用户名: 密码: 验证码:
磷对小麦产量和品质的影响及其生理基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2001-2002年在山东农业大学实验农场和泰安郊区角峪镇二虎村进行,选用具有9000kg/hm2产量潜力的中筋小麦品种鲁麦22和7500kg/hm2产量潜力的强筋小麦品种济南17,采用大田试验与盆栽试验相结合的方法,系统研究了两个小麦品种产量和品质形成的差异,磷以及氮磷互作对小麦产量和品质的影响及其生理基础,主要研究结果如下:
    1 不同小麦品种产量和品质形成的差异
    1.1 不同品种小麦旗叶碳氮代谢的差异
    鲁麦22品种旗叶碳代谢水平高于济南17,表现在:鲁麦22开花后旗叶叶绿素含量、光合速率和光合高值持续期以及旗叶蔗糖合成能力均显著高于济南17,从而在产量形成中源的供应能力方面高于济南17。
    济南17旗叶氮代谢水平高于鲁麦22,表现在:济南17旗叶氮同化关键酶硝酸还原酶和谷氨酰胺合成酶活性高,蛋白质降解主要酶内肽酶活性高,灌浆前期旗叶游离氨基酸积累多,而灌浆过程中向籽粒运转的也多,从而为籽粒蛋白质的合成提供较多的底物。
    1.2 不同品种小麦籽粒淀粉和蛋白质合成的差异
    济南17籽粒形成过程中,直链淀粉含量高于鲁麦22,但支链淀粉含量和淀粉总量两个品种之间无显著差异,济南17淀粉积累速率下降早于鲁麦22,且花21天之后低于鲁麦22,这也是其成熟时粒重显著低于鲁麦22的原因。
    两个品种籽粒蛋白质组分动态变化表现一致,但济南17球蛋白和醇溶蛋白以及谷蛋白大聚合体含量显著高于鲁麦22,成熟时蛋白质总含量显著高于鲁麦22。
    1.3 不同品种小麦产量和品质指标的差异
    鲁麦22每公顷穗数低于济南17,但穗粒数和千粒重显著高于济南17,籽粒产量、生物产量以及收获指数均高于济南17。
    济南17蛋白质含量、沉淀值以及湿面筋含量显著高于鲁麦22,表现在粉质仪指标上,为具有较高的面粉吸水率、较长的面团形成时间、面团稳定时间和断裂时间。
    2 不同磷素水平对小麦产量和品质的影响及其生理基础
    2.1 对产量和品质的影响
     随着施磷水平的提高,每公顷穗数、穗粒数、千粒重、生物产量和籽粒产量逐步提高,其中对于每公顷穗数的提高幅度最大,但千粒重以P1处理为最高。
    P1处理显著提高了两个小麦品种的沉淀值和湿面筋含量以及面粉吸水率,延长了
    
    鲁麦22的面团形成时间和稳定时间,延长了济南17的面团形成时间,但对于面团稳定时间无显著影响。进一步提高施磷量(P2处理),济南17的面团形成时间和稳定时间缩短,但对于鲁麦22品种的各项指标无显著影响。
    2.2 对淀粉组分和蛋白质组分及含量的影响
    磷素能够促进灌浆前期和中期籽粒中直链淀粉和支链淀粉的合成,表现为与淀粉合成有关关键酶的活性高于对照; P1处理降低了两个品种的淀粉总含量,而P2处理的淀粉总含量又开始回升,两个品种的P2处理淀粉直/支比值显著低于对照。
    P1处理促进了灌浆过程中蛋白质的合成与积累,成熟时蛋白质总含量显著高于对照,但P2处理蛋白质含量又有降低的趋势,表现为P2处理与对照之间差异不显著,两品种表现一致。
    磷对于不同小麦品种蛋白质各组分的影响不同。P1水平下提高了鲁麦22品种籽粒中清蛋白、醇溶蛋白和谷蛋白的含量,降低了球蛋白的含量;而P1水平下对济南17的蛋白质各组分影响较小,P2处理醇溶蛋白和谷蛋白有降低的趋势,对于改善加工品质不利。
    2.3 对籽粒形成过程中底物供应的影响
    施磷提高了灌浆前期籽粒中可溶性总糖和蔗糖的供应,并促进了灌浆过程中可溶性总糖和蔗糖向淀粉的转化,其中对于鲁麦22的促进作用大于对济南17的促进作用,两个磷处理之间无显著差异。
    施磷也提高了花后21天之前籽粒中的游离氨基酸含量,促进了灌浆期间游离氨基酸向蛋白质的转化,但P2处理的促进作用小于P1处理,两品种表现一致。
    2.4 对营养器官碳素代谢的影响
    施磷后,旗叶光合速率和叶绿素含量显著提高,花后28天之前磷酸蔗糖合成酶活性显著提高,腺苷二磷酸葡萄糖焦磷酸化酶活性显著降低,从而降低了旗叶中淀粉的积累,促进了蔗糖的积累与输出。
    2.5 对营养器官氮素代谢的影响
    施磷后提高了花后21天之前旗叶氮素同化有关酶硝酸还原酶、谷氨酰胺合成酶和谷氨酸脱氢酶的活性,施磷提高了花后28天之前蛋白质降解有关酶内肽酶、羧肽酶和氨肽酶的活性,提高了开花时旗叶中的游离氨基酸积累以及灌浆过程中向籽粒的运转;施磷提高了茎和叶鞘中可溶性蛋白质含量,提高了灌浆前期和中期茎和叶鞘的内肽酶、羧肽酶和氨肽酶活性,但两个品种不同酶的提高幅度表现不同。
    2.6 对植株对氮、磷的吸收、积累与分配的影响
    施磷后提高了植株对氮的吸收和积累,在P1水平下,提高了开花后营养器官氮素向籽粒的转运效率。两个磷处理均提高了营养器官氮素对籽粒氮素的贡献率,提高了氮素利用效率和氮收获指数。
    3 氮磷互作对小麦产量和品质的影响及其生理基础
    3.1 对产量和品质的影响
    与对照(不施氮、不施磷)相比,单施氮或者单施磷,以及氮磷配施,均显著提高
    
    了每公顷穗数、穗粒数、千粒重、籽粒产量和生物产量,其中氮磷配施的各项指标提高幅度最大,两个品种表现一致。
    单施磷提高了两个品种的淀粉总含量,单施氮则有降低淀粉总含量的趋势
The physiological basis of the effect of phosphorus on kernel yield and quality in wheat was studied using two different winter wheat cultivars, Lumai 22, which has 9000kg/hm2 yield potential and medium gluten potential, and Jinan 17, which has 7500kg/hm2 yield potential and strong gluten potential. The experimentation was carried out at the experimental farm of shandong agricultural university , and Erhu village, Jiaoyu Town of Taian city from 2001to 2002 using the method of field culture combined with pot culture. The main results as follows:
    1. The difference of yield and quality formation between two wheat cultivars
    1.1 The difference of carbon and nitrogen metabolism in flag leaf between two wheat
    cultivars
    Lumai 22 showed a higher carbon metabolism level in flag leaf than that in Jinan 17. Compared with Jinan 17, the content of chlorophyll, the photosynthesis rate and the sucrose synthesis ability were higher, the peak period of photosynthesis rate was longer in flag leaf after anthesis in Lumai 22, thus the source organs of Lumai 22 had higher producing photosynthesis ability than that of Jinan 17.
    Jinan 17 showed a higher nitrogen metabolism in flag leaf than that in Lumai 22. Compared with Lumai 22, the activities of nitrogen assimilation key enzymes NR and GS in flag leaf were higher after anthesis in Jinan 17, the EP activity in flag leaf which has a important role in protein degradation was higher after anthesis, the accumulation amount of free amino acid during the early kernel filling period, and the transport amount of free amino acid from flag leaf to kernel during the kernel filling period were much more in Jinan 17, thus provided more substrates for protein synthesis in kernel.
    1.2 The difference of starch and protein synthesis in kernel between two wheat cultivars
    The amylose content in Jinan 17 was higher that in Lumai 22 during kernel filling, but the amylopectin and total starch contents had no significance differences between the two wheat cultivars. The starch accumulation rate declined earlier in Jinan 17 than that in Lumai 22, and the starch accumulation rate was lower in Jinan 17 than that in Lumai 22 after 21 DAA, this were the reasons why the kernel weight was much lower in Jinan 17 than that in Lumai 22.
    The changes of protein content and its components contents was same in the two wheat cultivars, but the globulin content, the gliadin content and the GMP content were higher in Jinan 17 than that in Lumai 22 during kernel filling period, and the total protein content in Jinan 17 was significant higher than that in Lumai 22 in maturity.
    1.3 The difference of yield and quality index between the two wheat cultivars
    
    
    The spike number per hectare in Lumai 22 was lower than that in Jinan 17, but the kernel number per spike, the kernel weight, the kernel yield and biology yield, the harvesting index were higher in Lumai 22 than those in Jinan 17.
    Compared with Lumai 22, the protein content, the SDS sedimentation volume, and the wet gluten content were significantly higher in Jinan 17, so those reflected on the farinogran index, i.e. Jinan 17 had higher flour water absorption rate, longer dough developing time, longer dough stability time and dough breakdown time.
    2 Effect of different supplied phosphorus level on yield and quality along with physiological
    basis in wheat
    2.1 Effect of different supplied phosphorus level on yield and quality
    With the increasing of supplied phosphorus amount, the spike number per hectare, the kernel number per spike, the weight per 1000 kernels, the biology yield and kernel yield were improved, and among those index, the improving extent of phosphorus to the spike number per hectare was the most, and the P1 treatment gained the highest weight per 1000 kernels.
    Compared with the control, the P1 treatment significantly improved the SDS sedimentation volume, the wet gluten content and flour water absorption rate in the two wheat cultivars, significantly prolonged the dough developing time and stability time in Lumai 22,
引文
1. 蔡大同,茆泽圣,杨桂芬,费德保. 氮肥不同时期施用对优质小麦产量和加工品质的影响.
    土壤肥料,1994,(2):19~21
    2. 柴小清,印莉萍,刘祥林,韩秋娥,洪剑明,邱泽生. 不同浓度的NO3-和NH4+对小麦根系谷氨酰胺合成酶及其相关酶的影响. 植物学报,1996,38(10):803~808
    3. 陈锦强,李明启. 高等植物绿叶中的氮素代谢与光合作用的关系. 植物生理学通讯,1984(1):1~8
    4. 陈立松,刘星辉. 水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系. 植物生理学报,1999,25(1):49~56
    5. 程方民,蒋德安,吴平,石春海. 早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征. 作物学报,2001,27(2):201~206
    6. 戴秋杰,汪宗立. 水稻耐盐性的生理研究,III. 盐渍对体内核酸和核糖核酸酶活性的影响. 江苏农业学报,1988,4(1):31~36
    7. 丁洪,李生秀,郭庆元等. 酸性磷酸酶活性与大豆耐低磷能力的相关研究. 植物营养与肥料学报,1997,3(2):123~127
    8. 丁洪,郭庆元,李志玉,李生秀,李世清. 磷对大豆不同品种产量和品质的影响. 中国油料作
    
    物学报,1998,20(2):66~70
    9. 杜承林,祝斌,陈小琴等. 高产小麦对磷的需求与磷肥合理施用研究. 土壤,1998(5):239~242,266
    10. 杜金哲,李文雄,白祥和,胡尚连,刘锦红. 春小麦子粒蛋白质积累和产量形成规律及施氮的调节作用. 东北农业大学学报,1999,30(1):1~9
    11. 杜金哲,李文雄,胡尚连,刘锦红. 春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白质含量的关系. 作物学报,2001,27(2):253~260
    12. 段辉国. 亚精胺对小麦离体叶片衰老过程中核酸和核酸酶的影响. 四川师范学院学报(自然科学版),1999,20(3):230~233
    13. 段留生,何钟佩,韩碧文. 籽粒发育期小麦体内氨基酸组分及运输. 麦类作物学报 2000,20(2):17~22
    14. 范晓晖,刘芷宇. 土壤通报. 1992,23(5):238~24
    15. 方克旋,王澄. 小麦直链淀粉的测定及其含量对食用品质的影响. 中国粮油食品, 1985,(3):27~28
    16. 方先文,姜东,戴廷波,曹卫星. 不同品质类型小麦籽粒蛋白质、淀粉积累过程的基因型差异.麦类作物学报,2002,22(2)42~45
    17. 丰明乾,孙俊荣,郭蔼光. 小麦灌浆期旗叶蛋白质运转与籽粒蛋白质积累的关系. 陕西农业科学,1999(2):1~3
    18. 冯晴,徐朗莱,叶茂炳等. 小麦叶片衰老过程中3种保护酶的最适pH和温度变化. 植物生理学通讯,1999,35(1):8~10
    19. 高玲,丁德荣. 蛋白水解酶在叶细胞中的定位以及与Rubisco降解的关系. 莱阳农学院学报,1995,12(4):268~271
    20. 高玲,叶茂炳,张荣铣,徐朗莱. 小麦旗叶老化期间的内肽酶. 植物生理学报,1998,24(2):183~188
    21. 高玲,叶茂炳,徐朗莱,张荣铣. 小麦叶片老化期间内肽酶活力上升的影响因素. 中国农业科学,1999,32(3):102~104
    22. 高玲,江力,张荣铣. 小麦旗叶Rubisco周转与籽沥含氮量的关系. 植物生理学报,2001,27(2):119~122
    23. 关义新,林葆,凌碧莹. 光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响. 作物学报,2000,26(6):806~812
    24. 何照范编著. 粮油籽粒品质及其分析技术,1985,中国农业科学出版社,北京。
    25. 韩榕,王勋陵,岳明. He-Ne激光对小麦RNA及可溶性蛋白合成的影响. 山西师范大学学报(自然科学版),2001,15(3):56~59
    26. 胡承霖,范荣喜,姚孝友等. 小麦籽粒蛋白质含量动态变化特性及其与产量的关系.南京农业大学学报,1992,15(1):115~119
    27. 胡承霖,谢家琦,范荣喜. 综合栽培技术对小麦籽粒品质的调控作用. 安徽农业大学学报,1994,21(2):151~156
    28. 黄国存,田波. 高等植物中的谷氨酸脱氢酶及其生理作用. 植物学通报, 2001,18(4):
    396~401
    29. 黄勤妮,印莉萍,柴晓清,刘祥林,洪剑明,赵微平. 不同氮源对小麦幼苗谷氨酰胺合成酶的影响. 植物学报,1995,37(11):856~862
    30. 黄庆海,赖涛,吴强,李差苟,吴建华,赵美珍. 长期施肥对红壤性水稻土有机磷组分的影响.植物营养与肥料学报,2003,9(1):63~66
    31. 姜东,于振文,李永庚,余松烈. 施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积
    
    累的影响. 中国农业科学,2002,35(2):157~162
    32. 姜东,于振文,李永庚,余松烈. 高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化. 中国农业科学,2002,35(4):378~383
    33. 姜东,于振文,李永庚,韩红岩,余松烈. 高产冬小麦茎中果聚糖代谢及氮素水平的调控. 作物学报,2002,28(1):79~85
    34. 姜东,于振文,李永庚,余松烈. 施氮水平对鲁麦22籽粒淀粉合成的影响. 作物学报,2003,29(3):462~467
    35. 蒋纪芸. 硬粒小麦灌浆期间营养器官对籽粒蛋白质积累的影响. 麦类作物,1996(1):22~23
    36. 金善宝主编. 中国小麦学,1996,中国农业科学出版社,北京
    37. 李常健,林清华,张楚富. 高等植物中氨同化酶及其同工酶研究. 零陵师范高等专科学校学报,2000,21(3):20~22
    38. 李合生主编. 植物生理生化实验原理和技术,2000,高等教育出版社,北京
    39. 李金洪,李伯航. 矿质营养对玉米籽粒营养品质的影响. 玉米科学,1995,3(3):54~58
    40. 李科,卢向阳,彭丽莎. 饲料稻氮代谢特性研究. 湖南农业大学学报(自然科学版),2001,27(5):331~334
    41. 李韶山,潘瑞炽. 蓝光对水稻幼苗碳水化合物和蛋白质代谢的调节. 植物生理学报,1995,21(1):22~28
    42. 李孝良. 氮磷钾肥对小麦生长发育及品质的影响. 安徽农业技术师范学院学报,1998,12(4):12~14
    43. 李延,黄毅斌. 缺锌对水稻蛋白质合成的影响. 福建省农科院学报,1996,11(1):22~24
    44. 李永庚,蒋高明,杨景成. 温度对小麦碳氮代谢、产量和品质影响. 植物生态学报,2003,27(2)164~169
    45. 李玉京,李滨,李继云等. 低磷营养胁迫下小麦RNA酶与酸性磷酸酶活性的变化. 西北植物学报,1997,17(4):417~425
    46. 李玉京,刘建中,李滨,李继云,姚树江,李振声. 高等植物对磷饥饿胁迫的自我拯救. 生命科学研究,1998,2(4):244~252
    47. 金善宝. 中国小麦生态,科学出版社,1991,468~478.
    48. 荆奇,曹卫星,戴廷波. 小麦籽粒品质形成及其调控研究进展. 麦类作物,1999,19(4):46~50
    49. 梁建生,曹显祖,徐生等. 水稻籽粒库强度与其淀粉积累之间的关系. 作物学报,1994,20(6):685~691.
    50. 梁丽芝,薛勇彪. 高等植物的核糖核酸酶. 植物科学进展,李承森主编,高等教育出版社,北京,2001, p161~172
    51. 梁旭野,潘瑞炽. 不同水平磷对磷饥饿墨兰某些生化特性的影响. 热带亚热带植物学报,1994,2(2):65~70
    52. 梁银丽,陈培元. 土壤水分和氮磷营养对冬小麦根苗生长的效应. 作物学报,1996,22(4):476-481
    53. 粮食部谷物油脂化学研究所编译 .美国谷物化学审批方法(AACC方法) . 1983年第八版, 1985.
    54. 刘方,黄昌勇,何滕兵,钱晓刚,刘元生,罗海波. 长期施磷对黄壤旱地磷库变化及地表径流中磷浓度的影响. 应用生态学报,2003,14(2):196~200
    55. 刘国栋,李继云,李振声等. 植物高效利用土壤磷营养的化学机理. 植物营养与肥料学报,1995,1(3-4):72~78
    56. 刘国栋,李继云,李振声. 低磷胁迫下小麦根系反应的基因型差异. 植物营养与肥料学报,1996,2(3):212-218
    
    
    57. 刘恒烈主编 .生物化学, 1993, 江西高校出版社
    58. 刘慧,刘景福,刘武定. 不同磷营养油菜品种根系形态及生理特性差异研究. 植物营养与肥料学报,1999,5(1):40-45
    59. 刘开昌,胡昌浩,董树亭,王空军,李爱芹. 高油玉米需磷特性及磷素对籽粒营养品质的影响作物学报,2001,27(2):267~272
    60. 刘强,荣湘民,朱红梅,彭建伟,卢向阳,陈静彬. 不同水稻品种在不同栽培条件下氮代谢的差异. 湖南农业大学学报(自然科学版),2001,27(6):415~420
    61. 刘晓冰,R. K. Chopra,M. Maheshwari. 水分胁迫对小麦不同品种籽粒代谢的影响. 干旱地区农业研究,1994,12(1):92~96
    62. 刘运武. 磷对杂交水稻生长发育及其生理效应影响的研究. 土壤学报,1996,33(3):
    308~316
    63. 刘芷宇. 土壤,1992,24(2):97~101
    64. 刘尊英,郭天财,朱云集,王晨阳,王永华,康国章,田广须. 氮素供应对小麦子粒蛋白质组分及积累动态的影响. 河南农业大学学报,1999,33(4):317~320
    65. 马传喜,吴兆苏. 小麦胚乳蛋白质组分及高分子麦谷蛋白亚基与烘烤品质的关系. 作物学报,1993,19(6):562~567
    66. 梅传生,张远海,吴光南. 水稻叶片衰老过程中氨肽酶活性的变化. 植物生理学报,1987,13(1):58-63
    67. 米国华,汤利,张福锁. 两种熟相小麦籽粒建成期德氮素吸收与转运. 中国农业大学学报,1999,4(3):53~57
    68. 慕自新,张岁岐,杨晓青,梁宗锁. 氮磷亏缺对玉米根系水流导度的影响. 植物生理与分子生物学学报,2003,29(1):45~51
    69. 区沃恒,焦志勇,傅显华. 小麦的磷素营养. 中国农业科学,1978,(3):49~54
    70. 潘庆民,于振文,王月福. 小麦开花后旗叶中蔗糖合成与籽粒中蔗糖降解. 植物生理与分子生物学学报,2002,28(3):235~240
    71. 潘晓华,石庆华,郭进耀等. 无机磷对植物叶片光合作用的影响及其机理的研究进展. 植物营养与肥料学报,1997,3(3):201~207
    72. 潘晓华,李木英,曹黎明,刘水英. 水稻发育胚乳中淀粉的积累及淀粉合成的酶活性变化. 江西农业大学学报,1999,21(4):456~462
    73. 彭长连,林植芳,林桂珠. 磷素利用效率不同小麦的光合作用和水分利用效率. 作物学报,2000,26(5):543~548
    74. 彭诘松,郑志仁,刘涤等. 淀粉的生物合成及其关键酶. 植物生理学通讯,1997,33(4):297~303
    75. 任建宏. 水分胁迫下不同抗旱性小麦品种根部核酸代谢的差异.陕西农业科学,2001,(7):
    1~5
    76. 彭永欣,姜雪忠,郭文善,封超年,严六零. 小麦剑叶NR活性和籽粒营养品质关系的研究.
    小麦栽培生理,1992,159~164,东南大学出版社,南京
    77. 任贤,刘常青,马振军. 几种作物及品种DNA相对含量研究初报. 宁夏农林科技,1998,(5):1~3
    78. 上海植物生理学会编. 植物生理学试验手册,1985,上海科学技术出版社,上海
    79. 沈成国等 编著. 植物衰老生理与分子生物学,2001,中国农业出版社,北京
    80. 史国安,郭香凤,付国占等. 晚播小麦叶片衰老代谢和粒重变化的比较研究. 西北植物学报,1999,19(3):476~481
    81. 石孝均,毛知耘. 掺合肥料分离度对小麦产量和品质的影响. 西南农业大学学报,1995,17(5):447~450
    
    
    82. 宋克敏. 植物的磷营养:磷酸盐运转系统及调节. 植物学通报,1999,16(3):251~256
    83. 宋建民,田纪春,赵会杰. 小麦光合碳、氮代谢平衡调节酶研究进展. 麦类作物,1997,17(6):52~55,66
    84. 宋建民,田纪春,赵世杰. 植物光合碳和氮代谢之间的关系及其调节. 植物生理学通讯,1998,34(3):230~238.
    85. 宋松泉,苏卫珍,彭晓南. 杂交水稻离体叶片衰老与蛋白质代谢的关系. 中山大学学报论丛,1995,(1):20~23
    86. 苏佩,蒋纪芸. 小麦籽粒蛋白质积累规律的初步研究. 西北农业大学学报,1992,2093):
    59~63
    87. 孙国荣,朱鹏,刘文芳,肖翊华. 谷氨酰胺合成酶活性与水稻杂种优势预测. 武汉植物学研究,1994,12(2):149~153
    88. 孙海国,张福锁,杨军芳. 缺磷胁迫对小麦根细胞周期蛋白基因cylAt表达的影响. 植物生理学报,2000,26(5):441~445
    89. 孙海国,张福锁. 小麦根系生长对缺磷胁迫的反应. 植物学报,2000,42(9):913~919
    90. 孙辉,姚大年,李宝云. 普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系. 中国粮油学报,1998,13(6):13~16
    91. 孙云秀,王荣栋,柳霞. 不同氮磷配比对新疆春大麦产量和品质的影响,新疆农垦科技,2000,(4):28~29
    92. 汤日圣,梅传生,吴光南. 4PU-30延缓杂交水稻叶片衰老的生理基础. 中国水稻科学,1996,10(1):23~28
    93. 唐湘如,官春云. 作物产量和品质的碳氮及脂肪代谢调控的研究进展. 湖南农业大学学报,1997,23(1):93-103
    94. 唐湘如,余铁桥. 磷钾肥对饲用稻产量和蛋白质含量的影响及其机理研究. 中国农业科学 2002,35(4):372~377
    95. 田纪春 .优质小麦,1995, 山东科技出版社
    96. 田纪春,张忠义,梁作勤等. 高蛋白和低蛋白品种小麦品种氮素吸收和运转分配差异的研究.作物学报,1994,20(1):76~83
    97. 万美亮,邝焱华. 甘蔗耐低磷基因型的筛选及其部分生理特征的研究. 华南农业大学学报,1999,20(1):45~50
    98. 王凤宝,董立峰,张忠缓. 叶酸对玉米增产作用及抗早衰效应的研究. 中国农业科学,1998,30(6):66~71
    99. 王洪刚,姜丽君,张德水,孔令让,李斯深. 小麦叶片中硝酸还原酶活性、游离氨基酸和粗蛋白含量与籽粒蛋白质含量关系研究. 西北植物学报,1995,15(4):282~287
    100. 王姣爱,贾文兰.小麦品种与氮、磷、钾肥的综合效应研究.麦类作物,1999,19(6):53~55
    101. 王立秋. 冀西北春小麦高产优质高效栽培研究-氮磷肥对春小麦产量和品质的影响.干旱地区农业研究,1994,12(3):8-13
    102. 王立秋. 小麦品质生理研究进展. 国外农学-麦类作物,1996,(3):31~32
    103. 王宪泽,田纪春,张忠义. 不同品种小麦籽粒蛋白质及其组分积累规律的研究. 山东农业大学学报,1994,25(4):394~398
    104. 王宪泽,张玲,李菡. 小麦品质性状与面条煮熟品质的关系. 麦类作物,1997(17):17~19
    105. 王宪泽,李菡,张玲,孟凡国. 山东省推广小麦品种蛋白质和淀粉及其组分的聚类分析. 山东农业大学学报(自然科学版),2000,31(1):19~23
    106. 王旭东,于振文,王东. 钾对小麦茎和叶鞘碳水化合物含量及子粒淀粉积累的影响. 植物营养与肥料学报,2003,9(1):57~62
    
    
    107. 王旭东,于振文,王东. 钾对小麦旗叶蛋白质水解酶活性和籽粒品质的影响. 作物学报,2003,
     29(2):285~289
    108. 王旭东,于振文,王东. 钾对小麦旗叶蔗糖和籽粒淀粉积累的影响. 植物生态学报,2003,27(2):196~201
    109. 王旭清,王法宏. 栽培措施和环境条件对小麦籽粒品质的影响. 山东农业科学,1999(1):
    52~55
    110. 王勇. 小麦籽粒蛋白质及其组分的遗传研究进展. 山东农业大学,1998,29(2):243~248
    111. 夏培桢,王少仁. 氮磷肥对小麦、玉米籽粒氨基酸的影响. 土壤肥料,1995(2):9~13
    112. 王月福,于振文,李尚霞,余松烈. 氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响. 作物学报,2002,28(6):743~748
    113. 王月福,于振文,李尚霞,余松烈. 施氮量对小麦籽粒蛋白质组分含量及加工品质的影响. 中国农业科学,2002,35(9):1071~1078
    114. 王月福,于振文,李尚霞,余松烈. 土壤肥力和施氮量对小麦根系氮同化及子粒蛋白质含量的影响. 植物营养与肥料学报,2003,9(1):39~44
    115. 王震宇,米国华,张福锁. 小麦胚乳中淀粉和蛋白质沉积的生理学研究. 世界农业,1996(12)17~19
    116. 魏道智,宁书菊,高玲. 激素对小麦叶片中蛋白质水解酶活性的影响. 邯郸农业高等专科学校学报,2001,18(3):3~5
    117. 吴光南,刘宝仁,张金愉. 水稻叶片蛋白水解酶的某些理化特性及其与衰老的关系. 江苏农业学报,1985,1(1):1~10.
    118. 吴光南. 水稻叶片衰老过程中氨肽酶活性变化. 植物生理学报,1987,13(1);58~63
    119. 吴明才,肖昌珍,郑普英. 大豆磷素营养研究. 中国农业科学,1999,32(3):59~65
    120. 武雪萍,吴俊兰. 配方施肥对冬小麦生物学效应的影响. 土壤肥料,1998,(1):36~38
    121. 徐庆章. 小麦叶片酸性磷酸酯酶活性及缺磷对它的影响. 植物生理学通讯,1989,(6):20-23
    122. 夏叔芳,於新建,张振清. 叶片光合产物输出的抑制与淀粉和蔗糖的积累. 植物生理学报,1981,7:135~142
    123. 夏叔芳,於新建,张振清. 叶片光合产物输出的抑制与淀粉和蔗糖的积累. 植物生理学报,1981,7:135-142
    124. 谢瑞芝,董树亭,胡昌浩,王空军. 氮硫互作对玉米籽粒营养品质的影响. 中国农业科学,2003,36(3):263~268
    125. 谢祝捷,姜东,戴廷波,曹卫星. 植物的糖信号及其对碳氮代谢基因的调控. 植物生理学通讯,2002,38(4):399~405
    126. 严慧峻,刘继芳,张锐,魏由庆,高峻岭,许建新,马卫萍. 盐渍生态环境下肥料对小麦的光合性能和品质的影响. 土壤肥料,1996,(1):30~33
    127. 杨建昌,苏宝林,王志琴,郎有忠,朱庆森. 亚种间杂交稻籽粒灌浆特性及其生理的研究. 中国农业科学,1998,31(1):7~14
    128. 杨莉,郭蔼光,汪沛洪. 小麦返白系叶片核酸含量及核酸酶活性研究. 西北农业学报 2001,10(2):32~35
    129. 杨根海,张起刚,陈佑良等. 用15N示踪研究小麦品种.Ⅱ.后期施N肥对冬小麦品质及籽粒蛋白质组分的影响. 北京农业大学学报,1986, 12(4):393~399
    130. 姚大年,刘广田. 淀粉理化特性、遗传规律及小麦淀粉与品质的关系. 粮食与饲料工业,1997,2:36~38.
    131. 印莉萍,柴晓清,刘祥林,李欣,李司达,吴晓强,张承谦,赵微平. 叶绿体发育和光对小麦叶谷氨酰胺合成酶基因表达的影响. 植物学报,1994,36(8):597~602
    
    
    132. 印莉萍,刘祥林,林忠平. 植物谷氨酰胺合成酶基因以及基因表达. 生物工程进展,1995,15(2):36~41
    133. 余叔文主编. 植物生理与分子生物学. 1992,北京:科学出版社, pp99~112,pp113~122
    134. 於新建. 蔗糖合成酶、蔗糖磷酸合成酶活性的测定. 植物生理学实验手册,上海植物生理学会编.科学技术出版社,1985,148~150
    135. 袁新民,同延安,杨学云等. 施用磷肥对土壤NO3--N累积的影响. 植物营养与肥料学报,2000,6(4):397-403
    136. 翟丙年,李生秀. 水氮配合对冬小麦产量和品质的影响. 植物营养与肥料学报,2003,9(1):26~32
    137. 张保军,蒋纪芸. 小偃6号小麦籽粒蛋白质组分含量形成动态规律及其氮素调节效应的研究.麦类作物,1995,(5):47~49
    138. 张保军,蒋纪芸. 施氮时期对小麦不同种籽粒蛋白质品质的影响. 西北农业大学学报,1996,24(1):33~36
    139. 张保军,穆婉红,杨冬梅,许荣玲,蒋纪云. 不同基因型小麦籽粒蛋白质组分的施氮量调节.西北农业大学学报,2000,28(6):61~64
    140. 张春庆,李晴祺. 影响普通小麦加工馒头质量的主要品质性状的研究. 中国农业科学,1993,26(2):39~46
    141. 张惠叶,徐兆飞. 冬小麦灌浆期蛋白质积累动态研究. 麦类作物,1995,(1):47~49
    142. 张青,叶茂炳,徐朗莱等. 小麦老化叶片蛋白水解酶的某些生化特性的研究(简报). 植物生理学通讯,1997,33(5):336-338
    143. 张青,徐朗莱,陈文利,沈文飚,叶茂炳,张荣铣. 小麦旗叶老化期间蛋白水解酶活力的变化.南京农业大学学报,1999,22(3):87~90
    144. 张庆江,张立言,毕桓武. 普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系. 华北农学报,1996,11(3):57~62.
    145. 张士功,刘国栋,刘更另. 植物营养与作物抗旱性. 植物学通报,2001,18(1):64-69
    146. 张岁歧,山仑. 磷素营养对春小麦抗旱性的影响. 见汪德水主编:旱地农田肥水关系原理与调控技术,北京:中国农业科技出版社,1995,155-160
    147. 张岁歧,山仑,薛青武. 氮磷营养对小麦水分关系的影响. 植物营养与肥料学报,2000,6(2):147~151
    148. 张翔,朱洪勋,孙春河,崔转玲,轮作制下长期施肥对小麦籽粒品质的影响. 干旱地区农业研究,1997,15(4):26~29,65
    149. 张翔,朱洪勋,孙春河,张兴中. 有机与无机肥料配施对玉米籽粒品质和生产力的影响. 中国农学通报,1997,13(5):31~33
    150. 张雄,用TTC还原法测定小麦根系和花粉的活力及其应用. 植物生理学通讯,1982(3):
    48~50
    152. 张艳,何中虎,周桂英等. 基因型和环境对我国冬播麦区小麦品质性状的影响. 中国粮油学报,1999,14(5):1~5.
    153. 张振清,夏叔芳. 无机磷对叶片淀粉和蔗糖积累的影响. 植物生理学报,1982,8(4):
    385~391
    154. 张振清 .植物材料中可溶性糖的测定. 植物生理学实验手册.上海植物生理学会编 .上海科学技术出版社,1985,134~138.
    155. 张振清,夏叔芳. 无机磷对叶片淀粉和蔗糖积累的影响. 植物生理学报,1982,8(4):
    385~391
    156. 朱德群,朱遐玲,王雁. 影响冬小麦籽粒蛋白质的几个生理参数. 中国农业科学,1992,25(4):
    
    30~35
    157. 朱新产,赵文明,付曾光,白文钊. 豌豆种子发育过程中DNA、RNA含量的动态变化. 西北植物学报,1995,4(2):77~80
    158. 邹德乙,刘小虎,韩晓日,赵富杰. 长期定位施肥对作物籽实氨基酸含量影响. 沈阳农业大学学报,1997,28(2):120~124
    159. Ackerson R C. Phosphorus fertility and plant water relations. Plant Physiol, 1985,77:309~311
    160. Akira W., Hidemasa Imaseki. Changes in translatable mRNA in senescing wheat leaves. Plant Cell Physiol., 1982,23(3):489~497
    161. Amir J., Preiss J. Kinetic characterization of spinach leaf sucrose-phosphate synthase. Plant Physiol., 1982,69:1027~1030
    162. Anwaruzzaman, Shinichi Sawada, Hideaki Usuda, et al. Regulation of Ribulose 1,5-Bisphosphate carboxylase/oxygenase activation by inorganic phosphate through stimulating the binding of the activator CO2 to the activation sites. Plant Cell Physiol., 1995,36(3): 425~433
    163. Arnon D.N. Copper enzymes in isolated choroplast, polyphend oxidase in Beta vulgari. Plant Pysiol., 1949,24:1~5
    164. Bánziger M., Feil B., and Stamp P. Competition between nitrogen accumulation and grain growth for carbohydrates during grain filling of wheat. Crop Sci., 1994, 34:440~446
    165. Barrett-lennard EG et al. J Exp Bot., 1982, 33:682
    166. Berchtold A., Besson J.M. and Feller U. Effects of fertilization levels in two farming systerms on senescence and nutrient contents in potato leaves. Plant and Soil, 1993,154:81~88
    167. Bergmeyer H.U. Methods of enzymematic analysis. Third edition Volume III enzymes 1. Oxidoreductases. Ellen, Schmidt, F. W. glutamate dehydrogenase, 1982,216~227
    168. Bieleski R.L. Phosphate pools, phosphate transport, and phosphate availability. Ann. Rev. Plant Physiol., 1973,24:225~252
    169. Blank A., Thomas A.M. Three RNase in senescence and nonsenescence Wheat Leaves. Plant Physiol., 1991,97:1402~1408
    170. Bosse D., Kōck M. Influence of phosphate starvation on phosphohydrolases during development of tomato seedlings. Plant Cell and Enviroment, 1998,21:325~332
    171. Boyer C.D., Preiss J. Properties of citratestimulated starch synthesis catalyzed by starch synthase of developing maize kernels. Plant Physiol., 1979,64:1039~1042
    172. Bradford,M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal.Biochem., 1976,72:248~254
    173. Bromland G., Dardevet M. Diversity of grain protein and bread wheat quality,Ⅱ.correlation between high-molecular-weight subunit of glutenin and flour quality characteristics. J. Cereal Sci., 1985, (3):345~354
    174. Bushuk W. , Wrigley C.W. Glutenin in developing wheat grain. Cereal Chem., 1971,48: 448~455
    175. Champigny M.L. Regulation of photosynthetic carbon assimilation at the cellular level: A. Review Photosyn. Res., 1985,6:273~286
    176. Chelliah J., Marcel K., Pierre G., Jacques-Henry Weil. Variation in the Lelels of Chloroplast tRNAs and Aminoacyl-tRNA Synthetases in Senescing Leaves of Phoseolus vulgaris. Plant Physiol., 1990,92:136~140
    177. Clarkson D.T., Lüttge, V. Progress in Botany, 1991,52:72~76
    178. Collin Thomas, Yu Sun, Katie Naus, et al. Apyrase Function in Plant Phosphate Nutrion and mobilizes Phosphate from Extracelluar ATP. Plant Physiol., 1999,119:543~551
    
    
    179. Cox M.C., Qualset C.O., Rains D.W., Genetic variation for nitrogen assimilation and translocation in wheat.Ⅰ.Dry matter and nitrogen accumlation. Crop Sci., 1985(25):430-431
    180. Crafts-Brandner S.J., Salvucci M.E., Sims J.L., et al. Phosphorus nutrion influence on plant growth and nonstructural carbohydrate accumulation in Tobacco. Crop Sci., 1990,30:609~614
    181. Daniel P. Schachtman, Robert J., Reid S. M. Ayling, Phosphorus uptake by plant:from soil to cell. Plant Physiol., 1998,116:447~453
    182. Denyer K., Smith A.M. The purification and characterization of the two forms of soluble starch synthesis from developing pea embryos. Planta, 1992,1876:609~617
    183. Denyer K., et al. Soluble isoforms of starch synthase and starch branching enzyme also occurring within starch granules in developing pea embryos. Plant J., 1993,4:191~198
    184. Denyer K., et al. Identification and multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta, 1995,196:256~265
    185. Doenlert D.C.,et al. FEBS Lett., 1983, 153~293.
    186. Doenlert D.C., et al. Plant Physiol., 1983, 73:981~989
    187. Douglas C., et al. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol., 1988,86:1013~1019
    188. Doehlert D.C., Huber S.C. Regulation of spinach leaf sucrose phosphate synthetase by glucose-6-phosphate, in organic phosphate, and pH. Plant Physiol., 1983,73:989~994
    189. Duffus C.M. Starch synthesis and deposition in developing cereal endosperms. In Shewry PR, Stobart K(eds). Seeds storage compounds oxford; Science publications, pp:191~200,1993
    190. Evans L.T. The influence of irradiance before and after anthesis on grain yield and its components in microcrops of wheat grown in a constant daylength and temperature regime. Field Crops Res., 1978,1:9~19
    191. Evans J.R. Photosynthesis and nitrogen relationships in leaves of C3 plant. Oecologia,1989, 78:9~19.
    192. Evers A.D. The size distribution among starch granules in wheat endosperm. Staerke,. 1970,25:303~309
    193. Feller U. Nitrogen remobilization protein degradation during senescence. In: Abrol T.P.(eds). Nitrogen in higher plants. Somerset, Engl: Research Studies Press,1990:195~222
    194. Feller U., Fisher A. Nitrogen metabolism in senescence leaves. Crit Rev. in Plant Science, 1994,13(3):24~273
    195. Fiona M., Banks Simon P., Driscoll, Martin A.J., et al. Decrease in phosohoribulokinase activity by antisense RNA in trangenic tobacco, Relationship between photosythesi,growth, and allocation at different nitrogen levels, Plant Physiol, 1999,119:1125~1136
    196. Fischer R.A., Aguilar I., Laing D.R. Post-anthesis sink size in a high yielding, dwarf wheat: yield response to grain number. Aust. J. Agric. Res., 1977,28:165~175
    197. Fischer R.A., Hille R.D. Effect of environment and cultivar on source limitation to grain weight in wheat. Aust. J. Agri. Res., 1978,29:443~458
    198. Flrence Bénétrix Keen, Jean~Claude A. Changes in protein complexes of Durum Wheat in developing seed[J]. Crop Sci. 1994,34:462~468
    199. Forde B.G., Cullimore J.V. The molecular biology of glutamine synthetase in higher plants. In: Mifilin B. J. ed., Oxford Surveys of Plabt Molecular and Cell Biology. Vol 6. Oxford University Press, 1989,247~296
    200. Foyer C.H., Champigny M.L., Valandier M.H., et al. Partitioning of photosynthetic carbon: The role
    
    of nitrate activation of protein kinase. In sherry P, Halford R (eds).Proceeding of the phytochemical society of Europe. Oxford: Clarendon Press. 1996, 35~51
    201. Frith J.T., Dalling M.J. The role of peptide hydrolases in leaf senescence. In: Senescence in Plant, Thimann KV(eds),CRC Press, In: Boca Raton Florida:PP:118~130,1980
    202. Fredeen A.L., Rao I.M., Ferry N. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine Max, Plant Physiol., 1989,89:225~230
    203. Fredeen A.L., Rao I.M., Ferry N. Effect of phosphorus nutrition on photosynthesis in Glycine Max, L. Merr. Planta, 1990,181:399~405
    204. Furbank R.T., Foyer C.H., Walker D.A., Regulation of photosynthesis in isolated spinach chloroplast during orthophosphate limitation, Biochem, Biophys. Acta., 1987,894:552~561
    205. Gadi Schuster, Irena Lisitsky, and Peter Klaff. Polyadenylation and degradation of mRNA in the chloroplast. Plant Physiol., 1999,120:937~944
    206. Gauthier D.A., Turpin D.H. Interaction between inorganic phosphate(Pi)assimilation, photosynthesis and respiration in the Pi-limited green alga Selenastrum minutum. Plant Cell and Environment, 1997,20:12~24
    207. Ghosh H.P., Preiss J. The biosynthesis of starch in spinach chloroplasts. J. Biol.Chem., 1965, 240: 960~961
    208. Godstein A.H., Hunziker A.D. Plant Physiol., 1985,77:1013~1015
    209. Hayashi H., Chino M., Chemical composition of phloem sap from the upper most internode of the rice. Plant Cell Pysiol., 1990,31:247~251
    210. Hideaki Usuda, Kousuke Shimogawara. Phosphate deficiency in Maize. I. Leaf phosphate status, growth, photosynthesis and carbon partitioning, Plant Cell Physiol., 1991,32(4):497~504
    211. Hideaki Usuda, Kousuke Shimogawara. Phosphate deficiency in Maize. II. Enzyme activities. Plant Cell Physiol,1991,32:1313~1317
    212. Hideaki Usuda, Kousuke Shimogawara. Phosphate deficiency in Maize.III.Changes in enzyme activities during phosphate deprivation. Plant Physiol., 99:1680~1685
    213. Hideaki Usuda, Kousuke Shimogawara. Phosphate deficiency in Maize. IV. Changes in amounts of sucrose phosphate synthase during the course of phosphate deprivation. Plant Cell Physiol, 1993,34:767~770
    214. Hideaki Usuda. Phosphate deficiency in Maize. V. Mobilization of Nitrogen and phosphorus within shoots of Young plants and its relationship to senescence. Plant Cell Physiol, 1995,36(6):
    1041~1049
    215. Hideaki Usuda, Kousuke Shimogawara. Phosphate deficiency in Maize. VI. Changes in the Two-dimensional electrophoretic patterns of soluble protein from second leaf blades associated with induced senescence . Plant Cell Physiol,1995,36(6):1149~1155
    216. Huber S.C. Inter specific variation in activity and relation of leaf sucrose phosphate synthetase. Z. Pflanzenphysiol., 1981,102:443~450
    217. Huber S.C. Role of sucrose-phosphate synthetase in partion of carbon in leaves. Plant Physiol., 1983,71:818~821
    218. Hubers S.C., et al. In :Heagh R. L. et al . (eds), Regulation of Carbon Partitioning in hotosynthetic tissure, Waverley Press, Baltimore, pp199. 1985
    219. Huffaker R.C. Proteolytic activity during senescence of plants. New Phytol, 1990,116:199~231
    220. Hylton C., Smith A.M. The rb mutation of peas causes structural and regulatory changes in ADP-glucose pyrophosphorylase from developing embryos, Plant Physiol., 1992,99:1626~1634
    
    
    221. Iwona Ciereszko, Agata Zambrzycka, Anna Rychter. Sucrose hydrolysis in bean roots(Phaseolus vulgaaris L.)under phosphate deficiency. Plant Sci., 1998,133:139~144
    222. Iwona Ciereszko, Henrik Johansson, Vaughan Hurry, et al. Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta, 2001,212:598~605
    223. Irena Rajcan, Lianne M.Dwyer, Matthijs Tollenaar. Note on relationship between leaf soluble carbohydrate and chlophyll concentrations in maize during leaf senescence. Field Crops Reseach, 1999,63:13~17
    224. Irena Rajcan, Matthijs Tollenaar. Source:sink ratio and leaf senescence in maize:I. Dry matter accumulation and partition during grain filling. Field Crops Reseach,1999,60:245~255
    225. Irena Rajcan, Matthijs Tollenaar. Source:sink ratio and leaf senescence in maize:II. Nitrogen metabolism during grain filling. Field Crops Reseach,1999,60:255~265
    226. Jacob J., Lawlor D.W. Stomatal and mesophyll limitation of photosynthesis in phosphate deficient sunflower, maize, wheat plant. J.Exp. Bot., 1991,42:1003~1011
    227. Jenner C.F. Control of the accumulation of starch and protein in cereal grains. British Plant Growth Regulator Group,Monograph ,1985, 12:195~209
    228. Jenner C. F. Effects of exposure lf wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. I. Immediate responses. Aust. J. Plant Physiol., 1991,18:165~177
    229. Jenner C.F., Vgalde T.D., Aspinall D. The physiology of starch and protein deposition in the endosperm of wheat. Aust. J. Plant Physiol., 1991,18:211~216
    230. Jennifer D. M., Richard N. A., and Eva J. P. Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol., 1999,120:1015~1023
    231. Jonathan Lynch, André Lauchli, and Emanuel Epstein. Vegetative growth of the common bean in response to phosphorus Nutrition. Crop Sci., 1991,31:380~387
    232. Kamachi K., Yamaya T., Mae T., et al. A role for glutamine synthetase in the remobilization of leaf nitrogen during natural senescence in rice leaves. Plant Physiol., 1991,96;411~417
    233. Kaoru T.Y., Tomikichi Wada, Hiroshi Koyama, et al. Temporal and spatial patterns of accumulation of the transcript of Myo-Inositol-1-Phosphate synthase and phytin-containing particles during seed development in Rice. Plant Physiol., 1999,119:65~72
    234. Kawakami N., Watanabe A. Senescence specific increase in cytosolicglutamine synthetase its radish cotyledons. Plant Physiol., 1988,88:1430~1434
    235. Keeling P. L., Wood J. R., Tyson R.H., Bridges I. G. Starch biosynthesis in developing wheat grain:Evidence against the direction involvement of triosephosphates in the metabolism pathway. Plant Physiol., 1988,87:311~319
    236. Kiyomi Ono, Haruki Hashimoto and Sakae Katoh. Changes in the number and size of chloroplast during senescence of primary leaves of wheat grown under different conditions. Plant Cell Physiol.,1995,36(1):9~17
    237. Klecczkowski L. A., Villand P., Luthi E., et al. Insensitivity of barley endosperm ADP-glucose pyrophosphorylase to 3-phosphoglycerate and orthop-hosphate regulation. Plant Physiol., 1993,101:179~184
    238. Kousuke Shimogawara and Hideaki Usuda. Uptake of inorganic phosphate by suspension-cultured tobacco cells:kinetics and regulation by Pi starvation. Plant Cell Physiol.,1995,36(2):341~351
    239. L?uchli A., Bieleski R.L. eds, Encyclopedia of plant physiol., New Series, Springer Verlag, Vol.
    
    15A,1983, pp422~449
    240. Lauer M.J., Pallardy S.G., Blevirs D.G., et al. Whole leaf carbon exchange characteristics of phosphate deficient soybean, Plant Physiol., 1989,91:848~854
    241. Loescher W.H., Fellman J.K., Fox T.C., et al. Other carbohydrate as translocated carbon sources:acyclic polyols and photo synthesis carbon metablolism.In Health RL, Press J(eds),Regulation of Carbon Partition in photosynthetic Tissue. Waverly Press, Maryland,1985.pp:309-332
    242. Lorenzo Lamattina, Rafael P.L., Ruben D.C. Protein metabolism in senescing wheat leaves. Plant Physiol., 1985, 77:587~590
    243. Machler F., Nosberger J. Influence of inorganic phosphate on photosynthesis of wheat chloroplast: II Ribulose bisphosphate carbonxylase activity. J. Exp. Bot., 1984,35:488~494
    244. Macdonald P.W., Strobel G.A. Adenosine diphosphate-glucose pyrophos-phorylase control of starch accumulation in rust-infected wheat leaves. Plant Physiol., 1970,46:126~135
    245. Macleod L.C., Duffus C.M. Reduced starch content and sucrose synthase activity in developing endosperm of barley plants grown at evevated temperatures. Aust. J. Plant Physiol., 1988, 15:367~375
    246. Mary E. Rumpho, Mary Ellen Wessinger and Gerald Edwards. Influence of organic-phosphate on 3-phosphoglycerate dependent O2 evolution in C3 and C4 mesophyll chloroplasts. Plant Physiol., 1987,28(5):805~813
    247. Maynmi Nagano and Hiroshi Ashihara. Long-term phosohate starvation and respiratory metabolism in suspension-cultured catharanthus roseus cells. Plant Cell Physiol., 1993,34(8): 1219~1228
    248. Macleod L.C., Duffus C.M., Reduced starch content and sucrose synthase activity in developing endosperm of barley plants grown at evevated temperatures. Aust. J. Plant Physiol., 1988, 15:367~375.
    249. Masanori Yamazaki, Akira Watanabe and Tatsuo Sugiyama. Nitrogen-regulated accumulation of mRNA and protein for photosynthetic carbon assimilation enzymes in Maize. Plant Cell Physiol.,1986,27(3):443~452
    250. Nomura T., Nakayama N., Murate T.et al. Biosyntheisis of starch in chloroplasts. Plant Physiol. 1967,6:273~286
    251. Naoto Kawakami, Akira Watanabe. Senescence-specific increase in cytosolic glutamine synthetase and its mRNA in radish cotyledons. Plant Cell Physiol.,1988,88:1430~1434
    252. O,neal D., Joy K.W. Glutamine synthetase of pea leaves-divalent cation effects, substrate specificity, and other properties. Plant Physiol, 1974,54:773~779
    253. Patterson T.G., Brun W.A. Influence of sink removal in the senescence pattern of wheat. Crop Sci., 1980,20:19~23
    254. Paul M.J., Stitt M. Effects of nitrogen and phosphorus deficiencies on levels of carbohydrates, respiratory enzymes and metabolites in seedling of tobacco and their response to exogenous sucrose. Plant Cell and Environment, 1993,78:1047~1057
    255. Peeters K.M., Vanlaere A. J. Amimo acid metabolism associated with N-mobilization from the flag leaf of wheat(Triticum aestivum L.)during grain development, Plant Cell and Environment, 1994,17:131~141
    256. Peter, K.J.J., Henze M. Water Res., 1993, 27(4):617~624
    257. Pollock C.F. Changes in the activity of sucrose synthetase and sucrose phosphate synthetase developing leaves of lolium temulentum. Plant Sci Lett., 1976,7:27~31
    
    
    258. Preiss J. Biosynthosis of starch and its regulation, In the Biochemistry of Plants, Vol. 14, Preiss J(eds), Academic Press, New York, pp:371~423,1988
    259. Rao I.M., Abadia J., Terry N., The role of orthophosphate in the regulation of photosynthesis in vivo., In Progress in photosynthesis., 1987,325~327
    260. Rao I.M., Arthur L.Fredeen,and Norman Terry. Leaf phosphate status, photosynthesis, and carbon partitioningin sugar beet. Plant Physiol.,1990, 92:29~36
    261. Rao I.M., Arulanantham A.R., Terry N. Leaf phosphate status, photosynthesis and carbon partition in sugar beet. II. Diurnal changes in sugar phosphates, adenylates, and nicotinamide nucleotides. Plant Physiol., 1989,90:820~826
    262. Rawson H.M., Evans L.T. The contribution of stem reserve to grain development in a range of wheat cultivars of different weight. Aust. J. Agr. Res., 1971,22:851~863
    263. Raymond J., Richie, Donelle A. Trautman and A.W.D.Larkum. Phosphate uptake in the cyanobacterium Synechococcus R-2 PCC 7942. Plant Physiol.,1997,38(11):1232~1241
    264. Reeves C.D., Krishnan H.B., Okita T.W. Gene expression in developing wheat endosperm. Plant Physiol., 1986,82:34~40
    265. Shanahan J.F., Donnelly K.J., Smith D.H., and Smika D.E. Shoot developmental properties associated with grain yield in winter wheat. Crop Sci.,1985,25:770~775
    266. Shigetoshi Suzuki, Hitoshi Nakamoto, Maurice S. B. Ku., et al. Influence of leaf age on photosynthesis,enzyme activity, and metabolite levels in wheat. Plant Physiol.,1987,84:1244~1248
    267. Smith C. J. , Whitfield D.N. Nitrogen accumulation and redistribution of late applied of 15N-labelled fertilizer by wheat. Field Crop Res., 1990, (24):211~228
    268. Stephen H. Burleigh, Maria J. Harrison. The down-regulation of Mt4-Like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol., 1999,119:241~248
    269. Steven J., Crafts-Brander M.E., Salvucci J.L. Sims, et al. Phosphorus nutrion influence on plant growth and nonstructural carbohydrate accumulation in Tobacco. Crop Sci., 1990,30:609~604
    270. Steven J. Crafts-Brander. Phosphorus nutrition influence on leaf senescence in soybean. Plant Physiol. , 1992,98:1128~1132
    271. Steven J. Crafts-Brandner. Phosphorus nutrition influence on starch and sucrose accumulation, and activities of ADP-Glucose Pyrophosphorylase and Sucrose-Phosphate Synthase during the grain filling period in Soybean. Plant Physiol., 1992,98:1133~1138
    272. Stewart G. R., Shatilov V.R., Turndull M.H., et al. Evidence that glutamate dehydryogennase plays a role in the oxidative deamination of glutamate in seedlings of Zeamays. Aust J Plant Physiol, 1995,22:805~809
    273. Streit L., Feller U. Changing activities of nitrogen-assimilation enzymes during growth and senescence of drarf beans (phaseolus vulgaris.L.,).Z. Pflanzenphysiol., 1982,108:273~281
    274. Suzuki S., Nakamoto H., Maurice S.B.Ku., et al. Influence of leaf age on photosynthesis,enzyme activity, and metabolite levels in wheat. Plant Physiol.,1987,84:1244~1248
    275. Tadahiko Mae, Howard Thomas, Alan P. Gay, et al. Leaf development in Lolium temulentum: Photosynthesis and Photosynthetic proteins in leaves senescing under different irradiances. Plant Cell Physiol, 1993,34(3): 391~399
    276. Takashi Otani, Noriharu Ae. Phosphorus(P)Uptake Mechanisms of Crops Grown in Soils with Low P Status. I. Screening of Crops for Efficient P Uptake. Soil. Sci. Plant Nutr. ,1996,42(1):155~163
    277. T.Nakamura,M.Yamamoki. Decrease of Waxy Protein in two common wheat cultivars with low
    
    amylose content. Plant Breeding.1993,111:99~105
    278. Tetsuro Mimura, Zu-Hua Yin, Eva Wirth, et al. Phosphate transport and apoplastic phosphate homeostasis in barley leaves, Plant Cell Physiol.,1992, 33(5):563~568
    279. Tetsuro Mimura. Homeostasis and transport of inorganic phosphate in plants. Plant Cell Physiol.,1995,36(1):1~7
    280. Thomas W.R., et al. Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiol. 1983, 73:428~433
    281. Toshio.Sano. Yoshiki Kuraya, Shin-ichi Aminoet. Phosphate as a limiting factor for the cell division of tobacco BY-2 Cells. Plant Cell Physiol.1999,40(1)1~8
    282. Tsai-Mei C.Y., Salamini F., Nelson O. E. Enzymes of carbohydrate metabolism in the development endosperm of maize, Plant Physiol., 1970, 46:299~306
    283. Van V., et al. J. Bacteriol, 1993, 175(1):200~206
    284. Vernon A.W. Ribulose Bisphosphate Carboxylase and Protenlytic activity in wheat leafs from anthesis through semescence [J] . Plant Phusiol. 1979, 64:884~887
    285. Wardlaw I. F., Willenbrink J. Carbonhydrate storage and mobilization by the culm of wheat between heading and grain maturity: The relation to sucrose synthase and sucrose-phosphate synthase. Aust. J. Plant Physiol., 1994,21:251~271
    286. Weber H., et al., Cell-type specific, coordinate expression of two ADP-glucose pyrophophorylase genes in relation to starch biosynthesis during seed development in Vicia faba. Planta, 1995,195:352~361
    287. Weegels P. I., Pijpekamp, A. M., Van de Graveland A., et al. Depolymerisation and repolymerisation of wheat glutein during macropolymer content and quality parameters, J. Cereal Sci., 1996,23:103~114
    288. Yamaya T., Oaks A. Distribution of two isoforms of glutamine synthetase in bundle sheath mesophyll cell of corn leaves. Physiol. Plant, 1988,72:23~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700