用户名: 密码: 验证码:
基于转录组学的黄瓜单性结实分子调控机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus L.)在世界各地广泛种植,市场需求巨大。部分的黄瓜品种具有单性结实特性,能在不受粉的情况下正常结实,对减少人工授粉、提高黄瓜产量与品质具有重要意义。许多设施黄瓜栽培品种缺乏单性结实性状,普遍存在坐果受环境影响大、单性结实能力弱等问题,极大地影响了黄瓜的产量和品质,因此选育黄瓜单性结实品种是目前重要的育种目标之一,研究单性结实机理也成为黄瓜分子育种的热点之一,发掘单性结实基因资源,对改良黄瓜栽培品种有着重要的意义。本文主要以黄瓜单性结实品种‘EC1’和非单性结实品种‘8419s-1’为试材,借助RNA-Seq技术发掘与单性结实果实坐果相关的基因,利用基因瞬时表达方法对部分的黄瓜单性结实候选基因进行快速的初步功能验证。另外,选取RNA-Seq分析中表达差异明显的两个生长素受体基因CsTIR1和CsAFB2进行深入研究,明确其在单性结实果实发育中的时空表达变化,分析外源激素对其表达水平的影响,并对CsTIR1基因进行转番茄(Micro Tom)功能验证。最后,本论文还分析了细胞分裂相关基因(CYCD)在单性结实果实发育早期的表达趋势。以上研究取得了以下主要结果:
     1.利用RNA-Seq技术发掘黄瓜单性结实调控基因及其部分候选基因的功能分析
     选择开花后2天的幼果,借助RNA-Seq技术,通过比较分析,共获得1339个与单性结实坐果相关的基因,其中759个基因在单性结实坐果中是上调的,580个基因出现下调。在这些差异表达的基因中,与激素相关的基因表达模式支持植物激素是坐果关键因子的观点。选取了其中的12个差异表达基因在单性结实和非单性结实果实发育的早期进行表达水平分析,结果证明所选的基因在单性结实果实中起到重要的调控作用。
     利用农杆菌介导的瞬时表达方法对10个与生长素、细胞分裂素和赤霉素信号转导相关的,且在黄瓜单性结实果实中特异表达的基因进行功能分析。结果表明,在外源基因导入黄瓜10天后,黄瓜子房,出现以下几种状态:果实膨大、子房停止发育但不萎蔫、“化瓜”。利用GUS assay进行检测,结果显示,除在萎蔫的子房中GUS染色是阴性以外,其他两种状态的子房GUS染色均是阳性,因此推测在蔫子房中外源基因没有瞬时表达。所选的基因当中,与生长素信号相关的两个基因Csa6M125240.1和Csa3M597350.1在黄瓜单性结实形成中起到了负调控作用;细胞分裂素合成相关基因Csa5M166390.1和赤霉素合成相关基因Csa3M015360.1的正向瞬时表达都可以导致黄瓜单性结实的形成。上述研究表明,所选的10个激素信号基因能够诱导单性结实的形成。
     2. CsTIR1/AFB基因的表达分析及功能研究
     选择RNA-Seq中差异明显的两个生长素受体基因进行深入研究。结果表明,黄瓜单性结实相关的CsTIR1和CsAFB2分别在黄瓜的子叶和子房中表达量最高,在黄瓜果实发育早期其表达量随着坐果完成逐渐下降,而在没有成功坐果的子房中其表达量随着子房萎蔫程度的加深逐渐上升。NAA处理后6h,CsTIR1和CsAFB2基因的表达量缓慢上调,在处理后9h开始下调,而且随着NAA浓度从5到50μM的增加,CsTIR1和CsAFB2的表达量基本是一致的。CsTIR1在6-BA处理后3h表达量达到最大值,然后开始下降。与CsTIR1不同,CsAFB2的表达量在6h后才开始下降。另外,在GA3的处理下CsTIR1和CsAFB2的反应也不一致,叶片经GA3处理后6h CsTIR1基因表达量达到最大值,而CsAFB2基因在处理后3h到9h时间范围内的表达量几乎没有变化。ABA和乙烯利处理后,这两个基因的表达量都上调。以上结果揭示CsTIR1和CsAFB2在黄瓜果实发育的过程中起到重要的调节作用,其下调表达可能是成功坐果的关键;CsTIR1和CsAFB2基因对外源激素都有反应,虽然是同一个家族但其反应程度和时间不同;ABA和乙烯后其上调表达说明这两个基因可能参与植物的逆境过程。
     为了研究黄瓜CsTIR1基因的功能,以番茄的子叶为外质体,对黄瓜的CsTIR1基因进行功能验证。结果表明:转超表达CsTIR1基因的番茄出现单性结实的现象,同时转基因番茄表现出植株矮化特点。研究表明黄瓜CsTIR1基因在单性结实形成过程中起到重要的调控作用。
     3.黄瓜果实发育调控基因CsCYCDs的克隆与表达分析
     从RNA-Seq数据分析中,获得关于细胞分裂的D型细胞周期蛋白家族基因(CYCD),为研究单性结实果实发育早期的细胞分裂情况,分析了CYCD家族基因在果实发育早期的表达特征。在果实发育早期,CsCYCDs的表达趋势表明天然单性结实果实与授粉果实细胞分裂主要发生在开花后第4天。另外,大部分CYCD基因在天然单性结实果实中的表达模式与授粉果实的一样,但是不同于诱导的单性结实。以上结果表明CYCD基因家族在天然单性结实果实发育早期起着重要的调控作用,使得单性结实的子房不依赖于授粉便可以进行果实发育所必须的细胞分裂。
     综上所述,黄瓜单性结实果实发育是一个复杂的分子调控过程。本研究发掘了黄瓜单性结实的候选基因,并对其中的部分基因进行功能验证,明确了一些基因在单性结实果实发育过程中的分子调控机理。这为黄瓜单性结实分子调控机制的后续研究奠定了基础。
Cucumber (Cucumis sativus L.) is an important vegetable crops widely cultivated around the world, plays an important role in the production and consumption. Due to the low-temperature, low light and high humidity and other factors in the protected cultivation result in poor pollination and fertilization, resulting in abnormal fruit development, thus affecting the economic efficiency of agriculture. Parthenocarpy is an important trait and one of the main breeding objectives in protected cultivation for cucumber. China has rich parthenocarpic cucumber germplasm resources, but many facilities cultivars of cucumber are lack of the parthenocarpic trait, the fruit development affected by the environment, which greatly affected the production and quality of cucumber. Thus, the study on cucumber parthenocarpy, and exploring genes related with parthenocarpy has an important significance for improving cucumber cultivars. In this paper, the genes related with cucumber parthenocarpy were found by the RNA-Seq technology with the cucumber parthenocarpic variety'EC1'and non-parthenocarpic variety'8419s-1'as test materials. Then gene transient expression method was used for rapid functional verification about the part candidate genes of cucumber parthenocarpy. Based on the differentially expressed genes involved in cucumber parthenocarpic fruit development from the analyses of RNA-Seq, two auxin receptor genes CsTIR1and CsAFB2were chosen for the analyses of expressional level in different cucumber organs, and their response to exogenous hormones were studied. In addition, the CsTIR1were over-expressed in tomato for functional verification. The temporal and spatial expression expressional patterns of CYCD genes were also studied for understanding of cell division in the early stage of cucumber parthenocarpic fruit. The main results are as following:
     1. Using RNA-Seq technology to explore the molecular mechanism of cucumber parthenocarpic fruit set and the preliminary function of genes related with parthenocarpy
     In present study, RNA-Seq technique was used to collect the transcriptome data of cucumber fruits2days after anthesis for screening of parthenocarpy genes. Differentially expressed genes (DEGs) were analyzed in both parthenocarpic and pollinated cucumber fruits contrasting with abortive fruits. Trough comparative analyses, a total of1339genes associated with parthenocarpic fruit development were obtained, including759genes up-regulated and580down-regulated. Expression patterns of phytohormone related DEGS supported that phytohormones are key factors for fruit setting. Also selected12of them involved in fruit development process were analyses in early developmental parthenocarpic fruit, and the results indicated that the selected genes play an important regulatory role in parthenocarpic fruit development.
     The transient expression of gene in plant tissues is a very good method for preliminary research of gene function. In the present study, we used the method of Agrobacterium-mediated transient expression to analysis cucumber parthenocarpic fruit-specific expression of gene function. The results showed that the exogenous gene introduction after10days, Cucumber ovary appeared the following states:expansion fruit, the stopped development ovaries but not wilt and wilt ovaries. GUS assay results in wilting ovary did not carry exogenous gene of Agrobacterium infection to cucumber ovary tissue, so the exogenous genes were not been transformed in ovary tissue. Studies have shown that the selected10genes to stimulate parthenocarpic fruit and this technology can also be used for the function analysis of cucumber fruit characters genes.
     2. Expression level and function analyses of auxin receptor genes in cucumber parthenocarpic fruit development
     In our study, CsTIRl and CsAFB2were isolated from RNA-Seq analysis, it were highly expressed in ovaries and leaves and their transcript levels decreased in parthenocarpic and pollinated fruits, but continuously up-regulated in non-parthenocarpic and unpollinated fruits, indicating that down-regulation of CsTIRl and CsAFB2may be necessary for cucumber fruit set and development. The transcript levels of CsTIRl and CsAFB2were significantly induced in leaves by NAA,6-BA, GA3, ABA, and ethephon. The expression levels were up-regulated by ABA and ethephon. These results suggest that CsTIRl and CsAFB2may be involved in abiotic stress response. Thus, CsTIRl and CsAFB2may be important regulators during cucumber fruit development.
     Auxin receptor TIR1plays an important role in regulating the growth and development of plants. In order to study the function of the cucumber CsTIR1, it was transformed into tomato by Agrobacterium-mediated transformation. The results showed that the transgenic tomato lines overexpressing CsTIR1exhibit parthenocaarpy and dwarf. This proves that the CsTIR1gene may be a key regulator in parthenocarpic fruit development.
     3. Genome-wide identification of D-type cyclins gene family from cucumber and analysis of their expression patterns in fruit development
     Cell division plays an essential role in early fruit development. Plant D-type cyclins (CYCDs) are important regulators in the cell division. However, the knowledge regarding their involvement in early developmental stage of cucumber fruit remains limited. To address this, the cucumber CYCD family genes and their structural characteristics were identified, and then their expressional patterns in early fruit development were analyzed from the anthesis day (0d) to8days after anthesis (8d). The result showed that the cucumber genome contains13different CYCD genes which have been named according to identity percentages of the corresponding orthologs in Arabidopsis and poplar (Populus trichocarpd). The genomic organization of each subgroup cucumber CYCD showed the structure similar to their orthologs in Arabidopsis and poplar. The expression levels of cucumber CYCD genes were investigated in early stage of fruit development under different treatments, including:natural parthenocarpic, pollination, induced parthenocarpic with CPPU treatment. The highest expression level of most of CYCDs appeared at4DAA in natural parthenocarpic and pollinated fruit. Moreover, the expression patterns of most CYCD genes in natural parthenocarpic fruit were nearly coincident with in pollinated fruit, but different from induced parthenocarpic fruit. Collectively, these results will provide molecular insights into the CYCDs which are contributing to the formation of cucumber parthenocarpic fruit.
引文
Abel S, Oeller PW, Theologis. A Early auxin-induced genes encode short-lived nuclear proteins [J]. Proceedings of the National Academy of Sciences,1994,91 (1):326-330
    Abel S, Theologis A. Early genes and auxin action [J]. Plant Physiology,1996,111 (1):9-17
    Alabadi D, Aguero MS, Perez-Amador MA et al. Arginase, arginine decarboxylase, ornithine decarboxylase, and polyamines in tomato ovaries (changes in unpollinated ovaries and parthenocarpic fruits induced by auxin or gibberellin) [J]. Plant Physiology,1996,112 (3):1237-1244
    Alabadi D, Carbonell J. Expression of ornithine decarboxylase is transiently increased by pollination,2, 4-dichlorophenoxyacetic acid, and gibberellic acid in tomato ovaries [J]. Plant Physiology,1998, 118(1):323-328
    Alba R, Payton P, Fei Z et al. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development [J]. The Plant Cell Online,2005,17 (11):2954-2965
    Ando K, Carr K, Grumet R. Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development [J]. BMC Genomics,2012,13 (1):518-534
    Arnaud N, Laufs P Plant Development:Brassinosteroids Go Out of Bounds [J]. Current Biology,2013, 23 (4):152-154
    Ashton N, Grimsley N, Cove D. Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants [J]. Planta,1979,144 (5):427-435
    Audic S, Claverie JM. The significance of digital gene expression profiles [J]. Genome Research,1997, 7 (10):986-995
    Bottcher C, Keyzers RA, Boss PK et al. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening [J]. Journal of Experimental Botany,2010,61 (13):3615-3625
    Balbi V, Lomax TL. Regulation of Early Tomato Fruit Development by the Diageotropica Gene [J]. Plant Physiology,2003,131 (1):186-197
    Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell,2004,116 (2):281-297
    Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency [J]. Annals of Statistics,2001,29 (4):1165-1188
    Beyer Jr E, Quebedeaux B. Parthenocarpy in cucumber:mechanism of action of auxin transort inhibitors [J]. Journal American Society for Horticultural Science,1974,99 (5):385-390
    Bohner J, Bangerth F. Effects of fruit set sequence and defoliation on cell number, cell size and hormone levels of tomato fruits(Lycopersicon esculentum Mill.) within a truss [J]. Plant Growth Regulation, 1988,7(3):141-155
    Bohner J, Hedden P, Bora-Haber E et al. Identification and quantitation of gibberellins in fruits of Lycopersicon esculentum, and their relationship to fruit size in L. esculentum and L. pimpinellfolium [J]. Physiologia Plantarum,1988,73 (3):348-353
    Boniotti MB, Gutierrez C. A cell-cycle-regulated kinase activity phosphorylates plant retinoblastoma protein and contains, in Arabidopsis, a CDKA/cyclin D complex [J]. The Plant Journal,2001,28 (3):341-350
    Boonkorkaew P, Hikosaka S, Sugiyama N. Effect of pollination on cell division, cell enlargement, and endogenous hormones in fruit development in a gynoecious cucumber [J]. Scientia Horticulturae, 2008,116(1):1-7
    Brady SM, Sarkar SF, Bonetta D et al. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis [J]. The Plant Journal,2003,34 (1):67-75
    Bryant J, Francis D. The plant cell cycle [J]. Annals of Botany,2011,107 (7):1063-1063
    Buendia-Monreal M, Renter! a-Canett I, Guerrero-Andrade O et al. The family of maize D-type cyclins: genomic organization, phylogeny and expression patterns [J]. Physiologia Plantarum,2011,143 (3):297-308
    Cantliffe D. Parthenocarpy in the cucumber induced by some plant growth-regulating chemicals [J]. Canadian Journal of Plant Science,1972,52 (5):781-785
    Carmi N, Salts Y, Dedicova B et al. Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary [J]. Planta,2003,217 (5):726-735
    Carrera E, Ruiz-Rivero O, Peres LEP et al. Characterization of the procera Tomato Mutant Shows Novel Functions of the SIDELLA Protein in the Control of Flower Morphology, Cell Division and Expansion, and the Auxin-Signaling Pathway during Fruit-Set and Development. Plant Physiology, 2012,160(3):1581-1596
    Chen W, Lu L. Endogenous hormones in relation to embryo development in litchi. In:I International Symposium on Litchi and Longan 558,2000.247-250
    Chono M, Nemoto K, Yamane H et al. Characterization of a protein kinase gene responsive to auxin and gibberellin in cucumber hypocotyls [J]. Plant and Cell Physiology,1998,39 (9):958-967
    Choi JJ, Klosterman SJ, Hadwiger LAA. promoter from pea gene DRR206 is suitable to regulate an elicitor-coding gene and develop disease resistance [J]. Phytopathology,2004,94 (6):651-660
    Clark SE, Jacobsen SE, Levin JZ et al. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis [J]. Development,1996,122 (5):1567-1575
    Cloonan N, Forrest AR, Kolle G et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing [J]. Nature Methods,2008,5 (7):613-619
    Clouse SD, Sasse JM. Brassinosteroids:essential regulators of plant growth and development [J]. Annual Review of Plant Biology,1998,49 (1):427-451
    Cockcroft CE, den Boer BGW, Healy JMS et al. Cyclin D control of growth rate in plants [J]. Nature, 2000,405 (6786):575-579
    Cohen E, Arad SM, Heimer YM et al. Participation of ornithine decarboxylase in early stages of tomato fruit development [J]. Plant Physiology,1982,70 (2):540-543
    Collins C, Dewitte W, Murray JAH. D-type cyclins control cell division and developmental rate during Arabidopsis seed development [J]. Journal of Experimental Botany,2012,63 (10):3571-3586
    Cong B, Liu J, Tanksley SD. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations [J]. Proceedings of the National Academy of Sciences,2002,99 (21):13606-13611
    Coombe B. The development of fleshy fruits [J]. Annual Review of Plant Physiology,1976,27 (1):207-228
    Costa V, Angelini C, De Feis I et al. Uncovering the complexity of transcriptomes with RNA-Seq [J]. J Biomed Biotechnol,2010,853-916
    De Jong M, Mariani C, Vriezen WH. The role of auxin and gibberellin in tomato fruit set [J]. Journal of Experimental Botany,2009a,60 (5):1523-1532
    De Jong M, Wolters-Arts M, Feron R et al. The Solanum lycopersicum auxin response factor 7 (SIARF7) regulates auxin signaling during tomato fruit set and development [J]. The Plant Journal,2009b,57 (1):160-170
    De Veylder L, de Almeida Engler J, Burssens S et al. A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation [J]. Planta,1999,208 (4):453-462
    Dewitte W, Riou-Khamlichi C, Scofield S et al. Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3 [J]. The Plant Cell Online,2003, 15 (1):79-92
    Dewitte W, Scofield S, Alcasabas AA et al. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses [J]. Proceedings of the National Academy of Sciences,2007,104 (36):14537-14542
    Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor [J]. Nature,2005a, 435 (7041):441-445
    Dharmasiri N, Dharmasiri S, Jones AM et al. Auxin action in a cell-free system [J]. Current Biology, 2003,13 (16):1418-1422
    Dharmasiri N, Dharmasiri S, Weijers D et al. Plant development is regulated by a family of auxin receptor F box proteins [J]. Developmental Cell,2005b,9 (1):109-119
    Dharmasiri N, Estelle M. Auxin signaling and regulated protein degradation [J]. Trends in plant science, 2004,9 (6):302-308
    Dhaubhadel S, Chaudhary S, Dobinson KF et al. Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings [J]. Plant Molecular Biology,1999,40 (2):333-342
    Dowd C, Wilson IW, McFadden H. Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum [J]. Molecular Plant-microbe Interactions,2004,17 (6):654-667
    Feng C, Chen M, Xu C et al. Transcriptomic analysis of Chinese bayberry (Myrica rubrd) fruit development and ripening using RNA-Seq [J]. BMC Genomics,2012,13 (1):19-34
    Feng X-M, You C-X, Qiao Y et al. Ectopic overexpression of Arabidopsis AtmiR393a gene changes auxin sensitivity and enhances salt resistance in tobacco [J]. Acta Physiol Plant,2010,32 (5):997-1003
    Fos M, Nuez F, Garcia-Martinez JL. The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries [J]. Plant Physiology,2000a,122 (2):471-480
    Fos M, Proano K, Alabadi D et al. Polyamine Metabolism Is Altered in Unpollinated Parthenocarpic pat-2 Tomato Ovaries [J]. Plant Physiology,2003,131 (1):359-366
    Fos M, Proano K, Nuez F et al. Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato [J]. Physiologia Plantarum,2001,111 (4):545-550
    Francis D, Sorrell DA. The interface between the cell cycle and plant growth regulators:a mini review [J]. Plant Growth Regulation,2001,33 (1):1-12
    Fu F, Mao W, Shi K et al. Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber [J]. Plant Biology,2010,12 (1):98-107
    Fu FQ, Mao WH, Shi K et al. A role of brassinosteroids in early fruit development in cucumber [J]. Journal of Experimental Botany,2008,59 (9):2299-2308
    Gagne JM, Downes BP, Shiu S-H et al. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis [J]. Proceedings of the National Academy of Sciences, 2002,99(17):11519-11524
    Gao P, Bai X, Yang L et al. osa-MIR393:a salinity-and alkaline stress-related microRNA gene [J]. Molecular Biology Reports,2011,38 (1):237-242
    Garcia M, Asins M, Carbonell E. QTL analysis of yield and seed number in Citrus. Theoretical and Applied Genetics,2000,101 (3):487-493
    Garcia-Martinez J, Sponsel V, Gaskin P. Gibberellins in developing fruits of Pisum sativum cv. Alaska: studies on their role in pod growth and seed development [J]. Planta,1987,170 (1):130-137
    Gillaspy G, Ben-David H, Gruissem W. Fruits:a developmental perspective [J]. The Plant Cell,1993,5 (10):1439-1451
    Goetz M, Hooper LC, Johnson SD et al. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato [J]. Plant Physiology,2007,145 (2):351-366
    Goetz M, Vivian-Smith A, Johnson SD et al. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis [J]. The Plant Cell Online,2006,18 (8):1873-1886
    Gorguet B, Eggink PM, Ocana J et al. Mapping and characterization of novel parthenocarpy QTLs in tomato. Theoretical and Applied Genetics,2008,116 (6):755-767
    Gou J, Strauss SH, Tsai CJ et al. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones [J]. The Plant Cell Online,2010,22 (3):623-639
    Gray WM, Del Pozo JC, Walker L et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana [J]. Genes & Development,1999,13 (13):1678-1691
    Gudesblat GE, Betti C, Russinova E. Brassinosteroids tailor stomatal production to different environments [J]. Trends in Plant Science,2012,17 (12):685-687
    Guilfoyle T, Hagen G, Ulmasov T et al. How does auxin turn on genes? [J]. Plant Physiology,1998,118 (2):341-347
    Gustafson FG Inducement of fruit development by growth-promoting chemicals [J]. Proceedings of the National Academy of Sciences,1936,22 (11):628
    Gustafson FG Auxin distribution in fruits and its significance in fruit development [J]. American Journal of Botany,1939a,26::189-194
    Gustafson FG The cause of natural parthenocarpy [J]. American Journal of Botany,1939b,26:135-138
    Gustafson FG Parthenocarpy:natural and artificial [J]. The Botanical Review,1942,8 (9):599-654
    Haas BJ, Zody MC. Advancing RNA-Seq analysis [J]. Nat Biotechnol,2010,28 (5):421-423
    Hamann T, Benkova E, Baurle I et al. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning [J]. Genes & Development,2002, 16(13):1610-1615
    Helliwell CA, Sullivan JA, Mould RM et al. A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway [J]. The Plant Journal,2001,28 (2):201-208
    Hoffmann T, Kalinowski G, Schwab W. RNAi-induced silencing of gene expression in strawberry fruit (Fragaria×ananassa) by agroinfiltration:a rapid assay for gene function analysis [J]. The Plant Journal,2006,48 (5):818-826
    Homan DN. Auxin transport in the physiology of fruit development [J]. Plant Physiology,1964,39 (6):982
    Hooper SD, Bork P. Medusa:a simple tool for interaction graph analysis [J]. Bioinformatics,2005,21 (24):4432-4433
    Howard A, Pelc S. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage [J]. Heredity,1953,6 (26):1-273
    Hu Y, Bao F, Li J. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis [J]. The Plant Journal,2008,24 (5):693-701
    Huang S, Li R, Zhang Z et al. The genome of the cucumber, Cucumis sativus L [J]. Nature genetics, 2009,41 (12):1275-1281
    Huang W-L, Lee C-H, Chen Y-R. Levels of endogenous abscisic acid and indole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress [J]. Plant Cell, Tissue and Organ Culture,2012,108 (2):257-263
    Iglesias MJ, Terrile MC, Bartoli CG et al. Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis [J]. Plant Molecular Biology,2010,74 (3):215-222
    Iglesias MJ, Terrile MC, Casalongue CA. Auxin and salicylic acid signalings counteract the regulation of adaptive responses to stress [J]. Plant Signaling & Behavior,2011,6 (3):452-454
    Jacobsen SE, Olszewski NE. Gibberellins regulate the abundance of RNAs with sequence similarity to proteinase inhibitors, dioxygenases and dehydrogenases [J]. Planta,1996,198 (1):78-86
    Jain M, Khurana JP. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice [J]. FEBS Journal,2009,276 (11):3148-3162
    Jain S, Kumar D, Jain M et al. Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR 10) gene from peanut(Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco [J]. Plant Cell, Tissue and Organ Culture,2012,109 (1):19-31
    Jia H-F, Chai Y-M, Li C-L et al. Abscisic acid plays an important role in the regulation of strawberry fruit ripening [J]. Plant Physiology,2011,157(1):188-199
    Joh LD, Wroblewski T, Ewing NN et al. High-level transient expression of recombinant protein in lettuce [J]. Biotechnology and Bioengineering,2005,91 (7):861-871
    Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA [J]. Molecular Cell,2004,14 (6):787-799
    Kapila J, De Rycke R, Van Montagu M et al. Agrobacterium mediated transient gene expression system for intact leaves [J]. Plant Science,1997,122 (1):101-108
    Kataoka K, Uemachi A, Yazawa S. Fruit growth and pseudoembryo development affected by uniconazole, an inhibitor of gibberellin biosynthesis, and auxin-induced parthenocarpic tomato fruits [J]. Scientia Horticulturae,2003,98 (1):9-16
    Kepinski S, Leyser O. Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex [J]. Proceedings of the National Academy of Sciences,2004,101 (33):12381
    Kepinski S, Leyser O. The Arabidopsis F-box protein TTR1 is an auxin receptor [J]. Nature,2005,435 (7041):446-451
    Khripach V, Zhabinskii V, de Groot A. Twenty years of brassinosteroids:steroidal plant hormones warrant better crops for the XXI century [J]. Annals of Botany,2000,86 (3):441-447
    Kim IS, Okubo H, Fujieda K. Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.) [J]. Scientia Horticulturae,1992,52(1-2):1-8
    Kim KH, Kang YJ, Kim DH et al. RNA-Seq Analysis of a Soybean Near-Isogenic Line Carrying Bacterial Leaf Pustule-Resistant and-Susceptible Alleles [J]. DNA Research,2011,18 (6):483-497
    Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif [J]. Current Opinion in Structural Biology,2001,11 (6):725-732
    Kono A, Umeda-Hara C, Adachi S et al. The Arabidopsis D-type cyclin CYCD4 controls cell division in the stomatal lineage of the hypocotyl epidermis [J]. The Plant Cell Online,2007,19 (4):1265-1277
    Koroleva OA, Tomlinson M, Parinyapong P et al. CycDl, a putative G1 cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 cells by enhancing both G1/S entry and progression through S and G2 phases [J]. The Plant Cell Online,2004,16 (9):2364-2379
    Krishna P. Brassinosteroid-mediated stress responses [J]. Journal of Plant Growth Regulation,2003,22 (4):289-297
    Kvarnheden A, Yao JL, Zhan X et al. Isolation of three distinct CycD3 genes expressed during fruit development in tomato [J]. Journal of Experimental Botany,2000,51 (352):1789-1797
    Lewis DH, Burge GK, Hopping ME et al. Cytokinins and fruit development in the kiwifruit (Actinidia deliciosa). II. Effects of reduced pollination and CPPU application [J]. Physiologia Plantarum,2006, 98(1):187-195
    Leyser O. Dynamic integration of auxin transport and signalling [J]. Current Biology,2006,16 (11):424-433
    Li R, Yu C, Li Y et al. SOAP2:an improved ultrafast tool for short read alignment [J]. Bioinformatics, 2009,25(15):1966-1967
    Li Y, Yu J-Q, Ye Q-J et al. Expression of CycD3 is transiently increased by pollination and N-(2-chloro-4-pyridyl)-N'-phenylurea in ovaries of Lagenaria leucantha [J]. Journal of Experimental Botany,2003,54 (385):1245-1251
    Li Z, Zhang Z, Yan P et al. RNA-Seq improves annotation of protein-coding genes in the cucumber genome [J]. BMC Genomics,2011,12 (1):540
    Lister R, O'Malley RC, Tonti-Filippini J et al. Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis [J]. Cell,2008,133 (3):523-536
    Liu Q, Zhu A, Chai L et al. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development [J]. Journal of Experimental Botany,2009,60 (3):801-813
    Lu T, Lu G, Fan D et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq [J]. Genome Research,2010,20 (9):1238-1249
    Mapelli S, Frova C, Torti G et al. Relationship between set, development and activities of growth regulators in tomato fruits [J]. Plant and Cell Physiology,1978,19 (7):1281-1288
    Marillonnet S, Thoeringer C, Kandzia R et al. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants [J]. Nature Biotechnology, 2005,23 (6):718-723
    Marioni JC, Mason CE, Mane SM et al. RNA-seq:an assessment of technical reproducibility and comparison with gene expression arrays [J]. Genome Research,2008,18 (9):1509-1517
    Marti C, Orzaez D, Ellul P et al. Silencing of DELLA induces facultative parthenocarpy in tomato fruits [J]. The Plant Journal,2007,52 (5):865-876
    Meijer M, Murray JAH. Cell cycle controls and the development of plant form [J]. Current Opinion in Plant Biology,2001,4 (1):44-49
    Menges M, Pavesi G, Morandini P et al. Genomic organization and evolutionary conservation of plant D-type cyclins [J]. Plant Physiology,2007,145 (4):1558-1576
    Meshcherov E, Juldasheva L. Parthenocarpy in cucumber [J]. Trudy-po-Prikladnoi-Botanike-Genetiki-I-Selektsii,1974,51:204-213
    Mironov V, De Veylder L, Van Montagu M et al. Cyclin-dependent kinases and cell division in plants-the nexus [J]. The Plant Cell Online,1999,11 (4):509-521
    Mitchell J, Mandava N, Worley J et al. Brassins-a new family of plant hormones from rape pollen [J]. Nature,1970,225 (5237):1065-1066
    Miyatake K, Saito T, Negoro S et al. Development of selective markers linked to a major QTL for parthenocarpy in eggplant (Solanum melongena L.). Theoretical and Applied Genetics,2012,124 (8):1403-1413
    Montoya T, Nomura T, Yokota T et al. Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development [J]. The Plant Journal,2005,42 (2):262-269
    Mortazavi A, Williams BA, McCue K et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nature methods,2008,5 (7):621-628
    Muday GK, Lomax TL, Rayle DL. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica [J]. Planta,1995,195 (4):548-553
    Nagalakshmi U, Wang Z, Waern K et al. The transcriptional landscape of the yeast genome defined by RNA sequencing [J]. Science,2008,320 (5881):1344-1349
    Nakagami H, Kawamura K, Sugisaka K et al. Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco [J]. The Plant Cell Online,2002,14 (8):1847-1857
    Nakazawa M, Yabe N, Ichikawa T et al. DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length [J]. The Plant Journal,2001,25 (2):213-221
    Nebenfuhr A, White T, Lomax TL. The diageotropica mutation alters auxin induction of a subset of the Aux/IAA gene family in tomato [J]. Plant Molecular Biology,2000,44 (1):73-84
    Nelson DR, Schuler MA, Paquette SM et al. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot [J]. Plant Physiology, 2004,135 (2):756-772
    Ngo P, Ozga JA, Reinecke DM. Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp [J]. Plant Molecular Biology,2002,49 (5):439-448
    Nitsch J. Plant hormones in the development of fruits [J]. Quarterly Review of Biology,1952:33-57
    Nomura T, Ueno M, Yamada Y et al. Roles of brassinosteroids and related mRNAs in pea seed growth and germination [J]. Plant Physiology,2007,143 (4):1680-1688
    O'Donnell PJ, Schmelz EA, Moussatche P et al. Susceptible to intolerance-a range of hormonal actions in a susceptible Arabidopsis pathogen response [J]. The Plant Journal,2003,33 (2):245-257
    Olimpieri I, Siligato F, Caccia R et al. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta,2007,226 (4):877-888
    O'Neill DP, Ross JJ. Auxin regulation of the gibberellin pathway in pea [J]. Plant Physiology,2002,130 (4):1974-1982
    Oeller PW, Theologis A. Induction kinetics of the nuclear proteins encoded by the early indoleacetic acid-inducible genes, PsIAA4/5 and PsIAA6, in pea (Pisum sativum L.) [J]. The Plant Journal,2002, 7(1):37-48
    Orzaez D, Mirabel S, Wieland WH et al. Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit [J]. Plant Physiology,2006,140 (1):3-11
    Pandolfini T, Molesini B, Spena A. Molecular dissection of the role of auxin in fruit initiation [J]. Trends in Plant Science,2007,12 (8):327-329
    Patton EE, Willems AR, Tyers M. Combinatorial control in ubiquitin-dependent proteolysis:don't Skp the F-box hypothesis [J]. Trends in Genetics:TIG,1998,14 (6):236-243
    Pereto J, Beltran J, Garcia-Martinez J. The source of gibberellins in the parthenocarpic development of ovaries on topped pea plants [J]. Planta,1988,175 (4):493-499
    Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases [J]. Nature Reviews Molecular Cell Biology,2005,6 (1):9-20
    Pharis RP, King RW. Gibberellins and reproductive development in seed plants. Annual Review of Plant Physiology,1985,36 (1):517-568
    Pines J. Cyclins and cyclin-dependent kinases:a biochemical view [J]. Biochemical Journal,1995,308 (Pt3):697-711
    Quebedeaux B, BEYER E. Chemically-induced parthenocarpy cucumber by a new inhibitor of auxin transport [J]. HortScience,1972,7:474-476
    Rebers M, Kaneta T, Kawaide H et al. Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato [J]. The Plant Journal,1999,17 (3):241-250
    Reed JW Roles and activities of Aux/IAA proteins in Arabidopsis [J]. Trends in Plant Science,2001,6 (9):420-425
    Ren Z, Li Z, Miao Q et al. The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis [J]. Journal of Experimental Botany,2011,62 (8):2815-2826
    Rice MS, Lomax TL. The auxin-resistant diageotropica mutant of tomato responds to gravity via an auxin-mediated pathway [J]. Planta,2000,210 (6):906-913
    Richard H, Schulz MH, Sultan M et al. Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments [J]. Nucleic Acids Res,2010,38 (10):112-127
    Riou-Khamlichi C, Huntley R, Jacqmard A et al. Cytokinin activation of Arabidopsis cell division through a D-type cyclin [J]. Science,1999,283 (5407):1541-1544
    Robinson R, Cantliffe D, Shannon S. Morphactin-induced parthenocarpy in the cucumber [J]. Science (New York, NY),1971,171 (3977):1251-1252
    Ross JJ, O'Neill DP, Wolbang CM et al. Auxin-gibberellin interactions and their role in plant growth [J]. Journal of Plant Growth Regulation,2001,20 (4):336-353
    Sakamoto T, Sakakibara H, Kojima M et al. Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice [J]. Plant Physiology,2006,142 (1):54-62
    Santamaria ME, Rodriguez R, Canal MJ et al. Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy [J]. Annals of Botany,2011, 108:485-498
    Santos-Rosa M, Poutaraud A, Merdinoglu D et al. Development of a transient expression system in grapevine via agro-infiltration [J]. Plant Cell Reports,2008,27 (6):1053-1063
    Serrani JC, Carrera E, Ruiz-Rivero O et al. Inhibition of auxin transport from the ovary or from the apical shoot induces parthenocarpic fruit-set in tomato mediated by gibberellins [J]. Plant Physiology,2010,153 (2):851-862
    Serrani JC, Fos M, Atares A et al. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv Micro-Tom of tomato [J]. Journal of Plant Growth Regulation,2007,26 (3):211-221
    Serrani JC, Ruiz-Rivero O, Fos M et al. Auxin-induced fruit-set in tomato is mediated in part by gibberellins [J]. The Plant Journal,2008,56 (6):922-934
    Shen C, Bai Y, Wang S et al. Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress [J]. FEBS Journal,2010,277 (14):2954-2969
    Shimada Y, Goda H, Nakamura A et al. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis [J]. Plant Physiology,2003,131 (1):287-297
    Si-Ammour A, Windels D, Arn-Bouldoires E et al. miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves [J]. Plant Physiology,2011,157 (2):683-691
    Sjut V, Bangerth F. Induced parthenocarpy-a way of changing the levels of endogenous hormones in tomato fruits(Lycopersicon esculentum Mill.) 1. Extractable hormones [J]. Plant Growth Regulation,1982,1 (4):243-251
    Sjut V, Bangerth F. Effect of pollination or treatment with growth regulators on levels of extractable hormones in tomato ovaries and young fruits [J]. Physiologia Plantarum,2006,53 (1):76-78
    Sohi HH, Jourabchi E, Khodabandeh M. Transient expression of human growth hormone in potato (Solanum tuberosum), tobacco (Nicotiana tobacum) and lettuce (Lactuca sativa) leaves by agroinfiltration [J]. Iranian Journal of Biotechnology,2005,3 (2):109-113
    Sorrell DA, Combettes B, Chaubet-Gigot N et al. Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells [J]. Plant Physiology,1999,119 (1):343-352
    Sozzani R, Cui H, Moreno-Risueno M et al. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth [J]. Nature,2010,466 (7302):128-132
    Steber CM, McCourt P. A role for brassinosteroids in germination in Arabidopsis [J]. Plant Physiology, 2001,125 (2):763-769
    Strong W. Greenhouse cucumber breeding. In:Proc. Amer. Soc. Hort. Sci,1921. pp 271-273
    Sun L, Sun Y, Zhang M et al. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato [J]. Plant Physiology, 2012,158(1):283-298
    Sun Z, Lower R, Staub J. Analysis of generation means and components of variance for parthenocarpy in cucumber (Cucumis sativus L.). Plant Breeding,2006,125 (3):277-280
    Symons GM, Davies C, Shavrukov Y et al. Grapes on steroids. Brassinosteroids are involved in grape berry ripening [J]. Science Signalling,2006,140 (1):150-158
    Szechtman A, Salts Y, Carmi N et al. Seedless fruit setting in response to NAM treatment of transgenic tomato expressing the iaaH gene specifically in the ovary [J]. Acta Horticulturae,1997:597-598
    Takase T, Nakazawa M, Ishikawa A et al. ydkl-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation [J]. The Plant Journal,2004,37 (4):471-483
    Takase T, Nakazawa M, Ishikawa A et al. DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red light-specific hypocotyl elongation [J]. Plant and Cell Physiology,2003,44 (10):1071-1080
    Takeno K, Ise H, Minowa H et al. Fruit growth induced by benzyladenine in Cucumis sativus L.: Influence of benzyladenine on cell division, cell enlargement and indole-3-acetic acid content [J]. Journal of the Japanese Society for Horticultural Science,1992,60 (4):915-920
    Talon M, Zacarias L, Primo-Millo E. Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins [J]. Plant Physiology,1992,99 (4):1575-1581
    Tan X, Calderon-Villalobos LIA, Sharon M et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase [J]. Nature,2007,446 (7136):640-645
    Testa G, Caccia R, Tilesi F et al. Sequencing and characterization of tomato genes putatively involved in fruit set and early development [J]. Sexual Plant Reproduction,2002,14 (5):269-277
    Tiwari SB, Wang XJ, Hagen G et al. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin [J]. The Plant Cell Online,2001,13 (12):2809-2822
    Uemukai K, Iwakawa H, Kosugi S et al. Transcriptional activation of tobacco E2F is repressed by co-transfection with the retinoblastoma-related protein:cyclin D expression overcomes this repressor activity [J]. Plant Molecular Biology,2005,57 (1):83-100
    Ulmasov T, Murfett J, Hagen G et al. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements [J]. The Plant Cell Online,1997,9 (11):1963-1971
    Valero D, Martmez-Romero D, Serrano M. The role of polyamines in the improvement of the shelf life of fruit [J]. Trends in Food Science & Technology,2002,13 (6):228-234
    Van den Heuvel K, Van Esch R, Barendse G et al. Isolation and molecular characterization of gibberellin-regulated H1 and H2B histone cDNAs in the leaf of the gibberellin-deficient tomato [J]. Plant Molecular Biology,1999,39 (5):883-890
    Vandepoele K, Raes J, De Veylder L et al. Genome-wide analysis of core cell cycle genes in Arabidopsis [J]. The Plant Cell Online,2002,14 (4):903-916
    Vert G, Chory J. Downstream nuclear events in brassinosteroid signalling [J]. Nature,2006,441 (7089):96-100
    Vidya Vardhini B, Rao S. Acceleration of ripening of tomato pericarp discs by brassinosteroids [J]. Phytochemistry,2002,61 (7):843-847
    Vivian-Smith A, Koltunow AM. Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis. Plant Physiology,1999,121 (2):437-452
    Voinnet O, Pinto YM, Baulcombe DC. Suppression of gene silencing:a general strategy used by diverse DNA and RNA viruses of plants [J]. Proceedings of the National Academy of Sciences,1999,96 (24):14147-14152
    Vriezen WH, Feron R, Maretto F et al. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set [J]. New Phytologist,2008,177(1):60-76
    Walters DR. Polyamines and plant disease [J]. Phytochemistry,2003,64 (1):97-107
    Wang H, Jones B, Li Z et al. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis [J]. The Plant Cell Online,2005,17 (10):2676
    Wang H, Schauer N, Usadel B et al. Regulatory features underlying pollination-dependent and-independent tomato fruit set revealed by transcript and primary metabolite profiling [J]. The Plant Cell Online,2009a,21 (5):1428
    Wang L, Feng Z, Wang X et al. DEGseq:an R package for identifying differentially expressed genes from RNA-seq data [J]. Bioinformatics,2010a,26 (1):136-138
    Wang L, Xi Y, Yu J et al. A statistical method for the detection of alternative splicing using RNA-seq [J]. PLoS One,2010b,5 (1):e8529
    Wang S, Bai Y, Shen C et al. Auxin-related gene families in abiotic stress response in Sorghum bicolor [J]. Functional & Integrative Genomics,2010c,10 (4):533-546
    Wang Y, Wang Y, Ji K et al. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation [J]. Plant Physiology and Biochemistry,2013,64:70-79
    Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics [J]. Nature Reviews Genetics,2009b,10 (1):57-63
    Weijers D, Friml J. SnapShot:auxin signaling and transport [J]. Cell,2009,136 (6):1172-1172
    Wilhelm BT, Marguerat S, Goodhead I et al. Defining transcribed regions using RNA-seq [J]. Nature Protocols,2010,5 (2):255-266
    Wilhelm BT, Marguerat S, Watt S et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution [J]. Nature,2008,453 (7199):1239-1243
    Yang C, Deng W, Tang N et al. Overexpression of ZmAFB2, the maize homologue of AFB2 gene, enhances salt tolerance in transgenic tobacco [J]. Plant Cell, Tissue and Organ Culture,2013,112 (2):171-179
    Yang Y, Li R, Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves [J]. The Plant Journal,2000,22 (6):543-551
    Yin Z, Malinowski R, Ziolkowska A et al. The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber [J]. Cellular & Molecular Biology Letters,2006,11 (2):279-290
    Yu JQ, Huang LF, Hu WH et al. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus [J]. Journal of Experimental Botany,2004,55 (399):1135-1143
    Yu K, Xu Q, Da X et al. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis) [J]. BMC Genomics,2012,13 (1):10-23
    Zenoni S, Ferrarini A, Giacomelli E et al. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq [J]. Plant Physiology,2010,152 (4):1787-1795
    Zhang Y, Zhu J, Dai H. Characterization of transcriptional differences between columnar and standard apple trees using RNA-Seq [J]. Plant Molecular Biology Reporter,2012:1-9
    Zhao Y. The role of local biosynthesis of auxin and cytokinin in plant development [J]. Current Opinion in Plant Biology,2008,11 (1):16-22
    Zobel R. Genetics of the diageotropica mutant in the tomato [J]. Journal of Heredity,1972,63 (2):94-97
    曹碚生,陈学好.黄瓜单性结果形态及生理机制的研究[J].江苏农学院学报,1998,19(1):77-82
    陈学好,曹碚生.黄瓜单性结实研究概况[J].中国蔬菜,1994,3:56-59
    陈学好,陈俊.园艺作物单性结实的类型[J].生物学通报,2001,36(9):6-7
    陈学好,于杰,徐强等.Spd和MGBG对黄瓜子房内源多胺和蛋白质组成的影响及与单性结实的关系[J].园艺学报,2005,32(4):632-637
    戴惠学.番茄单性结果与内源激素的关系[J].长江蔬菜,1998,(7):23-25
    杜庆平,于杰,徐强等.黄瓜子房内源多胺含量的变化及其与单性结实的关系[J].江苏农业学报,2012,28(2):390-39
    田时炳,刘富中,王永清等.茄子单性结实性的遗传分析[J].园艺学报,2003,30(4):413-416
    王垒,陈劲枫,娄丽娜等.黄瓜ARF家族序列特征及部分成员在果实发育早期的表达分析[J].园艺学报,2011a,8(4):717-724
    王垒,娄丽娜,闫立英等.黄瓜果实发育早期Aux/IAA家族部分基因的差异表达分析[J].南京农业大学学报,2011b,34(4):13-17
    王孝宣,杜永臣,李树德等.番茄中的单性结实[J].中国蔬菜,1999,5:020
    王跃进,江淑平,刘小宁等.假单性结实无核葡萄胚败育机理研究[J].西北植物学报,2007,27(10):1987-1993
    肖家欣,彭抒昂,何华平.单性结实和白花结实柑橘果实发育过程中IAA, ZR和GA3含量的变化[J].武汉植物学研究,2005,23(3):272-275
    闫立英,娄丽娜,冯志红等.雌雄同株黄瓜单性结实性主基因+多基因混合遗传分析[J].西北植物学报,2009,(006):1122-1126
    闫立英,娄丽娜,冯志红等.不同生态环境下雌雄同株黄瓜单性结实性遗传的比较[J].应用生态学报,2010,(001):61-66
    张祥胜,冷鹏,王汝平等.西葫芦单性结实品种的性状研究[J].安徽农业科学,2002,30(6):947-949

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700