用户名: 密码: 验证码:
不同基因型水稻对低磷胁迫的响应及其分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选育磷高效水稻品种,充分利用土壤中丰富的磷资源,对节约资源、防止污染和稻作的高效持续发展具有重要意义。
     本研究在以往研究的基础上,选用不同磷效率基因型水稻为试验材料,从植株形态发生、生理生化机制和分子机理等角度出发,在个体、细胞与分子水平探讨在低磷胁迫下的磷高效的作用方式与内在机制,阐明磷高效水稻对低磷胁迫的响应及其分子机制。主要研究结果如下:
     1、在较高浓度的低磷胁迫下,水稻能产生分蘖,采用相对分蘖干重这一指标能灵敏而准确地反映出不同水稻基因型耐低磷能力的差异。相对分蘖数及其干重、相对总生物量、相对地上部干重及相对根干重等指标是进行综合评价的理想指标。而在相对低浓度的低磷胁迫下,水稻分蘖受阻,相对地上部干重和相对总生物量是可靠的筛选指标。
     2、低磷胁迫下植株的外部形态发生了较大的变化,而磷高效水稻各性状变化相对较小。从各供试材料的形态发生来看,磷高效水稻解剖特点如下:侧根原基的发生早,数量多,部分增加出现了根中根的现象;茎杆的壁薄,髓腔大,通气结构与维管束外内轮等机械组织的分化较为完善;叶片中的气室大,栅栏组织发达、气孔量多面广;分蘖原基数量虽有减少但均发生正常。
     3、就磷效率而言,IR74表现出的磷高效是其较高的磷吸收率、运转率及利用率共同作用的结果,属磷高效综合型,磷中效IR71331吸收率突出,属磷高效吸收型,而IR71379为磷低效型。小的K_m和C_(min),大的I_(max)及高的APase升幅和R/S是磷高效水稻固有的生理生化本质。
     4、光合特性而言,各基因型水稻在低光强下的Pn、叶绿素和气孔导度变化较小,明显低于高光强下的降幅。在低磷和不同光强下,磷高效水稻的胞间CO_2浓度和Ca~(2+)/Mg~(2+)-ATPase均呈上升趋势,磷低效基因型的胞间CO_2浓度和Ca~(2+)/Mg~(2+)-ATPase均降低,磷高效水稻具有高光强的光合优势。
     从抗性生理来看,不同基因型水稻叶片的丙二醛含量及增幅存在差异。磷高效水稻仅小幅增加,而磷低效水稻升幅较大,低磷下叶片膜脂过氧化程度远大于根系。
Screening P-efficient rice variety may represent a more sustainable solution than sole reliance on fertilizer appliance. It is very important to economize resources and avoid pollution in rice cropping systems.34 different rice genotypes, were planted in pot and field , supplied with low(0.5mg/L P ) and high (10mg/L P ) phosphorus, to screen their phosphate efficiency (PE) at seedling and ripening stage respectively. After screening methodology was determined, IR74 (a high PE genotype) ,IR71331 (a moderate PE types) and IR71379 (a low PE genotypes) were planted at the low P deficiency of 0.5mg/L in hydroponic culture, to study the mechanism of PE discrepancy, which includes plant morphology and microstructure, physiological and biochemical properties, i.e. photosynthesis and resistance to low P characteristics, as well as its molecular mechanism. The results can be summarized as follows:It was showed that there were significant differences of tolerant indices to P deficiency in the tested rice genotypes. When rice cultivars were exposed to low P stress with the relative-higher P concentration (1mg/L P) to be screened, relative tiller dry weight (RTW) , relative shoot dry weight (RSW) and relative total plant dry weight(RPW ) could be used as the better screening criteria, especially RTW was considered a sensitive and reliable screening criterion based on the large coefficient of variation (CV) and variable range of data among the tested varieties. However, when rice genotypes were grown in the stress condition with the relative-lower P concentration (0.5mg/L P) , the screening criteria were different, and it suggested that relative shoot dry weight(RSW) or relative total plant dry weight (RPW) was the best single screening criterion. The differences in outside morphological and internal microstructure characters of rice varieties with different P efficiencies were further discussed. It could be showed that the efficient rice tolerant to low P stress resulted from the good development of lateral roots and tiller primordium, the thickness of palisade tissue, the denseness of stoma, moreover, the diameter stem and vessel increased.The genotypic differences in P efficiency of three rice varieties (IR74, IR71331 and IR71379) were studied under the P-deficiency controlled condition in hydroponic culture, and its adaptability to low phosphorus stress about physio-biochemical mechanisms were further studied. The results showed whether rice genotypes tolerated low P stress resulted
引文
1 B.B.布坎南,W格鲁依森姆,R.L琼斯主编.翟礼嘉,顾红雅,白书农,等译.植物生物化学与分子生物学[M].北京:科学出版社,2004
    2 曹爱琴,严小龙.不同供磷条件下大豆根构型的适应性变化[J].华南农业大学学报,2001,22(1):92-92
    3 曹黎明,潘晓华.水稻耐低磷机理的初步研究[J].作物学报,2002,28(2):260-264
    4 曹黎明,潘晓华.水稻耐低磷基因型的评价指标分析[J].上海农业学报,2000,16(4):31-34
    5 曹黎明,潘晓华.水稻耐低磷基因型种质的筛选与鉴定[J].江西农业大学学报,2000,22(2):162-168
    6 曹一平,崔健宇.石灰性土壤中油菜根际磷的化学动态及生物有效性[J].植物营养与肥料学报,1994,1:49-54
    7 丁平.水稻耐低磷基因型磷营养和遗传特性研究及其数据库的建立.华中农业大学硕士学位论文,2004
    8 丁玉川,陈明昌,程滨,等.作物磷营养生理生化基础研究进展[J].山西农业科学,2004,32(3):25-29
    9 段海燕,王运华,徐芳森.植物高效吸收和利用磷营养的遗传学研究进展[J].植物学通报,2002,19(4):432—438
    10 段海燕.甘蓝型油菜磷高效的营养生理及遗传行为的研究.华中农业大学博士学位论文,2003
    11 樊明寿.低磷胁迫条件下植物根内通气组织的形成及其可能的生理作用.中国农业大学博士学位论文,2001
    12 高美玲.磷对番茄产量和品质影响的研究.东北农业大学硕士论文,2003
    13 郭玉春 林文雄等 低磷胁迫下不同磷效率水稻苗期根系的生理适应研究应用生态学报.2003,14(1):61-65
    14 郭玉春,林文雄等 水稻苗期磷高效基因型筛选研究应用生态学报.2003,14(12):2316-2320
    15 郭智芬,徐书新.石灰性土壤不同形态无机磷对作物磷营养的贡献[J].中国农业科学,1997,30(10):26-32
    16 国家自然科学基金重大项目.挖掘生物高效利用土壤养分潜力保持土壤环境良性循环论文集(1997-1998).
    17 郝西.小麦氮磷效率相关性状遗传规律的研究.河北农业大学硕士学位论文,2004
    18 侯兴亮.水稻OsIPS1与OsIPS2基因磷饥饿信号及激素调控模式的比较研究.浙江大学博士学位论文,2004
    19 胡平湘.磷素水平与节瓜光合同化及源库关系的研究.华南农业大学硕士学位论文,2001
    20 李宾兴.不同磷效率小麦品种基因型磷吸收利用的生理生化特性研究.河北农业大学硕士学位论文,2001
    21 李波海.低磷胁迫对水稻苗期侧根生长及养分吸收的影响[J].植物学报,2001,11:10-14
    22 李锋,潘晓华,刘永英,等.低磷胁迫对不同水稻品种根系形态和养分吸收的影响[J].作物学报,2004,30(5):438—442
    23 李海波.水稻侧根生长对低磷胁迫的适应性反应及其机理研究.浙江大学硕士学位论文,2001
    24 李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    25 李虹.不同基因型小麦磷营养效率差异机理研究.西北农林科技大学硕士学位论文,2001
    26 李绍长.低磷胁迫对植物光合和呼吸作用的影响[J].石河子大学学报(自然科学版),2003,7(2):157—160
    27 李艳.不同小麦品种氮磷素利用效率的遗传差异研究.河南农业大学硕士学位论文,2004
    28 李振声,朱兆良,章申,等.挖掘生物高效利用土壤养分潜力保持土壤环境良性循环[M].北京:中国农业大学出版社,2004
    29 李志刚,谢甫绨,张玉玲,等.磷胁迫对大豆不同磷素基因型光合作用的影响[J].内蒙古民族大学学报(自然科学版),2004,19(3):297-299
    30 廖红,严小龙.高级植物营养学[M].北京:科学出版社,2003
    31 廖红,严小龙.华南酸性红壤中菜豆种质耐低磷特性的评价[J].南京农业大学学报,1998,19(2):20-25
    32 廖红.菜豆磷效率的生理、形态构型和遗传特性[M].华南农业大学博士论文,广州,1998:62-76
    33 林文雄 石秋梅等 水稻磷效率差异的生理生化特性研究 应用与环境生物学报.2003,9(6):578-583
    34 刘厚诚.缺磷胁迫下不同长豇豆品种生理生化特征研究.华南农业大学博士论文,2003
    35 刘建玲,李仁岗,张凤华.栗钙土磷肥转化与效应的研究[J].植物营养与肥料学报,1996,2(3):206-211
    36 刘向生.玉米磷效率基因型差异的生理及遗传分析.中国农业大学硕士学位论文,2003
    37 刘玉超.磷钾营养对水培番茄生长发育、产量及品质的影响.山东农业大学硕士学位论文,2003
    38 鲁如坤,时正元,顾益初.土壤积累态磷研究Ⅱ,磷肥的表观积累利用率[J].土壤,1995,27(6):286-287
    39 鲁如坤.土壤磷素化学研究进展[J].土壤学进展,1990,18(16):1-5
    40 吕家珑,李祖荫.石灰性土壤固磷机制的探讨[J].土壤通报,1991,22(5):204-206
    41 明凤,路群,戴薇,等.水稻高亲和力磷酸盐转运蛋白功能的初步研究.中国水稻科学,2004,18(3):203—207
    42 明凤,米国华,张福锁,等.发育时期对水稻耐低磷胁迫有关性状QTLs检测的影响[J].中国水稻科学,2001,15:248-252
    43 明凤,米国华,张福锁,等.水稻对低磷反应的基因型差异及其生理适应机制的初步研究[J].应用与环境生物学报,2000,6:138-141
    44 明凤,郑先武.水稻对低磷反应的基因型差异及其生理适应机制的初步研究[J].应用与环境生物学报,2000,6(2):138-141
    45 明凤,郑先武.水稻耐低磷有关性状的分子标记[J].科学通报,1999,44(23):2514-2518
    46 倪俊健.应有分子标记研究水稻耐低磷胁迫数量性状位点.浙江大学博士学位论文,1998
    47 潘晓华,刘永英,李锋,等.低磷胁迫对不同水稻品种叶片膜脂过氧化及保护酶活性的影响[J].中国水稻科学,2003,17(1):57—60
    48 潘晓华,刘永英,李锋,等.低磷胁迫对不同水稻品种幼苗光合作用的影响[J].作物学报,2003,29 (5):770-774
    49 庞欣,李春俭,张福锁.缺磷胁迫对黄瓜体内磷运输及再分配的影响[J].植物营养与肥料学报,1999,5(2):137-143
    50 彭正萍.缺磷对两个冬小麦品种磷吸收、体内分配和循环的影响.中国农业大学博士学位论文,2004
    51 沈宏,施卫明.不同作物对低磷胁迫的适应机理研究[J].植物营养与肥料学报,2001,7(2):172-177,210
    52 石秋梅 林文雄等 水稻苗期耐低磷基因型差异研究 中国生态农业学报.2004,12(1):36-39
    53 石秋梅.水稻耐低磷基因型的筛选及其适应机理研究.福建农林大学硕士学位论文,2002.
    54 汪洪钢,吴观以,李慧荃.VA菌根对绿豆吸磷和固氮的影响[J].土壤学报,1983,20(2):203—208
    55 王聪,刘曙光,李志刚,等.磷胁迫对不同基因型大豆苗期叶片特征的影响[J].内蒙国民族大学学报(自然科学版),2004,19(3):303—306
    56 王旭东.磷对小麦产量和品质的影响及其生理基础研究.山东农业大学博士学位论文,2003
    57 王艳,李晓林.不同基因型植物低磷胁迫适应机理的研究进展[J].生态农业研究,2000,8(4):34-36
    58 魏志强.不同基因型花生磷效率的差异及其机理研究.山东农业大学硕士学位论文,2002
    59 吴平、印莉萍、张立平.植物营养分子生理学(生命科学专论)[M].北京:科学出版社,2001
    60 吴忠长.水稻耐低磷胁迫相关转录因子OsPTF1研究.浙江大学博士学位论文,2004
    61 严小龙,黄志武,卢仁骏,等.关于作物磷效率的遗传学研究[J].土壤,1992,24(2):102-105
    62 严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997
    63 严小龙.热带土壤中菜豆种质耐低磷特性的评价[J].植物营养与肥料学报,1995,1(1):30-37
    64 严小龙.植物营养性状的遗传学改良:进展与期望[J].华南农业大学学报,1992,13(4):121-128
    65 阎秀兰.拟南芥磷高效生态型的筛选及营养机理研究.华中农业大学硕士学位论文,2003
    66 杨晴.氮、磷对小麦光合性能的调节机制研究.河北农业大学硕士学位论文,2002
    67 于福同,张爱民,陈受宜,等.一个高亲和力水稻根系磷转运蛋白候选基因片段的克隆[J].遗传学报,2001,28(2):144-151
    68 张福锁,杨军芳.缺磷胁迫对小麦细胞周期蛋白基因cyclAt表达的影响[J].植物生理学报,2000,26(5):441-445
    69 张福锁等.环境胁迫与植物根际营养[M].北京:中国农业出版社,1998
    70 张福锁主编.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993
    71 张福锁主编.植物营养生态生理学和遗传学[M].北京:中国科学技术出版社,1993
    72 张志良,翟伟箐主编.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2003
    73 章永松,林咸永.有机肥(物)土壤中磷的活化作用机理研究Ⅱ有机肥(物)分解产生的有机酸及其对不同形态磷的活化作用[J].植物营养与肥料学报,1998,4(2):151-155
    74 朱隆静.磷与钙对低温胁迫下番茄光合作用的影响及其机理研究.浙江大学硕士学位论文,2004
    75 Ae N, Arihara J, Okada K, Yoshihara T, Johansen C. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent[J]. Science 1990, 248:477-480
    76 Barber S.A, Walker J. M, Vasey E.H. Mechanisms for the movement of plant nutrients from the soil and fertilizer to the plant root. J. Agric. Food Chem, 1963,11:204-7
    77 Bieleski RL. Phosphate pools, phosphate transport, and phosphate availability [J]. Annu Rev Plant Physiol, 1973,24:225-252
    78 Bliss FA. Breeding common bean for improved biological nitrogen fixation [J]. Plant Soil,1993,152:71-79
    79 Cook DR. Medicago truncatula Ba model in the making [J]. Curr Opin Plant Biol,1999,2:301-304
    80 Council for Agricultural Science and Technology. Report No. 114, Long Term Viability of U.S. Agriculture. Council for Agricultural Science and Technology, Ames, IA,1988
    81 Devine, T. E. Genetic Fitting of Crops to Problem Soils. In:M. N. Christiansen and C. F. L ewis Eds. , Breeding For lessFavorable Environment[M]. John Wiley and Sons, New York. 1982 , 143 -147
    82 Dyson T. World food trends and prospects to 2025[J]. Proc Natl Acad Sci USA, 1999,96:5929-5936
    83 Epstein E., Norlyn, J. D., Kingsbury, R. W., Kelly, D. B. .Cunningham, G A. and A. W. Wrona. Saline Culture of Crops:a genetic approach[J]. Science, 1980,210 :399-404
    84 Epstein E., R. L. Jefferies. The Genetic Basis of Selec-tive Ion Transport in Plants [J]. Ann. Rev. Plant Physiol. 1964,15:169-184
    85 Epstein E. Selective. Ion Transportin Plants and its GeneticControl. Desalination Research Conference. Nat. Res. Counc.Pub. 1963,284-298
    86 Epstein E. ed. Mineral nutrition of plants:principles and perspectives. New York: Wiley, 1972
    87 Frink CR, Waggoner PE, Ausubel SH. Nitrogen fertilizer: retrospect and prospect [J]. Proc Natl Acad Sci USA,1999,96:1175-1180
    88 Galloway JN, Schlesinger WH, Levy H, Michaels A, Schnoor JL. Nitrogen fixation: anthropogenic enhancement-environmental response [J]. Glob Biogeochem Cycles, 1995,9:235-252
    89 Gaskins M H, Albrecht S L , Hubbell D H. Rhizosphere bacteria and their use to increase plant productivity[J]. Crop Sci, 1985,12:99-116.
    90 Gerloff, G C. Com parative Mineral Nutrition of Plant [J]. Ann. Rev. Plant Physiol. 1963 , 14:10-124
    91 Gilbert G.A, Allan D.L, Vance C.P. Phosphorus deficiency in white lupin alters root development and metabolism. In Radical Biology: Advances and Perspectives Hoffland E, Boogaard RVD, Nelemans,1997
    92 Gilbert GA, Knight JD, Allan DL, Vance CP. Acid phosphatase activity in phosphorus-deficient white lupin roots [J]. Plant Cell Environ,1999,22:801-810
    93 Gilbert GA, Vance CP, Allan DL. Regulation of white lupin metabolism by phosphorus availability. In JP Lynch, J Deikman, eds, Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic and Ecosystem Processes. American Society Plant Physiology, Rockville, MD,1998:157-167
    94 Giller KE, Cadisch G Future benefits from biological nitrogen fixation: an ecological approach to agriculture [J]. Plant Soil,1995,174:255-277
    95 Gilroy S, Jones DL. Through form to function Broot hair development and nutrient uptake. Trends Plant Sci,2000,3:56-60
    96 Gleick PH. Making every drop count [J]. Sci Am,2001,284:41-45
    97 Golley F, Baudry J, Berry RJ, Bornkamm R, Dahlberg K, Jansson A-M, King J, Lee J, Lenz R, Sharitz R. What is the road to sustainability? INTECOL Bull, 1992,20:15-20
    98 Gorny A.G., Sodkiewicz T. Genetic analysis of the nitrogen and phosphorus utilization efficiencies in nature spring barley plants. Plant Bleeding,2001,120:129-132
    99 Graham P.H., Vance CP. Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res,2000,65:93-106
    100 Graham, R. D. Breeding for Nutritional Characteristics in Cereals [J]. Adv. Plant N utr. 1984, 1:57-102
    101 Graham, R. D. Development of wheat with enhanced nutrient efficiency: Process and Potential. Proc.CIMMYTUNDP Int Symp. On wheat Production constraints in Tropical Environments. Chiang Mai, Thailand
    102 Gregory, F. G and F. Crowther. A Physical Study of Vari-etal Differences in Plants [J]. Part I. A study of the com parativeyields of barley varieties and different manuring. Ann. Bot.1 928,42:757-770
    103 Gresshoff PM, Men AE, Maguire T, Grimmond S, Lohar D, Ayanru S, Meksem K, Lightfoot D, Stiller J. An integrated functional genomics and genetics approach to define the plant's function in symbiotic nodulation and nitrogen fixation of legumes. In G Spangenberg, ed. Molecular Breeding of Forage Crops. Kluwer Academic Press, Dordrecht, The Netherlands,2001.275-284
    104 Grierson P.F. Organic acids in the rhizosphere of Banksia interifolia L.F. Plant Soil, 1992,44:259-65
    105 Handberg K, Stougaard J. Lotus japonicus an autogamous, diploid legume species for classical and molecular genetics[J]. Plant J,1992,2:487-496
    106 Harrison MJ. The arbuscular mycorrhizal symbiosis: an underground association [J]. Trends Plant Sci, 1997,2:54-60
    107 Heichel GH. Legume nitrogen: symbiotic fixation and recovery by subsequent crops. In ZR Helsel, ed, Energy in Plant Nutrition and Pest Control. Elsevier Science, Amsterdam, 1987:63-80
    108 Herridge DF, Danso SKA. Enhancing crop legume N2 fixation through selection and breeding [J]. Plant Soil, 1985,174:51-82
    109 Hoffer, G N. and R. H. Carr. Accum ulation of Aluminiumand Iron Com pounds in Corn Plants and its Probable Rela-tion to Root Rost [J]. I. Agric. Res. 1923,33:801-824
    110 Horst Marschner. Mineral nutrition of higher plants(Second edition). Harcourt Brace & Company, Publishers, 1993
    111 Huang N-C, Chiang C-S, Crawford N, Tsay Y-F. CHL1 encodes a component of the low affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots [J]. Plant Cell,1996,8:2183-2191
    112 J, Findenegg G. Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants [J]. New Phytol, 1992,122:675-80
    113 Kloepper JW, Schroth M N. Plant growth-promoting rhizobacteria and plant growth under grotobiotic conditions [J]. Phytopathology, 1981, 71(6):642-644.
    114 Koyama H, Takita E, Kawamura A, Hara T, Shibata D. Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Physiol,1999,40:482-488
    115 Kuikman P J, Jansen A G, Van Veen JA. 1 5N-nitrogen mineralization from bacteria by protozan grazing at differ-ent soil moistore regines[J]. Soil Biol Biochem, 1999, 32(2): 193-200 .
    116 Koyama T., C.Chammek, P.Snitwonge. varietal differences of Thai rice in the resistance to phosphorus deficiency Trop.Agr. Res.Cent.Jpn.Tech.Bull 1973 4
    117 Lajtha K, Harrison AF. Strategies of phosphorus acquisition and conservation by plant species and communities. In H Tiessen, ed, Phosphorus in the Global Environment. John Wiley Sons Ltd, Chichester, UK, 1995:140-147
    118 Lifshitz R, Kloepper J.W., Kozlowski M, et al. Growth promotion on canola(rapeseed)seedlings by a strain of Pseudomonas putida under grotobiotic conditions [J]. J Microbiol, 1987, 33:390-395.
    119 Lopez-Bucio J, de la Vega OM, Guevara-Garcia A, Herrera-Estrella L. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotechnol,2000,18:450-453
    120 Lui J, Uhde-Stone C, Li A, Vance CP, Allan DL A phosphate transporter with enhanced expression in proteoid roots[J]. Plant Soil,2001
    121 Lynch J P, Brown KM. Regulation of root architecture by phosphorus availability. In JP Lynch, J Deikman, eds, Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic and Ecosystem Processes. American Society Plant Physiology, Rockville, MD,1998: 148-157
    122 Lynch J P. Root architecture and plant productivity. Plant Physiol,1995,109:7-3
    123 Lynch J P. The role of nutrient-efficiency crops in modern agriculture. J Crop Pro, 1:241-264
    124 Lynch J P, Deikman, eds. Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic and Ecosystem Processes [J]. American Society Plant Physiology, Rockville, MD,1998:85-93
    125 Marschner H, Dell B, Nutrient uptake in mycorrhizal symbiosis. Plant Soil 1994,159:89-102
    126 Marschner H, Romheld V, Horst WJ, Martin P Root induced changes in the rhizosphere: importance for mineral nutrition of plants. Z Pflanzenernachr Bodenkd 1986,149:441-456
    127 Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashimi S, Shibata D Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci USA,1997,94: 7098-7102
    128 Mooers, C. A. Varieties of Corn and Their Adaptability toDifferent Soils. Univ. Tenn [J]. Agr. Exp. Sta. Bull. 1922,1220-1225
    129 Neumann G, Massonneau A, Martinola E, Romheld V. Physiological adaptation to phosphorus deficiency during proteoid root development in white lupin. Planta, 1999,208:373-382
    130 Peterson TA, Russelle MP Alfalfa and the nitrogen cycle in the corn belt [J]. J Soil Water Conserv, 1991, 46:229-235
    131 Plaxton WC, Carswell MC. Metabolic aspects of the phosphate starvation response in plants. In HR Lemer, ed, Plant Responses to Environmental Stress: From Phytohonnones to Genome Reorganization. Marcel-Dekker, New York, NY,1999:350-370
    132 Podile A R, Dube H C. Plant growth-promoting activity of Bucillus subtilis AF1 [J]. Current Science, 1988, 57(4):301-306.
    133 Ragothama K. G. Phosphate acquisition [J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 665-693
    134 Richardson AE, Hadobas PA, Hayes JE Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate [J]. Plant J 2001, 25:1-10
    135 Runge-Metzger A Closing the cycle: obstacles to efficient P management for improved global security. In H Tiessen, ed, Phosphorus in the Global Environment. John Wiley and Sons Ltd, Chichester, UK, 1995:27-42
    136 Runge-Metzger A. Closing the cycle: obstacles to efficient P management for improved global food security. In Phosphorus in the Global Environment: Transfers, Cycles and Management, ed. H Tiessen, 1995:27-42
    137 Sarie, M. R. Progress Since the First International Sympo-sium : Genetic aspects of plant mineral nutrition', Beograd, 1982, andperspectives of future research [J]. Plant&Soil. 1987, 99:197-209
    138 Schactman DP, Reid RJ, Ayling SMPhosphorus uptake by plants: from soil to cel [J]. Plant Physiol, 1998,116:447-453
    139 Schippers B, Chanway L M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effectof cropping practices [J]. Appi Environ Microbiol,1987,25:339-358
    140 Sharpley A. N. 1995. Identifying sites vulnerable to phosphorus loss in agricultural runoff [J]. J. Environ. Qual, 24:947-51
    141 Shih C.Y, Kan C.H. Growth inhibition in suspension-cultured rice cells Phosphorus efficiency of plants I. External and internal P requirement and P uptake, 1996
    142 Singh JS, Singh R S. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanne [J]. Nature, 1989,338:499-500.
    143 Smith SE, Gianinazzi-Pearson V, Koide R, Cairney JWG Nutrient transport in mycorrhizae: structure, physiology, and consequences for efficiency of the symbiosis [J]. Plant Soil, 1994,159:103-113
    144 Snapp SS Phosphorus and sustainability of sub-Saharan African smallhoider farms. In JP Lynch, J Deikman, eds, Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic and Ecosystem Processes [J]. American Society Plant Physiology, Rockville, 1998, 71-83
    145 Takuya M. Turnover of microbial biomass nitrogen in rhizosphere soil of upland crops [J]. Plant and Soil, 1990,116:179-188
    146 Tang Z-C. Laboratory Manual for modern plant Physiology. Beijing[M]. Science Press, 1999:127
    147 Von Uexkull HR, Mutert E Global extent, development and economic impact of acid soils [J]. Plant

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700