 4P were higher than those in 1P~3P (P<0.01 or P<0.05).
     (3) Western blotting results showed the same trend as the result of immunohistochemistry. Bcl-2, Bax, caspase-3 and caspase-9 on each time point in 3P and 4P had a higher expression than those in 1P and 2P (P<0.01 or P<0.05), with the most obvious data on P20.
     6. Expression of ER, PR, Bcl-2, Bax, Caspase-3 and Caspase-9 in normal control, precancerous lesion and mammary cancer tissue Data from immunohistochemistry, Real-time PCR and Western blotting had the same trend. ERa, Bcl-2, Bax, Caspase-3 and Caspase-9 in mammary epithelium in TA2 mice had a higher expression than those in 8MV mice before tumorigeness (P<0.01 or P<0.05) except the lower expression of PR (P<0.01). ERa, PR, Bcl-2, Bax, Caspase-3 and Caspase-9 proteins in spontaneous tumor tissue had a lower expression than those in 8MV mice. However, the levels of bcl-2, bax and caspase-3 mRNA in TA2 mice were significantly higher than those in normal 8MV mice (P<0.01). caspase-9 mRNA in TA2 mice was a little higher than that in 8MV mice with no significance (P>0.05). ERαand PR mRNA expression in tumor tissue was lower than those in 8MV mice (P<0.01), especially in the expression of PR mRNA (P<0.01).
     Conculsion
     Repeated pregnancy and delivery can increase the level of estrogen and progesterone, which results in the continuous inhibition of the cellular immunity and chronic activation of humoral immunity in TA2 mice. On the other hand, the proliferation of mammary epithelium was stimulated during the course of frequent pregnancy and delivery. The apoptosis of mammary epithelium is induced by a specific mechanism through mitochondrial apoptosis pathway. When estrogen and progesterone combine with their receptors respectively, they shows their effect of destroying the balance both of Th1/Th2 and of proliferation/apoptosis in mammary epithelium, which may contribute to the genesis of spontaneous breast cancer in TA2 mice.
引文
[1]Bray F, McCarron P, Parkin DM. The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res,2004,6(6):229-239.
    [2]Kerr JFR,Willie AH,Cunie ARet al. Apoptosis:abasic biological phenomenonwith wide-ranging implications in tissue kinetics.Br J Cancer,1972,26:23
    [3]Kurian AW, Clarke CA, Carlson RW. The decline in breast cancer incidence:real or imaginary? Curr Oncol Rep.2009 Jan;11(1):21-8
    [4]Guzman RC, Yang J, Rajkumar L, et al.Hormonal prevention of breast cancer: mimicking the protective effect of pregnancy. Proc Natl Acad Sci U S A, 1999,96(5):2520-2525
    [5]Russo J, Russo IH. Breast development, hormones and cancer. Adv Exp Med Biol.2008;630:52-6.
    [6]Britt K, Ashworth A, Smalley M. Pregnancy and the risk of breast cancer. Endocr Relat Cancer.2007 Dec;14(4):907-33.
    [7]Ginestier C, Wicha MS. Mammary stem cell number as a determinate of breast cancer risk. Breast Cancer Res.2007;9(4):109.
    [8]Cunningham, FG, Williams JW:Williams' Obstetrics.20th ed. Stamford, Appleton and Lange,1997.
    [9]Siegelmann-Danieli N, Tamir A, Zohar H, et al. Breast cancer in women with recent exposure to fertility medications is associated with poor prognostic features. Ann Surg Oncol.2003 Nov;10(9):1031-8.
    [10]Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. NEngl J Med. 2006 Jan 19;354(3):270-82.
    [11]Shen T, Vortmeyer AO, Zhuang Z, et al. High frequency of allelic loss of BRCA2 gene in pregnancy-associated breast carcinoma. J Natl Cancer Inst.1999 Oct 6;91(19):1686-7.
    [12]Keinan-Boker L, Lerner-Geva L, Kaufman B, et al. Pregnancy-associated breast cancer. Isr Med Assoc J.2008 Oct;10(10):722-7.
    [13]林炳水,李漪,李华,等.TA2近交系小鼠的建立及其生物学特性的研究[J].上海畜牧兽医通讯,1982,2(1):1-5.
    [14]林炳水;刘家勇;李华,等.TA2系小鼠自发瘤的观察.天津医药,1982;(6):345~347.
    [15]高朋根,苏蕴,高友春,等.津白Ⅱ小鼠自发乳癌(VITA_2MA-891)高自发肺转移模型[J].中国医学科学院学报,1994,16(2):147-152.
    [16]崔艳芬,徐少艳,谷彦军,等.FGF-1和FGFR1在津白Ⅱ小鼠自发性乳腺癌发生中的作用.中国肿瘤临床,2009,36(3):168-171.
    [17]朱悦,张诗武,贾兴红,等.津白Ⅱ小鼠自发乳腺癌病理相关特征分析[J].天津医科大学学报,2007,2(13):149-150
    [18]李岩,张诗武,贾兴红,等.津白Ⅰ和津白Ⅱ杂交小鼠自发性乳腺癌发生及相关机制研究[J].中国肿瘤临床,2008,35(7):405-407.
    [19]Hall MA, Ahmadi KR, Norman P, et al. Genetic influence on peripheral blood T lymphocyte levels. Genes Immun.2000 Oct;1(7):423-7.
    [20]Scola L, Giacalone A, Marasa L, et al. Genetic determined downregulation of both type 1 and type 2 cytokine pathways might be protective against pancreatic cancer. Ann N Y Acad Sci.2009 Feb;1155:284-8.
    [21]Mukherji B, Chakraborty NG, Sivanandham M.T-cell clones that react against autologous human tumors. Immunol Rev.1990 Aug;116:33-62.
    [22]Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature.1996 Oct 31;383(6603):787-93.
    [23]Giron-Gonzalez JA, Moral FJ, Elvira J, et al. Consistent production of a higher TH1:TH2 cytokine ratio by stimulated T cells in men compared with women. Eur J Endocrinol.2000 Jul;143(1):31-6.
    [24]Conticello C, Pedini F, Zeuner A, et al. IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins. J Immunol.2004 May 1;172(9):5467-77.
    [25]McKallip RJ, Nagarkatti M, Nagarkatti PS. Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J Immunol.2005 Mar 15;174(6):3281-9.
    [26]郭慧琛,孙世琪.怀孕对免疫机制的影响.国际免疫学杂志,2006,29(1):8-10.
    [27]姚凤球.母胎界面免疫微环境的研究进展.国外医学妇产科学分册,2005, 32(5):281-284.
    [28]Kruse N, Greif M, Moriabadi NF, et al. Variations in cytokine mRNA expression during normal human pregnancy. Clin Exp Immunol.2000 Feb;119(2):317-22.
    [29]曹卫平,彭聿平,邱一华.妊娠早期母体细胞免疫功能的变化与雌二醇和皮质醇水平之间的关系[J].基础医学与临床,2006,26(12):1371-1372.
    [30]Soldin OP, Guo T, Weiderpass E, et al. Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry[J]. Fertil Steril,2005,84(3):701-710.
    [31]王艳,霍翔,沈洪兵.雌激素受体和孕激素受体与乳腺癌关系的研究进展.2007,16(12):987-990.
    [32]Clarke RB, Howell A, Potten CS, et al. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res.1997 Nov 15;57(22):4987-91.
    [33]Visvader JE, Lindeman GJ. Transcriptional regulators in mammary gland development and cancer. Int J Biochem Cell Biol.2003 Jul;35(7):1034-51.
    [34]张境如主编,生理学[M].人民卫生出版社,1996:417-441
    [35]Pelletier G, El-Alfy M. Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J Clin Endocrinol Metab.2000 Dec;85(12):4835-40.
    [36]Cullen R, Maguire TM, McDermott EW,et al. Studies on oestmgen receptor-alpha and-beta mRNA in breast cancer[J]. Eur J Cancer,2001,37(9): 1118—1122
    [37]于学文.雌激素受体的作用.国外医学妇幼保健分册,2002,13(2):69-71.
    [38]Enmark E, Gustafsson JA. Oestrogen receptors-an overview. J Intern Med.1999 Aug;246(2):133-8.
    [39]Heap,R.B. Role of hormones in pregancy[J]. Cambridge univ. press, New York. 1972,73-105.
    [40]Levy C, Robel P, Gaultray JP, et al. Estrogen and progesterone receptors in human endometrium; normal and abnormal menatrual cycles and early pregnancy[J]. Am J Obstet Gyneclo,1980.136(5):646
    [41]Anderson E. The role of oestrogen and progesterone receptors in human mammary development and tumori genesis [J]. Breast Cancer Res,2002,4(5):197-201.
    [42]Stute P, Wood CE, Kaplan JR, et al. Cyclic changes in the mammary gland of cynomolgus macaques. Fertil Steril.2004 Oct;82 Suppl 3:1160-70.
    [43]McManus MJ, Welsch CW. The effect of estrogen, progesterone, thyroxine, and human placental lactogen on DNA synthesis of human breast ductal epithelium maintained in athymic nude mice. Cancer.1984 Nov 1;54(9):1920-7.
    [44]Laidlaw IJ, Clarke RB, Howell A, et al. The proliferation of normal human breast tissue implanted into athymic nude mice is stimulated by estrogen but not progesterone. Endocrinology.1995 Jan;136(1):164-71.
    [45]Vignon F, Bardon S, Chalbos D, et al. Antiestrogenic effect of R5020, a synthetic progestin in human breast cancer cells in culture. J Clin Endocrinol Metab.1983 Jun;56(6):1124-30.
    [46]Longacre TA, Bartow SA. A correlative morphologic study of human breast and endometrium in the menstrual cycle. Am J Surg Pathol.1986 Jun;10(6):382-93.
    [47]Gompel A, Somai S, Chaouat M, et al. Hormonal regulation of apoptosis in breast cells and tissues. Steroids.2000 Oct-Nov;65(10-11):593-8.
    [48]Anderson TJ, Ferguson DJ, Raab GM. Cell turnover in the "resting" human breast:influence of parity, contraceptive pill, age and laterality. Br J Cancer.1982 Sep;46(3):376-82.
    [49]Nilsen-Hamilton M, Liu Q, Ryon J, et al. Tissue involution and the acute phase response. Ann N Y Acad Sci.2003 May;995:94-108.
    [50]Cunha GR, Young P, Hom YK, et al. Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J Mammary Gland Biol Neoplasia.1997 Oct;2(4):393-402.
    [51]Humphreys RC, Lydon J, O'Malley BW, et al. Mammary gland development is mediated by both stromal and epithelial progesterone receptors. Mol Endocrinol. 1997 Jun;11(6):801-11
    [52]Horseman ND. Prolactin and mammary gland development. J Mammary Gland Biol Neoplasia.1999 Jan;4(1):79-88.
    [53]Zinser GM, Welsh J. Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice. Mol Endocrinol.2004 Sep;18(9):2208-23. Epub 2004 Jun 3.
    [54]Whiteman MK, Hillis SD, Curtis KM, et al. Reproductive history and mortality after breast cancer diagnosis[J]. Obstet. Gynecol,2004,104(1):146-154.
    [55]Hilakivi Clarke L. Estrogens, BRCA1 and breast cancer[J]. Cancer Res,2000, 60(18):4993-5001.
    [56]Klinge CM. Estrogen receptor interaction with estrogen response elements[J]. Nucleic Acids Res.2001,29(14):2905-2919.
    [57]Schif R, Massarweh S, Shou J, et al. Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance[J]. Clin Cancer Res,2004,10(1 Pt 2):331-336.
    [58]Henderson BE, Feigelson HS. Hormonal carcinogenesis[J]. Carcinogenesis,2000, 21(3):427-433.
    [59]Ory K, Lebeau J, Levalois C, et al. Apoptosis inhibition mediated by medroxyprgesterone acetate treatment of breast cancer cell lines[J]. Breast Cancer Res Treat,2001,68(3):187-198.
    [60]Papaconstantinou AD, Shanmugam I, Shan L, et al. Gene expression profiling in the mammary gland of rats treated with 7,12-dimethylbenz[a]anthracene. Int J Cancer.2006 Jan 1;118(1):17-24.
    [61]Onland-Moret NC, van Gils CH, Roest M, et al. The estrogen receptor alpha gene and breast cancer risk (The Netherlands) [J]. Cancer Causes Control,2005, 16(10):1195-1202.
    [62]Shen Y, Li DK, Wu J, et al. Joint effects of the CYP1A1 MspI, ERalpha PvuⅡ, and ERalpha XbaI polymorphisms on the risk of breast cancer:results from a population-based case-control study in Shanghai,China[J]. Cancer Epidemiol Biomarkers Prev,2006,15(2):342-347.
    [63]倪耀忠,罗定存,王宗敏.乳腺癌bcl-2、Ki-67、p53表达及意义[J].肿瘤学杂志,2002,8(2):98-99.
    [64]Richert MM, Schwertfeger KL, Ryder JW, et al. An atlas of mouse mammary gland development[J]. Mammary Gland Biol Neoplasia.2000, 5(2):227-41·
    [65]Reed JC. Mechanisms of Bcl-2 family protein function and dysfunction in health and disease. Behring Inst Mitt.1996 Oct;(97):72-100.
    [66]闵大六,王保太,孟刚,等.乳腺癌和癌前病变中细胞凋亡及其与bcl-2、PCNA表达的关系[J].临床与实验病理学杂志,1999,15(2):99-102.
    [67]肖秀丽,魏兵,龙汉安.乳腺导管上皮病变中细胞增殖和凋亡作用及其与ER、PR、C-erbB-2表达关系的研究.华西医学2005,20(1):19-21.
    [68]Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature.1994 Apr 21;368(6473):753-6.
    [69]Wyllie AH.Apoptosis and the regulation of cell numbers in normal and neoplastic tissues:an overview. Cancer Metastasis Rev.1992 Sep;11(2):95-103.
    [70]Park SH, Kim H, Song BJ. Down regulation of bcl2 expression in invasive ductal carcinomas is both estrogen-and progesterone-receptor dependent and associated with poor prognostic factors. Pathol Oncol Res.2002;8(1):26-30.
    [71]Feuerhake F, Unterberger P, Hofter EA. Cell turnover in apocrine metaplasia of the human mammary gland epithelium:apoptosis, proliferation, and immunohistochemical detection of Bcl-2, Bax, EGFR, and c-erbB2 gene products. Acta Histochem.2001 Feb;103(1):53-65.
    [72]Herrmann JL, Bruckheimer E, McDonnell TJ.Cell death signal transduction and Bcl-2 function. Biochem Soc Trans.1996 Nov;24(4):1059-65.
    [73]Read JC. Bcl2 and regulation of programmed cell death [J]. J Cell Biol,1994, 124:1-3.
    [74]王丽萍,陈东,陈爱军.乳腺病变中CerbB2和Bcl2表达与细胞增殖抗原的关系.吉林大学学报(医学版),2002,28(2):179-181.
    [75]何家璇;薛荣亮.Bad蛋白对细胞凋亡的调控作用.医学综述,2007,13(3)161-162.
    [76]Slee EA, Harte MT, Kluck RM, et al.Ordering the cytochrome c-initiated caspase cascade:hierarchical activation of caspases-2,-3,-6,-7,-8, and -10 in a caspase-9-dependent manner. J Cell Biol.1999 Jan 25;144(2):281-92.
    [77]Malinowski A, Szpakowski M, Tchorzewski H, et al. T lymphocyte subpopulations and lymphocyte proliferative activity in normal and pre-eclamptic pregnancy. Eur J Obstet Gynecol Reprod Biol.1994,53(1):27-31.
    [78]Gutenberg A, Buslei R, Fahlbusch R, et al. Immunopathology of primary hypophysitis:implications for pathogenesis. Am J Surg Pathol.2005,29(3): 329-338.
    [79]杨汉春.动物免疫学.北京:中国农业大学出版社,1996,43-44.
    [80]曹卫平,钱秋菊,温坚,等.子痫前期患者免疫功能变化及其与雌孕激素水平关系的研究.中国妇幼保健,2009,24(33):4735-4737.
    [81]Thaler CJ, Behnken LJ, Taubert HD. Changes in T-cell subpopulations in normal pregnancy and in patients with spontaneous abortion Geburtshilfe Frauenheilkd. 1990 Mar;50(3):189-93.
    [82]Luppi P, Haluszczak C, Trucco M, et al. Normal pregnancy is associated with leukocyte activation. AmJReprod Immunol,2002,47(2):72-81.
    [83]陈秀鹤,幸志光,李宪智,等.孕兔细胞免疫功能状态的探讨(J).河北农业大学学报,1989,12(3):104-106.
    [84]郑红,袁维中,姜淑珍.妊娠期机体细胞免疫功能状态的探讨——外周血ANAE阳性淋巴细胞的观察.解剖学杂志,1986,9(3):172-174.
    [85]岳根华,程瑞禾.妊娠湖羊细胞免疫水平与孕酮水平的研究(J).中国养羊,1989,3:35-36.
    [86]Barnett MA, Learmonth RP, Pihl E, et al. T helper lymphocyte depression in early human pregnancy. J Reprod Immunol.1983 Jan;5(1):55-7.
    [87]Castilla JA, Rueda R, Vargas ML, et al. Decreased levels of circulating CD4+ T lymphocytes during normal human pregnancy. J Reprod Immunol.1989 May;15(2):103-11.
    [88]Makrydimas G, Plachouras N, Higueras MT, et al. Maternal peripheral blood lymphocyte subpopulations in normal and pathological pregnancies. Fetal Diagn Ther.1994 Nov-Dec;9(6):371-8.
    [89]Matthiesen L, Berg G, Ernerudh J, et al. Lymphocyte subsets and mitogen stimulation of blood lymphocytes in normal pregnancy. Am J Reprod Immunol. 1996 Feb;35(2):70-9.
    [90]Watanabe M, Iwatani Y, Kaneda T, et al. Changes in T, B, and NK lymphocyte subsets during and after normal pregnancy. Am J Reprod Immunol.1997,37(5): 368-377.
    [91]Stefanski V, Raabe C, Schulte M. Pregnancy and social stress in female rats: influences on blood leukocytes and corticosterone concentrations. J Neuroimmunol.2005,162(1-2):81-88.
    [92]Juretic E, Gagro A, Vukelic V, et al. Maternal and neonatal lymphocyte subpopulations at delivery and 3 days postpartum:increased coexpression of CD45 isoforms. Am J Reprod Immunol.2004,52(1):1-7.
    [93]Castilla JA, Rueda R, Vargas ML, et al. Decreased levels of circulating CD4+ T lymphocytes during normal human pregnancy. J Reprod Immunol.1989,15(2): 103-111.
    [94]Makrydimas G, Plachouras N, Higueras MT, et al. Maternal peripheral blood lymphocyte subpopulations in normal and pathological pregnancies. Fetal Diagn Ther.1994,9(6):371-378.
    [95]Matthiesen L, Berg G, Ernerudh J, et al. Lymphocyte subsets and mitogen stimulation of blood lymphocytes in normal pregnancy. Am J Reprod Immunol. 1996,35(2):70-79.
    [96]黄志坚,黄依明,林藩平,等.孕牛细胞免疫功能的研究.畜牧兽医学报,1999,30(1):1-5.
    [97]幸志光,陈秀鹤,卢军.妊娠母兔细胞免疫功能的探讨.中国兽医杂志,1991,17(10):9-10.
    [98]邓泽沛,陈吉龙.母猪性周期和妊娠期中外周血T细胞及亚群的观察.畜牧兽医学报,1992,23(4):299-302.
    [99]刘彦威,邓泽沛,周占祥.绵羊妊娠外周血细胞及其亚群观察.兽医大学学报,1993,13(4):383-385.
    [100]张德福,王建飞.妊娠母兔细胞免疫水平与孕酮、雌二醇关系的研究.中国养兔杂志,1993,3:13-15.
    [101]Sabahi F, Rola-Plesczcynski M, O'Connell S, et al. Qualitative and quantitative analysis of T lymphocytes during normal human pregnancy. Am J Reprod Immunol.1995,33(5):381-393.
    [102]Kuhnert M, Strohmeier R, Stegmiiller M, et al. Changes in lymphocyte subsets during normal pregnancy. Eur J Obstet Gynecol Reprod Biol.1998,76(2): 147-151.
    [103]Fiddes TM, O'Reilly DB, Cetrulo CL, et al. Phenotypic and functional evaluation of suppressor cells in normal pregnancy and in chronic aborters. Cell Immunol.1986,97(2):407-418.
    [104]肖敏,凌斌,陈峥峥.早孕外周血及蜕膜中NK细胞表型及T淋巴细胞亚群的变化.细胞与分子免疫学杂志,2008,24(3):285-287.
    [105]黄玲玲,唐卉,王素梅.妊高征患者体内T淋巴细胞亚群变化.广西医科大学学报,2006,23(6):884-886.
    [106]Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins.1986. J Immunol.2005 Jul 1;175(1):5-14.
    [107]赵媛媛,张文真.Th1/Th2失衡与妊娠高血压综合征.国外医学分册.2004,15(1):42-5.
    [108]Saito S. Cytokine cross-talk between mother and the embryo/placenta. J Reprod Immunol.2001 Oct-Nov;52(1-2):15-33.
    [109]施桂兰,李滨,司戈,等.人绒毛膜促性腺激素与T细胞亚群的相关性.滨州医学院学报,2001,24(1):79-80.
    [110]丁利,梁宏德,方振华,等.免疫细胞及其因子在生殖中的调节作用.上海畜牧兽医通讯,2007,2:55-57.
    [111]张莉莉.孕酮诱导的封闭因子介导的妊娠免疫调节作用.现代妇产科进展,2009,18(12):949-952.
    [112]包洪初,胡继芬,朱凤川.细胞因子的改变与自然流产的相关性研究进展.国外医学:妇产科学分册,2003,30(6):362-365
    [113]Svensson L,Arvola M,SallstromMA,et al.The Th2cytokines IL-4and IL-10 are not crucialfor the completion ofallogeneicpregnancy in mice.J Reprod Immunol,2001,51(1):3-7.
    [114]Sabahi F, Rola-Plesczcynski M, O'Connell S, et al. Qualitative and quantitative analysis of T lymphocytes during normal human pregnancy. Am J Reprod Immunol.1995 May;33(5):381-93.
    [115]Saito S, Tsukaguchi N, Hasegawa T, et al.Distribution of Thl, Th2, and Th0 and the Th1/Th2 cell ratios in human peripheral and endometrial T cells. Am J Reprod Immunol.1999 Oct;42(4):240-5.
    [116]Raghupathy R.Th1-type immunity is incompatible with successful pregnancy. Immunol Today.1997 Oct;18(10):478-82.
    [117]Wegmann TG, Lin H, Guilbert L, et al.Bidirectional cytokine interactions in the maternal-fetal relationship:is successful pregnancy a TH2 phenomenon? Immunol Today.1993 Jul;14(7):353-6.
    [118]Saito S, Sakai M, Sasaki Y, et al.Quantitative analysis of peripheral blood ThO, Th1, Th2 and the Thl:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol.1999 Sep;117(3):550-5.
    [119]Szekeres-Bartho J, Barakonyi A, Par G, et al.Progesterone as an immunomodulatory molecule. Int Immunopharmacol.2001 Jun;1(6):1037-48.
    [120]Jamieson DJ, Theiler RN, Rasmussen SA. Emerging Infections and Pregnancy[J]. Emerg Infect Dis,2006,12(11):1638-1643.
    [121]Scola L, Giacalone A, Marasa L, et al.Genetic determined downregulation of both type 1 and type 2 cytokine pathways might be protective against pancreatic cancer. Ann N Y Acad Sci.2009 Feb;1155:284-8.
    [122]David G DeNardol, Lisa M Coussens. Inflammation and breast cancer. Balancing immune response:crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res.2007; 9(4):212.
    [123]Nishimura T, Nakui M, Sato M, et al.The critical role of Th1-dominant immunity in tumor immunology. Cancer Chemother Pharmacol.2000;46 Suppl:S52-61.
    [124]沈洪彦,孙治君,于冰.Th1/Th2在乳腺癌组织中的表达与意义.第四军医大学学报,2007,28(20):1899-1901.
    [125]Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone I Definition according to profiles of lymphokine activities and secreted proteins [J]. J Immunol,1986,136(7):2348-2357.
    [126]Yamamura M,Modlin R L,Ohmen J D,et al.Local expression of antiinflammatory cytokines in cancer [J]. Clin Invest,1993,91 (3):1005-1010.
    [127]Kharkevitch DD, Seito D, Balch GC, et al. Characterization of autologous tumor specific T helper 2 cells in tumor infiltrating lymphocytes from a patient with metastatic melanoma [J]. Int J Cancer,1994,58(3):317-323.
    [128]Romagnani S. Human Th1 and Th2 subsets no more [J]. Lmmunol Today, 1991,12(8):256-257.
    [129]格林尼FL,佩基DL,弗莱明ID,等.AJCC癌症分期手册[M].6版,沈阳:辽宁科学技术出版社,2005:225-228.
    [130]Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone I Definition according to profiles of lymphokine activities and secreted proteins [J]. J Immunol,1986,136(7):2348-2357.
    [131]郭云鸿,田晓予,吴向晖,等.HPV感染宫颈病变组织中IL-2、IL-4的表达变化及意义.山东医药,2009,49(10):59-60.
    [132]Langer-Gould A, Grren H, Slansky A, et al.Latepregnancy suppresses relapses in experimental autoimmune encephalomyelitis:evidence for a suppressive pregnancy-related serum factor. J Immunol,2002,169(2): 1084-1091.
    [133]Mortran CC, Diaz FL, Gruppi A, et al. Human pregnancy-speicfic glycoproteinl a(PSGla) induces alternative activation in human and mouse monocytes and suppresses the accessory cell-dependentT-cell proliferation.J Leukoc Biol,2002,72(3):512-521.
    [134]Dixit VD, Yang H, Udhayakumar V, et al. Gonadotropin-releasing hormone alters the T helper cytokine balance in the pregnant rat. Biol Reprod.2003 Jun;68(6):2215-21. Epub 2003 Jan 22.
    [135]谭宗建,李尚为,曹泽毅.早期妊娠的免疫耐受机制.生殖与避孕,2002,22(4):236-242,249.
    [136]Norman RJ, McLoughlin JW, Borthwick GM, et al.Inhibin and relaxin concentrations in early singleton, multiple, and failing pregnancy:relationship to gonadotropin and steroid profiles. Fertil Steril.1993 Jan;59(1):130-7.
    [137]Sealey JE, Itskovitz-Eldor J, Rubattu S, et al.Estradiol- and progesterone-related increases in the renin-aldosterone system:studies during ovarian stimulation and early pregnancy. J Clin Endocrinol Metab.1994 Jul;79(1):258-64.
    [138]Couse JF, Lindzey J, Grandien K, et al.Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology.1997 Nov;138(11):4613-21.
    [139]Pope RM.Immunoregulatory mechanisms present in the maternal circulation during pregnancy. Baillieres Clin Rheumatol.1990 Apr;4(1):33-52.
    [140]Degenne D, Canepa S, Lecomte C, et al. Serial study of T-lymphocyte subsets in women during very early pregnancy. Clin Immunol Immunopathol. 1988 Aug;48(2):187-91.
    [141]Castilla JA, Rueda R, Vargas ML, et al. Decreased levels of circulating CD4+ T lymphocytes during normal human pregnancy. J Reprod Immunol.1989 May;15(2):103-11.
    [142]夏贤,张绍芬,周光炎.雌激素及其受体对T淋巴细胞免疫功能的调节.2007,34(2):98-101.
    [143]孙荭,曾耀英,黄柏炎,等.孕酮对人T淋巴细胞体外活化CD69表达的作用.中国免疫学杂志,2000,16(12):675-677.
    [144]Szekeres-Bartho J, Wegmann TG.A progesterone-dependent immunomodulatory protein alters the Th1/Th2 balance. J Reprod Immunol.1996 Aug;31(1-2):81-95.
    [145]Bruland T, Lavik LA, Dai HY, et al.Identification of Friend murine retrovirus-infected immune cells and studies of the effects of sex and steroid hormones in the early phase of infection. APMIS.2003 Sep;111(9):878-90.
    [146]Raghupathy R.Th1-type immunity is incompatible with successful pregnancy. Immunol Today.1997 Oct;18(10):478-82.
    [147]Persellin RH, Rhodes J. Inhibition of human monocyte Fc receptor and HLA-DR antigen expression by pregnancy alpha-2 glycoprotein. Clin Exp Immunol.1981 Nov;46(2):350-4.
    [148]肖玲莉,杨毅.Th1/Th2免疫应答失衡及其影响因素.国际儿科学杂志,2006,33(6):399-402.
    [149]SalemML.Estrogen,a double-edged sword:modulation of TH1-and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production[J].Curr DrugTargets Inflamm Allergy,2004,3(1):97-104.
    [150]Matsuzaki J, Tsuji T, Imazeki I, et al.Immunosteroid as a regulator for Th1/Th2 balance:its possible role in autoimmune diseases. Autoimmunity.2005 Aug;38(5):369-75.
    [151]王越,屈野,陈莉,等.早孕妇女外周血Th1/Th2细胞亚群的测[J].免疫学杂志,2001,17(2):159-160
    [152]秦明春,王若光.妊娠免疫耐受机制的研究认识.实用预防医学,2007,14(2):587-590.
    [153]Kuklina EM, Shirshov SV. Reproductive hormones in the control of Th1/Th2 cytokine balance. Izv Akad Nauk Ser Biol.2005 May-Jun;(3):273-80.
    [154]张玲,归绥琪,王文君.IL-10在妊娠中的研究进展.生殖与避孕,2009,29(8):532-536.
    [155]MooreKW, deWaalMalefytR, CoffmanRL,et al. Interleukin 10 and the interleukin-10 receptor. Immunol,2001,19(3):683-765.
    [156]Correale J, Arias M, Gilmore W.Steroid hormone regulation of cytokine secretion by proteolipid protein-specific CD4+ T cell clones isolated from multiple sclerosis patients and normal control subjects. J Immunol.1998 Oct 1;161(7):3365-74.
    [157]Sallinen K, Verajankorva E &Pollanen P. Expression of antigens involved in the presentation of lipid antigens and induction of clonal anergy in the female reproductive tract. J Reprod Immunol,2000,46(2):91.
    [158]Miyaura H, Iwata M.Direct and indirect inhibition of Thl development by progesterone and glucocorticoids. J Immunol.2002 Feb 1;168(3):1087-94.
    [159]Lim KJ, Odukoya OA, Ajjan RA, et al.Profile of cytokine mRNA expression in peri-implantation human endometrium. Mol Hum Reprod.1998 Jan;4(1):77-81.
    [160]Ragusa A, de Carolis C, dal Lago A, et al.Progesterone supplement in pregnancy:an immunologic therapy? Lupus.2004;13(9):639-42.
    [161]Kuhnle U, Lindl U, Keller V, et al. Androgen binding sites in peripheral human mononuclear leukocytes of healthy males and females. J Steroid Biochem Mol Biol,1994,48(4):403-408
    [162]Olsen NJ, Kovacs WJ.Gonadal steroids and immunity. Endocr Rev.1996 Aug;17(4):369-84
    [163]Stopinska U, Waligora J, Grzela T, et al. Effect of estrogen/progesterone hormone replacement therapy on natural killer cell cytotoxicity and immunoregulatory cytokine release by peripheral blood mononuclear cells of postmenopausal women[J] J Reprod Immunol,2006,69(1):65-75.
    [164]Staples JE, Gasiewicz TA, Fiore NC, et al.Estrogen receptor alpha is necessary in thymic development and estradiol-induced thymic alterations. J Immunol.1999 Oct 15;163(8):4168-74.
    [165]Okasha SA, Ryu S, Do Y, et al.Evidence for estradiol-induced apoptosis and dysregulated T cell maturation in the thymus. Toxicology.2001 May 28;163(1):49-62.
    [166]Rijhsinghani A, Bhatia SK, Kantamneni L, et al.Estrogen inhibits fetal thymocyte development in vitro. Am J Reprod Immunol.1997 May;37(5):384-90.
    [167]Selvaraj V, Bunick D, Finnigan-Bunick C, et al.Gene expression profiling of 17beta-estradiol and genistein effects on mouse thymus. Toxicol Sci.2005 Sep;87(1):97-112.
    [168]吴赛珠谭家余周忠江.性激素通过影响血脂、细胞免疫功能及氧化/抗氧化系统影响衰老.岭南心血管病杂志,2004年,10(1):10-16.
    [169]Zoller AL, Schnell FJ, Kersh GJ.Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration. Immunology.2007 Jun;121(2):207-15.
    [170]Druckmann R, Druckmann MA.Progesterone and the immunology of pregnancy. J Steroid Biochem Mol Biol.2005 Dec;97(5):389-96.
    [171]时淑娟,智建生,任学军,等.雌二醇和孕酮对去势小鼠淋巴结T细胞和B细胞的调节.解剖学研究,2006,28(3):180-183.
    [172]Druckmann R, Druckmann MA.Progesterone and the immunology of pregnancy. J Steroid Biochem Mol Biol.2005 Dec;97(5):389-96.
    [173]Iwata M, Eshima Y, Kagechika H, Miyaura H.The endocrine disruptors nonylphenol and octylphenol exert direct effects on T cells to suppress Thl development and enhance Th2 development. Immunol Lett.2004 Jun 15;94(1-2):135-9.
    [174]Krishnan L, Guilbert LJ, Wegmann TG, et al. T helper 1 response against Leishmania major in pregnant C57BL/6 mice increases implantation failure and fetal resorptions. Correlation with increased IFN-gamma and TNF and reduced IL-10 production by placental cells. J Immunol.1996 Jan 15;156(2):653-62.
    [175]Check JH, Arwitz M, Gross J, Szekeres BJ & Wu CH. Evidence that the expression of progesterone-induced blocking factor by maternal T-lymphocytes is positively correlated with conception.Am J Reprod Immunol,1997,38(1):6.
    [176]Todorovic R, Devanesan P, Higginbotham S, et al. Analysis of potential biomarkers of estrogen-initiated cancer in the urine of Syrian golden hamsters treated with 4-hydroxyestradiol. Carcinogenesis.2001 Jun;22(6):905-11.
    [177]Peck JD, Hulka BS, Poole C, et al.Steroid hormone levels during pregnancy and incidence of maternal breast cancer. Cancer Epidemiol Biomarkers Prev. 2002Apr;11(4):361-8.
    [178]Nilsson S, Gustafsson JA.Estrogen receptor transcription and transactivation: Basic aspects of estrogen action. Breast Cancer Res.2000;2(5):360-6. Epub 2000 Jul 13.
    [179]Fishman J, Osborne MP, Telang NT.The role of estrogen in mammary carcinogenesis. Ann N Y Acad Sci.1995 Sep 30;768:91-100.
    [180]Proietti C, Salatino M, Rosemblit C, al et. Progestins induce transcriptional activation of signal transducer and activator of transcription 3 (Stat3) via a Jak-and Src-dependent mechanism in breast cancer cells. Mol Cell Biol,2005, 25(12),4826-4840
    [181]Rajkumar L, Canada A, Esparza D, et al.Decreasing hormonal promotion is key to breast cancer prevention. Endocrine.2009 Apr;35(2):220-6.
    [182]Blank EW, Wong PY, Lakshmanaswamy R, et al.Both ovarian hormones estrogen and progesterone are necessary for hormonal mammary carcinogenesis in ovariectomized ACI rats. Proc Natl Acad Sci U S A.2008 Mar 4;105(9):3527-32. Epub 2008 Feb 25.
    [183]Watanabe M, Iwatani Y, Kaneda T, et al.Changes in T, B, and NK lymphocyte subsets during and after normal pregnancy. Am J Reprod Immunol. 1997 May;37(5):368-77.
    [184]Fanti P, Nazareth M, Bucelli R, et al.Estrogen decreases chemokine levels in murine mammary tissue:implications for the regulatory role of MIP-1 alpha and MCP-1/JE in mammary tumor formation. Endocrine.2003 Nov;22(2):161-8.
    [185]Leposavic G, Obradovic S, Kosec D, et al.In vivo modulation of the distribution of thymocyte subsets by female sex steroid hormones. Int Immunopharmacol.2001 Jan;1(1):1-12.
    [186]Obradovic S, Vidic-Dankovic B, Pejcic-Karapetrovic B, et al.In vivo modulation of the splenocyte yield and composition by female sex steroid hormones. Pharmazie.2001 Mar;56(3):235-8.
    [187]宋向凤,孙翔,王辉.雌孕激素对T淋巴细胞生长的调节作用.细胞与分子免疫学杂志,2005,21(2):249,253.
    [188]汪理,林星光,陈忠华,等.浓度的雌激素增强调节性T细胞抑制功能的实验研究.医药导报,2009,28(4):411-414.
    [189]Segerson EC, Li H, Talbott CW.Estradiol-17 beta and progesterone increase ovine uterine suppressor cell activity. J Anim Sci.1997 Oct;75(10):2778-87.
    [190]Thordarson G, Van Horn K, Guzman RC, et al.Parous rats regain high susceptibility to chemically induced mammary cancer after treatment with various mammotropic hormones. Carcinogenesis.2001 Jul;22(7):1027-33.
    [191]Szekeres-Bartho J, Faust Z, Varga P, Szereday L, Kelemen K. The immunological pregnancy protective effect of progesterone is manifested via controlling cytokine production. Am J Reprod Immunol 1996; 35:348-351.
    [192]Kelemen K, Paldi A, Tinneberg H, et al.Early recognition of pregnancy by the maternal immune system. Am J Reprod Immunol.1998 Jun;39(6):351-5.
    [193]Salem ML.Estrogen, a double-edged sword:modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production. Curr Drug Targets Inflamm Allergy.2004 Mar;3(1):97-104.
    [194]Williams GT, Smith CA.Molecular regulation of apoptosis:genetic controls on cell death. Cell.1993 Sep 10;74(5):777-779.
    [195]Steller H.Mechanisms and genes of cellular suicide. Science.1995 Mar 10;267(5203):1445-1449.
    [196]Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science.1995 Mar 10;267(5203):1456-1462.
    [197]Kumar R, Vadlamudi RK, Adam L. Apoptosis in mammary gland and cancer. Endocr Relat Cancer.2000 Dec;7(4):257-69.
    [198]Bern HA, Nandi S, Finster V. Induction of lactation in precancerous hyperplastic alveolar nodules in the mammary gland of C3H/He Crgl mice. Experientia.1959 Apr 15; 15(4):155-7.
    [199]Medina D. The mammary gland:a unique organ for the study of development and tumorigenesis. J Mammary Gland Biol Neoplasia.1996 Jan;1(1):5-19.
    [200]Strange R, Metcalfe T, Thackray L, et al. Apoptosis in normal and neoplastic mammary gland development. Microsc Res Tech.2001 Jan 15;52(2):171-81.
    [201]包红朵,丁月云,王恬.乳腺发育和乳腺疾病中细胞凋亡基因的表达规律及其调控.家畜生态学报,2008,29(5):9-12.
    [202]Lee PP, Hwang JJ, Mead L, et al.Functional role of matrix metalloproteinases (MMPs) in mammary epithelial cell development. J Cell Physiol.2001 Jul;188(1):75-88.
    [203]侯晓明,李庆章.乳腺细胞凋亡及其研究进展.中国乳品工业,2006,34(10):49-51.
    [204]Silvestrini R, Veneroni S, Daidone MG, et al. The Bcl-2 protein:a prognostic indicator strongly related to p53 protein in lymph node-negative breast cancer patients. J Natl Cancer Inst.1994 Apr 6;86(7):499-504.
    [205]Sinicrope FA, Ruan SB, Cleary KR, et al. bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res.1995 Jan 15;55(2):237-41.
    [206]张斯,孟凡,于秀婷,姜又红乳腺癌雌激素、孕激素受体与PCNA表达.中国公共卫生,2007,23(3):323-324.
    [207]侯晓明,李庆章.小鼠乳腺细胞调亡及瘦素对凋亡的影响.中国实验动物学报,2008,16(1):48-51.
    [208]Colitti M, Farinacci M. Cell turnover and gene activities in sheep mammary glands prior to lambing to involution. Tissue Cell.2009 Oct;41(5):326-33. Epub 2009 Mar 27.
    [209]Motyl T, Gajkowska B, Wojewodzka U, et al. Expression of apoptosis-related proteins in involuting mammary gland of sow. Comp Biochem Physiol B Biochem Mol Biol.2001 Apr;128(4):635-46.
    [210]Wareski P, Motyl T, Ryniewicz Z, Expression of apoptosis-related proteins in mammary gland of goat. Small Rumin Res.2001 Jun;40(3):279-289.
    [211]Wilde CJ, Addey CV, Li P, et al. Programmed cell death in bovine mammary tissue during lactation and involution. Exp Physiol.1997 Sep;82(5):943-53.
    [212]狄和双,阎晓东,王根林.退化期的乳腺凋亡及其调节机制.畜牧与兽医,2007,39(3):54-57.
    [213]Feng Z, Marti A, Jehn B, et al. Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J Cell Biol. 1995 Nov;131(4):1095-103.
    [214]Ferguson DJ, Anderson TJ. Morphological evaluation of cell turnover in relation to the menstrual cycle in the "resting" human breast. Br J Cancer.1981 Aug;44(2):177-81.
    [215]Anderson TJ, Battersby S, King RJ, et al. Oral contraceptive use influences resting breast proliferation. Hum Pathol.1989 Dec;20(12):1139-44.
    [216]Going JJ, Anderson TJ, Battersby S, et al. Proliferative and secretory activity in human breast during natural and artificial menstrual cycles. Am J Pathol.1988 Jan;130(1):193-204.
    [217]Olsson H, Jernstrom H, Alm P, et al. Proliferation of the breast epithelium in relation to menstrual cycle phase, hormonal use, and reproductive factors. Breast Cancer Res Treat.1996;40(2):187-96.
    [218]Potten CS, Watson RJ, Williams GT, et al. The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br J Cancer.1988 Aug;58(2):163-70.
    [219]Feuerhake F, Sigg W, Hofter EA, et al. Cell proliferation, apoptosis, and expression of Bcl-2 and Bax in non-lactating human breast epithelium in relation to the menstrual cycle and reproductive history. Breast Cancer Res Treat.2003 Jan;77(1):37-48.
    [220]Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy. Blood.2001 Nov 1;98(9):2603-14.
    [221]Desagher S, Osen-Sand A, Nichols A, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol.1999 Mar 8; 144(5):891-901.
    [222]Rosse T, Olivier R, Monney L, et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature.1998 Jan 29;391(6666):496-9.
    [223]Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell.1993 Aug 27;74(4):609-19.
    [224]Yin XM, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 1994 May 26;369(6478):321-3.
    [225]Green DR, Reed JC. Mitochondria and apoptosis. Science.1998 Aug 28;281(5381):1309-12.
    [226]杨连君,曹雪涛,于益芝.bcl-2, bax与肿瘤细胞凋亡.中国肿瘤生物治疗杂志,2003,10(3):232-234.
    [227]高德宗,孙靖中,李永刚,等.Bcl-2和Caspase-3调控他莫昔芬诱导的ER阴性乳腺癌细胞凋亡.中国普通外科杂志,2005,14(9):683-686.
    [228]Merto GR, Cella N, Hynes NE. Apoptosis is accompanied by changes in Bcl-2 and Bax expression, induced by loss of attachment, and inhibited by specific extracellular matrix proteins in mammary epithelial cells. Cell Growth Differ.1997 Feb;8(2):251-60.
    [229]Krajewski S, Krajewska M, Shabaik A, et al. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol.1994 Dec;145(6):1323-36.
    [230]Reed JC. Balancing cell life and death:bax, apoptosis, and breast cancer. J Clin Invest.1996 Jun 1;97(11):2403-4.
    [231]Feuerhake F, Sigg W, Hofter EA, et al. Immunohistochemical analysis of Bcl-2 and Bax expression in relation to cell turnover and epithelial differentiation markers in the non-lactating human mammary gland epithelium. Cell Tissue Res. 2000 Jan;299(1):47-58.
    [232]Luna-More S, Weil B, Bautista D, et al. Bcl-2 protein in normal, hyperplastic and neoplastic breast tissues. A metabolite of the putative stem-cell subpopulation of the mammary gland. Histol Histopathol.2004 Apr;19(2):457-63.
    [233]Sedlak TW, Oltvai ZN, Yang E, et al. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci U S A.1995 Aug 15;92(17):7834-8.
    [234]Zhang Y, Goodyer C, LeBlanc A. Selective and protracted apoptosis in human primary neurons microinjected with active caspase-3,-6,-7, and -8. J Neurosci.2000 Nov 15;20(22):8384-9.
    [235]彭洪涛刘淑萍.bcl-2基因与细胞凋亡关系的研究进展.内蒙古医学杂志,2006,38(4):348-351.
    [236]刘伟,李庆军,卢绮萍.Caspase与细胞凋亡.新乡医学院学报,2005,22(1):67-70.
    [237]Honarpour N, Du C, Richardson JA, et al. Adult Apaf-1-deficient mice exhibit male infertility. Dev Biol.2000 Feb 15;218(2):248-58.
    [238]Thornberry NA, Lazebnik Y. Caspases:enemies within. Science.1998 Aug 28;281(5381):1312-6.
    [239]Cain K, Bratton SB, Langlais C, et al. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J Biol Chem.2000 Mar 3;275(9):6067-70.
    [240]Zou H, Li Y, Liu X, et al. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem.1999 Apr 23;274(17):11549-56.
    [241]Youdim MB, Weinstock M. Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate]. Cell Mol Neurobiol.2001 Dec;21(6):555-73.
    [242]Rosse T, Olivier R, Monney L, et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature.1998 Jan 29;391(6666):496-9.
    [243]Cryns V, Yuan J. Proteases to die for. Genes Dev.1998 Jun 1;12(11):1551-70.
    [244]毛德文,陈月桥,王丽,等.Caspase-8及Caspase-3与细胞凋亡.辽宁中医药大学学报,2008,10(10):148-150.
    [245]Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev Cell.2001 Oct;1(4):467-75.
    [246]Ferguson DJ. An ultrastructural study of mitosis and cytokinesis in normal 'resting' human breast. Cell Tissue Res.1988 Jun;252(3):581-7.
    [247]Soderqvist G, Isaksson E, von Schoultz B, Proliferation of breast epithelial cells in healthy women during the menstrual cycle. Am J Obstet Gynecol.1997 Jan;176(1 Pt 1):123-8.
    [248]Conneely OM, Jericevic BM, Lydon JP. Progesterone receptors in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia.2003 Apr;8(2):205-14.
    [249]Couse JF, Korach KS. Estrogen receptor null mice:what have we learned and where will they lead us? Endocr Rev.1999 Jun;20(3):358-417.
    [250]Bagheri-Yarmand R, Talukder AH, Wang RA, et al. Metastasis-associated protein 1 deregulation causes inappropriate mammary gland development and tumorigenesis. Development.2004 Jul;131(14):3469-79.
    [251]Pelletier G, Luu-The V, Charbonneau A, et al. Cellular localization of estrogen receptor beta messenger ribonucleic acid in cynomolgus monkey reproductive organs. Biol Reprod.1999 Nov;61 (5):1249-55.
    [252]Pelletier G, El-Alfy M. Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J Clin Endocrinol Metab.2000 Dec;85(12):4835-40.
    [253]Battersby S, Robertson BJ, Anderson TJ, et al. Influence of menstrual cycle, parity and oral contraceptive use on steroid hormone receptors in normal breast. Br J Cancer.1992 Apr;65(4):601-7.
    [254]Soderqvist G, von Schoultz B, Tani E, et al. Estrogen and progesterone receptor content in breast epithelial cells from healthy women during the menstrual cycle. Am J Obstet Gynecol.1993 Mar;168(3 Pt 1):874-9.
    [255]Shaw JA, Udokang K, Mosquera JM, et al. Oestrogen receptors alpha and beta differ in normal human breast and breast carcinomas. J Pathol.2002 Dec;198(4):450-7.
    [256]Taylor D, Pearce CL, Hovanessian-Larsen L, et al. Progesterone and estrogen receptors in pregnant and premenopausal non-pregnant normal human breast. Breast Cancer Res Treat.2009 Nov;118(1):161-8. Epub 2009 Feb 10.
    [257]Aupperlee MD, Smith KT, Kariagina A, et al. Progesterone receptor isoforms A and B:temporal and spatial differences in expression during murine mammary gland development. Endocrinology.2005 Aug;146(8):3577-88. Epub 2005 May 5.
    [258]Kariagina A, Aupperlee MD, Haslam SZ. Progesterone receptor isoforms and proliferation in the rat mammary gland during development. Endocrinology. 2007 Jun;148(6):2723-36. Epub 2007 Mar 1.
    [259]Russo J, Ao X, Grill C, et al. Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat.1999 Feb;53(3):217-27.
    [260]Lee S, Mohsin SK, Mao S, et al. Hormones, receptors, and growth in hyperplastic enlarged lobular units:early potential precursors of breast cancer. Breast Cancer Res.2006;8(1):R6. Epub 2005 Dec 16.
    [261]Clarke RB. Human breast cell proliferation and its relationship to steroid receptor expression. Climacteric.2004 Jun;7(2):129-37.
    [262]Aupperlee MD, Drolet AA, Durairaj S, et al. Strain-specific differences in the mechanisms of progesterone regulation of murine mammary gland development. Endocrinology.2009 Mar; 150(3):1485-94. Epub 2008 Nov 6.
    [263]Sabourin JC, Martin A, Baruch J, et al. bcl-2 expression in normal breast tissue during the menstrual cycle. Int J Cancer.1994 Oct 1;59(1):1-6.
    [264]Ferrieres G, Cuny M, Simony-Lafontaine J, et al. Variation of bcl-2 expression in breast ducts and lobules in relation to plasma progesterone levels: overexpression and absence of variation in fibroadenomas. J Pathol.1997 Oct;183(2):204-11.
    [265]Roy D, Palangat M, Chen CW, et al. Biochemical and molecular changes at the cellular level in response to exposure to environmental estrogen-like chemicals. J Toxicol Environ Health.1997 Jan;50(1):1-29.
    [266]Warri AM, Huovinen RL, Laine AM, et al. Apoptosis in toremifene-induced growth inhibition of human breast cancer cells in vivo and in vitro. J Natl Cancer Inst.1993 Sep 1;85(17):1412-8.
    [267]张蕙心,舒为群.雌激素-Bcl-2基因家族-细胞凋亡-乳腺肿瘤.武警医学,2000,4:232-233.
    [268]Teixeira C, Reed JC, Pratt MA. Estrogen promotes chemotherapeutic drug resistance by a mechanism involving Bcl-2 proto-oncogene expression in human breast cancer cells. Cancer Res.1995 Sep 1;55(17):3902-7.
    [269]王晓薇,丁建丽,王东风,等.乳腺增生病与癌前病变.山西医科大学学报,2005,36(2):237-240.
    [270]Guo B, Zhai D, Cabezas E, et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature.2003 May 22;423(6938):456-61. Epub 2003 May 4.
    [271]孙怀宇,王军,王鹏.Bcl-2家族和Bcl-xl对细胞凋亡调控的研究进展.中国煤炭工业医学杂志,2009,12(4):675-677.
    [272]Hockenbery DM, Zutter M, Hickey W, et al. BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci U S A.1991 Aug 15;88(16):6961-5.
    [273]Leek RD, Kaklamanis L, Pezzella F, et al. bcl-2 in normal human breast and carcinoma, association with oestrogen receptor-positive, epidermal growth factor receptor-negative tumours and in situ cancer. Br J Cancer.1994 Jan;69(l):135-9.
    [274]Golstein P. Controlling cell death. Science.1997 Feb 21;275(5303):1081-2.
    [275]黄朴厚,詹新恩,谷成明.雌二醇、孕酮与良性乳腺疾病的关系.中华外科杂志,1988,26(11):644.
    [276]陈允硕,王键,徐锋,等.乳腺肿瘤雌激素、孕激素受体表达与细胞增殖.中国肿瘤临床.2000,27(9):645-648.
    [277]Lawson JS, Field AS, Champion S, et al. Low oestrogen receptor alpha expression in normal breast tissue underlies low breast cancer incidence in Japan. Lancet.1999 Nov 20;354(9192):1787-8.
    [1]姜军.乳腺癌的免疫治疗进展和存在的问题.中国普外基础与临床杂志,2002,9(5):295-297.
    [2]Pakravan N, Hassan AT, Hassan ZM. Naturally occurring self-reactive CD4+CD25+ regulatory T cells:universal immune code.Cell Mol Immunol.2007,4(3):197-201.
    [3]Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells:a common basis between tumor immunity and autoimmunity. J Immunol.1999,163(10):5211-5218.
    [4]Onizuka S, Tawara I, Shimizu J, et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res.1999, 59(13):3128-33.
    [5]徐林,蒋正刚,李宝华,等. 小鼠乳腺癌实验动物模型中CD4+CD25+调节性T细胞的变化及意义.复旦学报医学版,2006,33(6):736-740.
    [6]徐林,乔滨,蒋正刚,等. 小鼠乳腺癌模型中趋化因子表达谱的检测及其意义.中国医学检验杂志,2006,7(1):6-9.
    [7]Pace L, Rizzo S, Palombi C, et al. Cutting edge:IL-4-induced protection of CD4+CD25-Th cells from CD4+CD25+ regulatory T cell-mediated suppression. J Immunol.2006, 176(7):3900-3904.
    [8]Yang ZZ, Novak AJ, Stenson MJ, et al. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood.2006,107(9):3639-3646.
    [9]Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001,61(12):4766-4772.
    [10]刘俊田,岳杰,任秀宝,等.乳腺癌患者外周血CD4+CD25+调节性T细胞的检测及意义.中华肿瘤杂志,2005,27(7):423-425.
    [11]Ghiringhelli F, Puig PE, Roux S, et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med.2005,202(7):919-929.
    [12]Jonuleit H, Schmitt E, Steinbrink K, et al. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol.2001,22(7):394-400.
    [13]Juang CM, Hung CF, Yeh JY, et al. Regulatory T cells:potential target in anticancer immunotherapy. Taiwan J Obstet Gynecol.2007,46(3):215-221.
    [14]Grossman WJ, Verbsky JW, Tollefsen BL, et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood.2004, 104(9):2840-2848.
    [15]Okita R, Saeki T, Takashima S, et al. CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol Rep.2005, 14(5):1269-1273.
    [16]Jurisic V. Characteristics of natural killer cell. Srp Arh Celok Lek.2006,134(1-2):71-76.
    [17]Brittenden J, Heys SD, Ross J, et al. Natural killer cells and cancer. Cancer.1996, 77(7):1226-1243.
    [18]Baxevanis CN, Reclos GJ, Gritzapis AD, et al. Elevated prostaglandin E2 production by monocytes is responsible for the depressed levels of natural killer and lymphokine-activated killer cell function in patients with breast cancer. Cancer.1993, 72(2):491-501.
    [19]Shevde LA, Joshi NN, Dudhat SB, et al. Immune functions, clinical parameters and hormone receptor status in breast cancer patients. J Cancer Res Clin Oncol.1999, 125(5):313-320.
    [20]Park NJ, Kang DH. Breast cancer risk and immune responses in healthy women. Oncol Nurs Forum.2006,33(6):1151-1159.
    [21]Shevde LA, Joshi NN, Advani SH, et al. Impaired T lymphocyte function and differential cytokine response pattern in members from cancer families. Nat Immun.1998, 16(4):146-156.
    [22]齐红,单征,刘玉侠.31例乳腺癌患者外周血T淋巴细胞及NK活性检测分析.中华临床医药,2002,3(20):10-11.
    [23]齐红,单征,于宏波.乳腺癌患者T淋巴细胞免疫功能及NK活性检测分析.中国实验诊断学,2007,11(1):51-52.
    [24]Konjevic G, Spuzic I. Stage dependence of NK cell activity and its modulation by interleukin 2 in patients with breast cancer. Neoplasma.1993,40(2):81-85.
    [25]Pross HF, Lotzova E. Role of natural killer cells in cancer. Nat Immun.1993, 12(4-5):279-292.
    [26]Spaner D, Radvanyi L, Miller RG. Immunology related to cancer. In I.F. Tannock & R.P. Hill (Eds.), The basic science of oncology,1998(3rd ed., pp.240-262). New York: McGraw-Hill.
    [27]Sachs G, Rasoul-Rockenschaub S, Aschauer H, et al. Lytic effector cell activity and major depressive disorder in patients with breast cancer:a prospective study. J Neuroimmunol. 1995,59(1-2):83-89.
    [28]王瑞婷,申兴斌,刘云霞.免疫监视与肿瘤免疫逃逸.承德医学院学报,2001,18(4):327-329.
    [29]Yakirevich E, Maroun L, Cohen O, et al. Apoptosis, proliferation, and Fas (APO-1, CD95)/Fas ligand expression in medullary carcinoma of the breast. J Pathol.2000, 192(2):166-173.
    [30]王书奎,王自正,夏伟.乳腺癌100例患者肿瘤组织CD14+和CD8+/CD28+细胞的检测.南京医科大学学报,2002,22(5):442-443.
    [31]孙颖,刘明,李恒力,等.乳腺癌组织中巨噬细胞浸润与bcl-2,bax表达的关系.第四军医大学学报,2003,24(13):1210-1212.
    [32]Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res.2001,23(2-3):263-272.
    [33]Menetrier-Caux C, Montmain G, Dieu MC, et al. Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells:role of interleukin-6 and macrophage colony-stimulating factor. Blood.1998,92(12):4778-4791.
    [34]Ben-Hur H, Cohen O, Schneider D, et al. The role of lymphocytes and macrophages in human breast tumorigenesis:an immunohistochemical and morphometric study. Anticancer Res.2002,22(2B):1231-1238.
    [35]郝汉霞,王水,刘力嘉,等.乳腺癌肿瘤相关巨噬细胞中HIF—2α/EPAS1表达与血管生成的关系.中华肿瘤防治杂志,2006,13(3):169-172.
    [36]孙正魁,姚榛祥,刘胜春.STAT3诱骗寡核苷酸激活巨噬细胞抗乳腺癌免疫反应.中华实验外科杂志,2006,3(5):528-530.
    [37]Cheng F, Wang HW, Cuenca A, et al. A critical role for Stat3 signaling in immune tolerance. Immunity.2003,19(3):425-436.
    [38]Ohno S, Inagawa H, Dhar DK, et al. The degree of macrophage infiltration into the cancer cell nest is a significant predictor of survival in gastric cancer patients. Anticancer Res. 2003,23(6D):5015-5022.
    [39]龙峰,王晨红,翁彬.乳腺癌组织中肥大细胞和肿瘤相关巨噬细胞计数及其临床病理意义.医学临床研究,2004,2(8):855-857.
    [40]Lespagnard L, Gancberg D, Rouas G, et al. Tumor-infiltrating dendritic cells in adenocarcinomas of the breast:a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int J Cancer.1999,84(3):309-314.
    [41]Gong J, Avigan D, Chen D, et al. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci U S A. 2000,97(6):2715-2718.
    [42]Gervais A, Leveque J, Bouet-Toussaint F, et al. Dendritic cells are defective in breast cancer patients:a potential role for polyamine in this immunodeficiency. Breast Cancer Res. 2005,7(3):R326-35.
    [43]Hillenbrand EE, Neville AM, Coventry BJ. Immunohistochemical localization of CD1a-positive putative dendritic cells in human breast tumours. Br J Cancer.1999, 79(5-6):940-944.
    [44]Tsuge T, Yamakawa M, Tsukamoto M. Infiltrating dendritic/Langerhans cells in primary breast cancer. Breast Cancer Res Treat.2000,59(2):141-152.
    [45]Bell D, Chomarat P, Broyles D, et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med.1999,190(10):1417-1426.
    [46]Rubio MT, Means TK, Chakraverty R, et al. Maturation of human monocyte-derived dendritic cells (MoDCs) in the presence of prostaglandin E2 optimizes CD4 and CD8 T cell-mediated responses to protein antigens:role of PGE2 in chemokine and cytokine expression by MoDCs. Int Immunol.2005,17(12):1561-1572.
    [47]李艳萍,路军秀,李强.树突状细胞在乳腺癌组织中的表达.新乡医学院学报,2006,23(1):11-13.
    [48]Bai L, Beckhove P, Feuerer M, et al. Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: bidirectional cell stimulation, survival and antitumor activity in vivo. Int J Cancer.2003, 103(1):73-83.
    [49]Coventry BJ, Lee PL, Gibbs D, et al. Dendritic cell density and activation status in human breast cancer--CD1a, CMRF-44, CMRF-56 and CD-83 expression. Br J Cancer.2002, 86(4):546-551.
    [50]Pockaj BA, Basu GD, Pathangey LB, et al. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol.2004,11(3):328-339.
    [51]Satthaporn S, Robins A, Vassanasiri W, et al. Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunother.2004,53(6):510-518.
    [52]Lipscomb MF, Masten BJ. Dendritic cells:immune regulators in health and disease. Physiol Rev.2002,82(1):97-130.
    [53]Candido KA, Shimizu K, McLaughlin JC, et al. Local administration of dendritic cells inhibits established breast tumor growth:implications for apoptosis-inducing agents. Cancer Res.2001,61(1):228-236.
    [54]Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 2005,175(1):5-14.
    [55]Kharkevitch DD, Seito D, Balch GC, et al. Characterization of autologous tumor-specific T-helper 2 cells in tumor-infiltrating lymphocytes from a patient with metastatic melanoma. Int J Cancer.1994,58(3):317-323.
    [56]Ren Z, Pang G, Clancy R, et al. Shift of the gastric T-cell response in gastric carcinoma. J Gastroenterol Hepatol.2001,16(2):142-148.
    [57]Aniszewski JP, Valyasevi RW, Bahn RS. Relationship between disease duration and predominant orbital T cell subset in Graves' ophthalmopathy. J Clin Endocrinol Metab. 2000,85(2):776-780.
    [58]胡永生,张庆林,田志刚,等.脑胶质瘤Th1/Th2类细胞因子的漂移及意义.中华外科杂志,2001,39(1):92.
    [59]邱法波,姜希宏,吴力群,等.原发性肝癌及癌旁组织中Th1/Th2类细胞因子表达模式.中国现代普通外科进展,2003,6(2):97-99.
    [60]Romagnani S. T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol.2000, 85(1):9-18
    [61]Lu J, Philpott DJ, Saunders PR, et al. Epithelial ion transport and barrier abnormalities evoked by superantigen-activated immune cells are inhibited by interleukin-10 but not interleukin-4. J Pharmacol Exp Ther.1998,287(1):128-136.
    [62]林华燕,吴平,何惠娟,等.乳腺癌患者外周Th1/Th2细胞因子的漂移及其与病理和临床病程的关系.肿瘤研究与临床,2006,18(5):304-306,309.
    [63]Romani L, Mencacci A, Tonnetti L, et al. IL-12 is both required and prognostic in vivo for T helper type 1 differentiation in murine candidiasis. J Immunol.1994,153(11):5167-5175.
    [64]钟延清,朱运龙,王高峰.白细胞介素-2对乳腺癌细胞MCF-7和MDA-MB-231增殖的不同作用.细胞与分子免疫学杂志,2002,18(3):287-290.
    [65]李晓诗,张相钧,孙亚荣,等.消化系统恶性肿瘤患者血清与腹水中细胞因子活性变化.世界华人消化杂志,1999,7:13-14.
    [66]杨振林,刘敬波,张岩江,等.乳腺癌患者血清肿瘤坏死因子-α、白细胞介素-6和白细胞介素-2水平的变化及其临床意义.中华普通外科杂志,2001,16(11):678-679.
    [67]Klein B, Zhang XG, Lu ZY, et al. Interleukin-6 in human multiple myeloma. Blood.1995, 85(4):863-872.
    [68]Lukaszewicz M, Mroczko B, Szmitkowski M. Clinical significance of interleukin-6 (IL-6) as a prognostic factor of cancer disease. Pol Arch Med Wewn.2007,117(5-6):247-251.
    [69]华东,王丰,吴小红,等.乳腺癌患者血浆IL-12水平变化及临床意义.山东医药,2004,44(36):34
    [70]Banks RE, Patel PM, Selby PJ. Interleukin 12:a new clinical player in cytokine therapy. Br J Cancer.1995,71(4):655-659.
    [71]Lissoni P, Rovelli F, Pittalis S, et al. Interleukin-12 in early or advanced cancer patients. Eur J Cancer.1997,33(10):1703-1705.
    [72]Zoller M, Strubel A, Hammerling G, et al. Interferon-gamma treatment of B16 melanoma cells:opposing effects for non-adaptive and adaptive immune defense and its reflection by metastatic spread. Int J Cancer.1988,41(2):256-266.
    [73]Fady C, Gardner AM, Gera JF, et al. Interferon-induced increase in sensitivity of ovarian cancer targets to lysis by lymphokine-activated killer cells:selective effects on HER2/neu-overexpressing cells. Cancer Res.1992,52(4):764-769.
    [74]Takahashi T, Ishikura H, Iwai K, et al. Cytokine regulation of cell-to-cell interactions in lymphokine-activated killer cell cytotoxicity in vitro. Cancer Immunol Immunother.1993, 36(2):76-82.
    [75]高德宗,孙靖中,高华,等.γ-干扰素增强他莫昔芬抗乳腺癌作用的体外研究.中国肿瘤生物治疗杂志,2006,13(1):45-49.
    [76]高德宗,孙靖中,余之刚,等.γ-扰素增强他莫苷芬抗ER阴性乳腺癌细胞作用的实验研究.中国肿瘤生物治疗杂志,2005,12(1):215-217.
    [77]罗利群,张友会.γ-干扰素促进小鼠乳腺癌的转移.中华肿瘤杂志,1994,16(4):251-254.
    [78]Kelly SA, Gschmeissner S, East N, et al. Enhancement of metastatic potential by gamma-interferon.Cancer Res.1991,51(15):4020-4027.
    [79]Storkus WJ, Alexander J, Payne JA, et al. Reversal of natural killing susceptibility in target cells expressing transfected class I HLA genes. Proc Natl Acad Sci U S A.1989, 86(7):2361-2364.
    [80]Kaufman DS, Schoon RA, Leibson PJ. MHC class I expression on tumor targets inhibits natural killer cell-mediated cytotoxicity without interfering with target recognition. J Immunol.1993,150(4):1429-1436.
    [81]Becker JC, Dummer R, Hartmann AA,et al. Shedding of ICAM-1 from human melanoma cell lines induced by IFN-gamma and tumor necrosis factor-alpha. Functional consequences on cell-mediated cytotoxicity. J Immunol.1991,147(12):4398-4401.
    [82]Sarzotti M, Baron S, Tyring SK, Klimpel GR. Interferon-mediated protection of B16 melanoma cells from cytotoxicity by activated macrophages. Cell Immunol.1986, 100(1):280-287.
    [83]Kloos DU, Choi C, Wingender E. The TGF-beta--Smad network:introducing bioinformatic tools. Trends Genet.2002,18(2):96-103.
    [84]Wakefield LM, Roberts AB. TGF-beta signaling:positive and negative effects on tumorigenesis. Curr Opin Genet Dev.2002,12(1):22-29.
    [85]Deguchi R, Takagi A, Kawata H, et al. Association between CagA+ Helicobacter pylori infection and p53, bax and transforming growth factor-beta-RⅡ gene mutations in gastric cancer patients. Int J Cancer.2001,91(4):481-485.
    [86]Calin GA, Gafa R, Tibiletti MG, et al. Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters:A study of the TGRbetaRⅡ, BAX, hMSH3, hMSH6, IGFⅡR and BLM genes. Int J Cancer.2000, 89(3):230-235.
    [87]钱建民,王学浩,李国强,等.肝癌患者转化生长因子-β1及其受体的表达和意义.中华实验外科杂志,2000,17:535-536.
    [88]Hazelbag S, Gorter A, Kenter GG,et al. Transforming growth factor-betal induces tumor stroma and reduces tumor infiltrate in cervical cancer. Hum Pathol.2002, 33(12):1193-1199.
    [89]耿智敏,向国安,韩庆,等.巨噬细胞及转化生长因子-β1在肝胆管损伤修复过程中 的表达及其意义.中华实验外科杂志,2000,17:522-523.
    [90]Chorna I, Bilyy R, Datsyuk L, et al. Comparative study of human breast carcinoma MCF-7 cells differing in their resistance to doxorubicin:effect of ionizing radiation on apoptosis and TGF-beta production. Exp Oncol.2004,26(2):111-117.
    [91]Tang B, Vu M, Booker T, et al. TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest.2003,112(7):1116-1124.
    [92]徐茜,刘福安,吴莺,等.转化生长因子-β1对乳腺癌细胞株增殖和T淋巴细胞免疫的影响.中华实验外科杂志,2005,22(6):695-697.
    [93]Meazza R, Gaggero A, Neglia F, et al. Expression of two interleukin-15 mRNA isoforms in human tumors does not correlate with secretion:role of different signal peptides. Eur J Immunol.1997,27(5):1049-1054.
    [94]Favier B, LeMaoult J, Rouas-Freiss N, et al. Research on HLA-G:an update. Tissue Antigens.2007,69(3):207-211.
    [95]D'Orazio TJ, Niederkorn JY. A novel role for TGF-beta and IL-10 in the induction of immune privilege.J Immunol.1998,160(5):2089-2098.
    [96]Pawelec G. Tumour escape:antitumour effectors too much of a good thing? Cancer Immunol Immunother.2004,53(3):262-274.
    [97]Chouaib S, Asselin-Paturel C, Mami-Chouaib F, et al. The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immunol Today.1997, 18(10):493-497.
    [98]Matsui S, Ahlers JD, Vortmeyer AO, et al. A model for CD8+ CTL tumor immunosurveillance and regulation of tumor escape by CD4 T cells through an effect on quality of CTL. J Immunol.1999,163(1):184-193.
    [99]Adler AJ, Marsh DW, Yochum GS, et al. CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J Exp Med.1998,187(10):1555-1564.
    [100]O'Connell J, Bennett MW, O'Sullivan GC, et al. The Fas counterattack:cancer as a site of immune privilege. Immunol Today.1999,20(1):46-52.
    [101]Zia A, Schildberg FW, Funke I. MHC class I negative phenotype of disseminated tumor cells in bone marrow is associated with poor survival in R0M0 breast cancer patients. Int J Cancer.2001,93(4):566-570.
    [102]Feinmesser M, Sulkes A, Morgenstern S, et al. HLA-DR and beta 2 microglobulin expression in medullary and atypical medullary carcinoma of the breast:histopathologically similar but biologically distinct entities. J Clin Pathol.2000,53(4):286-291.
    [103]Lefebvre S, Antoine M, Uzan S, et al. Specific activation of the non-classical class I histocompatibility HLA-G antigen and expression of the ILT2 inhibitory receptor in human breast cancer. J Pathol.2002,196(3):266-274.
    [104]Emtage PC, Wan Y, Bramson JL, et al. A double recombinant adenovirus expressing the costimulatory molecule B7-1 (murine) and human IL-2 induces complete tumor regression in a murine breast adenocarcinoma model. J Immunol.1998,160(5):2531-2538.
    [105]韩丽辉,孙汶生,贾晓青,等.TRAIL对HBV感染的免疫监视效应研究.山东大学学报(医学版),2005,43(7):553-556.
    [106]Strater J, Moller P. TRAIL and viral infection. Vitam Horm.2004,67:257-274.
    [107]Kamohara H, Matsuyama W, Shimozato O, et al. Regulation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression in human neutrophils. Immunology.2004,111(2):186-194.
    [108]Giovarelli M, Musiani P, Garotta G, et al. A "stealth effect":adenocarcinoma cells engineered to express TRAIL elude tumor-specific and allogeneic T cell reactions. J Immunol.1999,163(9):4886-4893.
    [109]Herrnring C, Reimer T, Jeschke U, et al. Expression of the apoptosis-inducing ligands FasL and TRAIL in malignant and benign human breast tumors. Histochem Cell Biol.2000, 113(3):189-194.
    [110]O'Connell J, Bennett MW, O'Sullivan GC, et al. Expression of Fas (CD95/APO-1) ligand by human breast cancers:significance for tumor immune privilege. Clin Diagn Lab Immunol.1999,6(4):457-463.
    [111]Gutierrez LS, Eliza M, Niven-Fairchild T, et al. The Fas/Fas-ligand system:a mechanism for immune evasion in human breast carcinomas. Breast Cancer Res Treat.1999, 54(3):245-253.
    [112]Muschen M, Moers C, Warskulat U, et al. CD95 ligand expression in dedifferentiated breast cancer. J Pathol.1999 Nov;189(3):378-386.
    [113]Kurt RA, Whitaker R, Baher A, et al. Spontaneous mammary carcinomas fail to induce an immune response in syngeneic FVBN202 neu transgenic mice. Int J Cancer.2000, 87(5):688-694.
    [114]孙正魁 姚榛祥.乳腺癌免疫逃逸机制的研究进展.中国普外基础与临床杂志,2004,11(1):26-28.
    [115]Coudert BP, Arnould L, Moreau L, et al. Pre-operative systemic (neo-adjuvant) therapy with trastuzumab and docetaxel for HER2-overexpressing stage Ⅱ or Ⅲ breast cancer: results of a multicenter phase Ⅱ trial. Ann Oncol.2006,17(3):409-414.
    [116]Rugo HS. Bevacizumab in the treatment of breast cancer:rationale and current data. Oncologist.2004,9 Suppl 1:43-49.
    [117]van Ojik HH, Repp R, Groenewegen G, et al. Clinical evaluation of the bispecific antibody MDX-H210 (anti-Fc gamma RI x anti-HER-2/neu) in combination with granulocyte-colony-stimulating factor (filgrastim) for treatment of advanced breast cancer. Cancer Immunol Immunother.1997,45(3-4):207-209.
    [118]Lewis LD, Cole BF, Wallace PK, et al. Pharmacokinetic-pharmacodynamic relationships of the bispecific antibody MDX-H210 when administered in combination with interferon gamma:a multiple-dose phase-Ⅰ study in patients with advanced cancer which overexpresses HER-2/neu. J Immunol Methods.2001,248(1-2):149-165.
    [119]Scholl SM, Balloul JM, Le Goc G, et al. Recombinant vaccinia virus encoding human MUC1 and IL2 as immunotherapy in patients with breast cancer. J Immunother (1997). 2000,23(5):570-580.
    [120]Apostolopoulos V, Pietersz GA, Tsibanis A, et al. Pilot phase Ⅲ immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1 [ISRCTN71711835]. Breast Cancer Res.2006,8(3):R27.
    [121]Brossart P, Wirths S, Stuhler G, et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood.2000,96(9):3102-3108.
    [122]Warnberg F, White D, Anderson E, et al. Effect of a farnesyl transferase inhibitor (R115777) on ductal carcinoma in situ of the breast in a human xenograft model and on breast and ovarian cancer cell growth in vitro and in vivo. Breast Cancer Res.2006, 8(2):R21.
    [123]Nonnanno N, Campiglio M, De LA, et al. Cooperative inhibitory effect of ZD1839 (Iressa) in combination with trastuzumab (Herceptin) on human breast cancer cell growth. Ann Oncol.2002,13(1):65-72.
    [124]王深明,朱易凡.乳腺癌生物免疫治疗的临床应用研究进展与展望.中华实验外科杂志,2007,24(1):5-6.
    [125]Hortobagyi GN, Hung MC, Lopez-Berestein G. A Phase I multicenter study of E1A gene therapy for patients with metastatic breast cancer and epithelial ovarian cancer that overexpresses HER-2/neu or epithelial ovarian cancer.Hum Gene Ther.1998, 9(12):1775-1798.
    [126]Yoo GH, Hung MC, Lopez-Berestein G, et al. Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res. 2001,7(5):1237-1245.
    [127]Takahashi S, Ito Y, Hatake K, et al.Gene therapy for breast cancer.--Review of clinical gene therapy trials for breast cancer and MDR1 gene therapy trial in Cancer Institute Hospital.Breast Cancer.2006,13(1):8-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700