用户名: 密码: 验证码:
X80管线钢焊接管道应力腐蚀和断裂安全评定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用动电位扫描技术,测试了X80管线钢及焊接接头在模拟土壤介质(高pH值0.5mol/L NaHCO3+1mol/L Na2CO3溶液和近中性pH值NS4溶液)中的极化曲线,分别考虑离子浓度、扫描速度、测试区域对极化曲线的影响,研究了X80管线钢及其焊缝在典型模拟土壤介质中电化学腐蚀行为。
     采用慢应变速率拉伸试验(SSRT)和扫描电镜观察研究X80管线钢及焊接接头在上述两种典型土壤介质中的应力腐蚀行为。在0.5mol/L Na2CO3+ 1mol/LNaHCO3溶液中试样断口形貌在阴极电位条件下呈准解理断裂,在自腐蚀电位和阳极电位条件下,试样断口主要是韧性断裂。在NS4溶液中施加阴极电位时,SEM断口形貌呈穿晶准解理断裂,具有明显的应力腐蚀特征。施加阳极电位时,断口形貌为典型的韧性断裂,断口处存在大量的韧窝。两种溶液中SSRT试验结果均表明,随着外加电位的负移,断裂时间、断面收缩率、应变量都明显变小,X80管线钢及焊接接头的SCC敏感性增加。施加相同外加电位时,焊接接头较母材的应力腐蚀敏感性增加,其断裂位置全部落在焊缝或HAZ处。
     制作楔形张开加载(WOL)试样,在硫化氢介质中进行恒位移应力腐蚀试验,分别测得母材、焊缝和热影响区的临界应力强度因子KISCC和裂纹扩展速率da/dt。实验结果表明,热影响区的KISCC最小,裂纹扩展速率最大,具有较差的抗应力腐蚀开裂的能力。通过对X80管线钢焊接接头的金相显微组织、断口形貌观察以及硬度测试,分析了X80管线钢SSCC性能的影响因素。并对WOL试样进行了有限元分析,得到裂纹尖端应力场分布和氢浓度的分布特征。应力腐蚀试验结果与有限元数值分析结果相互验证。
     建立了X80钢管道焊接移动热源的三维有限元计算模型,以瞬态温度场分析为基础,考虑材料物理性能参数与温度非线性关系,利用SYSWELD程序进行了焊接温度场和焊接应力场的数值模拟,分析了相变及焊接线能量对管道内外表面的环向及轴向应力的影响规律。
     以“合于使用”为原则,根据BS7910评定标准,在测试X80管线钢及焊接接头断裂韧度的基础上,对X80管道焊接接头焊趾处的表面裂纹以及焊缝内的深埋裂纹进行了一级、二级安全评定。考虑了应力集中和残余应力的影响,计算了给定载荷条件时的表面容许裂纹尺寸和深埋容许裂纹尺寸。
The stress corrosion cracking (SCC) behaviors of X80 pipeline steel in analogysoil solutions(the solution of 0.5mol/L Na2CO3 and 1mol/L NaHCO3 and NS4solution) were studied using electrochemical measurement and slow strain ratetesting(SSRT) and scanning electron microscopy。The susceptibility to stresscorrosion cracking (SCC) of the welded joint of X80 pipeline steel in solution wasanalyzed. The electrochemical corrosion behaviors of the X80 steel and its weldedjoint in the analogy soil solutions were investigated.
     The stress corrosion cracking (SCC) behaviors of X80 pipeline steel in solutionof 0.5mol/L Na2CO3 and 1mol/L NaHCO3 and NS4 solutions were studied using slowstrain rate testing(SSRT) and scanning electron microscopy. At cathodic potentials,obvious quasi-cleavage fracture was observed in the fracture area of specimens insolution of 0.5mol/L Na2CO3 and 1mol/L NaHCO3. At open circuit potential andanodic potential, ductile fracture was the main fracture pattern. The SEM crackingmode was transgranular with the feature of quasi-cleavage and hold typical feature ofstress corrosion in NS4 solutions when applied negative potential. At anodic potential,fracture appearance was typical ductile fracture and obtained abundant dimples. SSRTresult showed that the general tendency in the studied potential range was that withnegative increasing of potential, fracture time, elongation and reduction in area ofspecimens decreased, mean the susceptibility to SCC increased. When appliedpotentials of welded joint and base metal homology are the same, welded joint ismore sensitive than base metal in SCC, the results showed that all tensile testspecimens cracked in weld metal and heat affected zone (HAZ).
     The critical stress intensity factor KISCC and crack propagation velocity wereobtained by the Wedge-open loading constant displacement specimens. The resultsshowed that the heat affected zone (HAZ) had the minimal KISCC, largest crackpropagation velocity and hold poor resistant properties of stress corrosion crack. Theinfluential factor of the SSCC property of X80 pipeline steel was analysed throughmetallographic structure、fracture appearance observation and hardness examination .By the numerical analysis of the FEM, stress field and concentration of hydrogendistribution property from the crack tip were obtained. The experimental results showmostly concordance with the FEA results.
     A three-dimensional finite element numerical simulation is performed on the material physical absorption variables and temperature nonlinear relationship of theX80 steel pipes with SYSWLED program. Three-dimensional FEM using mobile heatsource for analysis transient temperature filed and welding stress filed incircumferential joint of pipes is founded. Influence law of the phase transition andadherent wire energy of axial and hoop residual stresses on inner and outer surface ofpipes are investigated.
     The primary and second safety evaluation was proceed to toe external crack andweld deep crack of X80 pipe joints with the principle of“fit utilize”,according toBS7910 test, based on the examination of X80 steel and bonding joints fracturetoughness, adopted FAD evaluation method. Considering the effect of stressconcentration and residual stress, the external allowable crack size and deep allowablecrack under the condition of given loading.
引文
[1] 潘家华,我国管材及制管工业的发展趋势,焊管,2003,26(5):1~5.
    [2] 化工部化工机械研究院,腐蚀与防护手册,北京:化学工业出社,1989.
    [3] 刘杏,杨武,天然气长输管线应力腐蚀破裂的敏感环境条件,机械工程材料,2002,26(1):5~12,40.
    [4] 杜则裕,高强度级别管线钢的焊接,焊接技术,2005,34(7):6~9.
    [5] 张晨鹏,廖淑梅,X80 管线钢级直缝埋弧焊焊管的研制,钢管,2005,34(4):41~44.
    [6] 李延丰,X80 管线钢级 φ1016mm×18.4mm 直缝埋弧焊管研制,焊管,2005,28(4):40~44.
    [7] 钱百年,国旭明,李晶丽等,高强度管线钢 X80 的焊接研究,焊接,2002(8):14~17.
    [8] 孔君华,郭斌,刘昌明等,高钢级管线钢 X80 的研制与发展,材料导报,2004,18(4):23~26.
    [9] Zhao Ming-Chun, Yang Ke, Xiao Fu-Ren, et al, Continuous cooling transforma-tion of undeformed and deformed low carbon pipeline steels,Materials Scienceand Engineering,2003, 335:126~136.
    [10] 赵明纯,李玉海,显微组织对管线钢硫化物应力腐蚀开裂的影响[J],金属学报,2001,37(10):1087~1092.
    [11] 赵明纯,单以银,针状铁素体的强韧性行为和抗 H2S 性能的研究[J],2001年中国钢铁年会文集,北京:冶金工业出版社,2001.
    [12] 王仪康,杨柯,我国高压输送管线钢的发展,WTO 与管道建设-2002 石油天然气管道建设与技术论坛会论文集,北京:石油工业出版社,2002.
    [13] Bob E,Robert J E, Lorne C, Fracture control for the alliance pipeline[C],2000International Pipeline Conference,Volume 1 ASME,2000:267~277.
    [14] Alan Gilroy,Alex Afaganis,et al,Development and confirmation of a hightoughness design for the alliance pipeline,Proceedings of International PipelineConference (IPC2000),ASME,Oct 2000,The Palliser,Calgary,Alberta,Canada,IPC00~024.
    [15] T Taira, K Matsumoto, Y Kobayashi, et al, Development of super-tough acicularferrite steel for line pipe optimization of carbon and niobium content in low-carbon steel, HSLA Steel,Technology and Applications, 1984, 723~731.
    [16] Coldren A P, Oakwood T G, Tither G, Microstructures and properties ofcontrolled rolled and accelerated cooled molybdenum-containing line pipe steels,HSLA Steel, Technology and Applications,1984, 246~258.
    [17] 庄传晶,冯耀荣,霍春勇等,国内 X80 级管线钢的发展及今后的研究方向,焊管,2005,28(2):10~14.
    [18] 潘家华,管道输送钢管的发展趋势,焊管,1994,17(2):1~4.
    [19] 马秋荣,霍春勇,冯耀荣,国外 X80 管道钢管的研究与应用现状,油气储运,2000,19(11):9~13.
    [20] 熊林玉,杜则裕,董丽红等,高强度 X80 管线钢管道的焊接,石油工程建设,2004,30(2):31~34.
    [21] 李鹤林,天然气输送管研究与应用中的几个热点问题,中国机械工程,2001,12(3):349~352.
    [22] 米秋占,输气管道的硫化物应力腐蚀(SCC)问题,焊管,2000,23(5):6~9.
    [23] Nakayama Quen, Liang Chenghao, Akashi Masatssune, Repassivation methodfor determining the critical potential for initiation of stress-corrosion cracking[J], Corrosion Engineering, 1996, 45(5):298~304.
    [24] Parkins R N, Conceptual understanding and life preidition for SCC of pipeline[A], Proceeding of corrosion/96, research topical symposia[C], NACEpublication, Houston, Texas, USA, 1996, 1~49.
    [25] Parkins R N, Stress corrosion cracking of ferritic steels in acidic solutions,British Corrosion Journal, 1996, 31, 288~293.
    [26] 杜则裕,陶勇寅,李云涛等,国产 X70 管线钢的硫化氢应力腐蚀性能及其焊接性,焊接学报,2004,25(5):13~16.
    [27] Tsay L W, Lin W L, Cheng S W, et al, Hydrogen sulphide stress corrosioncracking of 2.25Cr-Mo steel weldments [J], Corrosion Science, 1997, 39(7):1165~ 1176.
    [28] F Gutierrez-Solana, A Valiente, J Gonzalez, et a1, Strain-based fracture modelfor stress corrosion cracking of low-alloying steels [J], Metallurgical andMaterials Transactions A: Physical Metallurgy and Materials Science, 1996, 27(2):291~304.
    [29] Lkeda A, Kanedo T, Ando Y, On the evaluation method of sulfide stresscorrosion susceptibility of carbon and low alloy steels, Corrosion Science, 1987,27(10):1099~1115.
    [30] 中国腐蚀与防护学会编,金属防腐蚀手册,上海:上海科学技术出版社,1989.
    [31] 肖纪美,应力作用下的金属腐蚀,北京:化学工业出版社,1990.
    [32] 杨祖佩,关于管道钢的应力腐蚀开裂问题,管道技术与设备,1999,12:15~18.
    [33] National Energy board, Public inquiry concerning stress corrosion cracking onCanadian oil and gas pipelines[R], NEB Report MH-2-95, Canada: 1996.
    [34] Nesic S, Postlethwaite J, Olsen S, An electrochemical model for prediction ofcorrosion of mild steel in aqueous carbon dioxide solutions[J], Corrosion, 1996,52(4):280~294.
    [35] 杨武,李光福,郭浩等,国产管线钢的环境开裂性能研究,材料导报,2004,18(8):127~130.
    [36] 褚武扬,氢损伤与滞后断裂,北京:冶金工业出版社,1988.
    [37] 左景伊,应力腐蚀破裂,西安:西安交通大学出版社,1985.
    [38] H.H.Uhlig, Effect of electron configuration on the passive properties of Cu-Nialloys, Corrosion and corrosion control, 1971:135~137.
    [39] 卢绮敏,石油工业中的腐蚀与防护,北京:化学工业出版社,2001.
    [40] Lepinoux J, Magnin T, Stress corrosion microcleavage in a ductile f.c.c. alloy,Materials Science & Engingeering, 1993, 164:266~269.
    [41] Kaufman M J, Fink J L, Evidence for localized ductile fracture in the “brittle”transgranular stress corrosion cracking of ductile FCC alloys, Acta Metallurgica,1988, 36:2213~2228.
    [42] 化工部化工机械研究院,腐蚀与防护手册,北京:化学工业出版社,1989.
    [43] 吴开源,金属结构的腐蚀与防护,东营:石油大学出版社,2000.
    [44] Troiano A.R, Hydrogen embrittlement in irradiated steels, Trans. ASM,1960 ,52~ 54.
    [45] 薛锦,应力腐蚀与环境氢脆,西安:西安交通大学出版社,1991.
    [46] Zapffe C.A, Haselm M.E, Evaluation of picking inhibitors from the standpointof hydrogen embrittlement.I.Acid picking of stainless steel, Zapffe (Carla) Bal-timore MD, 1948, 27.
    [47] 禇武扬,肖纪美,王俊文,铝合金在压应力下的应力腐蚀破裂,金属学报,1987,23:141~146.
    [48] Smialowski M, Kostanski J, Creep and stress corrosion cracking of austeniticstainless steel in boiling 35% magnesium chloride solution. Corrosion Science,1979,19(12):1019~1029.
    [49] 褚武扬,断裂与环境断裂,北京:科学出版社,2000.
    [50] Nakasa K, Takai H, Enhancement of delayed failure resistance by patialunloading Method, Engineering Fractrue Mechancis, 1979, 11(4):733~738.
    [51] Parkins R.N, Creep and strain aging effects in the stress-corrosion cracking ofline-pipe steels, Proceedings, Annual Symposium-Society of Flight Test Engi-neers, 1979: 1~22.
    [52] Parkins R N, American gas associationed 1st Sympo on line pipe research,Arlington:American gas association Inc, 1974, 174.
    [53] 胡钢,徐淳淳,池琳等, HCO 3? /CO23?浓度对 X70 管线钢钝化行为的影响北京化工大学学报,2004,31(3):43~47.
    [54] 徐淳淳,池琳,胡钢,X70 管线钢在 CO 32 ? /HCO3?溶液中的电化学行为研究,腐蚀科学与防护技术,2004,16(5):268~271.
    [55] Wang J Q, Atrens A, Cousens D R, et al, Boundary characterisation of X65pipeline steel using analytical electron microscopy, Journal of Materials Science,1999, 34: 1711~1719.
    [56] Wang J Q, Atrens A, Cousens D R, et al, Microstructure of X52 and X65 pipe-line steels, Journal of Materials Science, 1999, 34:1721~1729.
    [57] Wang J Q, Atrens A, Cousens D R, et al, Measurement of grain boundarycomposition for X52 pipeline steel, Acta Materialia, 1998, 46(16): 5677~5687.
    [58] Cousens D R, Wood B J, Wang J Q, et al, Implications of specimen preparationand of surface contamination for the measurement of the grain boundary carbonconcentration of steels using x-ray microanalysis in an UHVFESTEM, SurfInterface Anal, 2000, 29:23~32.
    [59] 方丙炎,王俭秋,朱自勇等,埋地管道在近中性 pH 和高 pH 环境中的应力腐蚀开裂,金属学报,2001,37(5):454~458.
    [60] Wang Z F, Atrens A, Initiation of stress corrosion cracking for pipeline steels inacarbonate-bicarbonate solution, Metallurgical and Matreials Transactions A:Physical Metallurgy and Materials Science 1996, 27(9): 2686~2691.
    [61] Parkins R N, Reavers J A, Some effects of strain rate on the transgranular stresscorrosion cracking of ferritic steels in dilute near-neutral-pH solutions,Corrosion, 2003, 59: 258~273.
    [62] Beavers J A, Christman T.K.,Parkins R N, Some effects of surface condition onthe stress corrosion cracking of line pipe steel, Materials Performance,1988,27(4):22.
    [63] Rebak R B, Szklarsla-Smialowska Z, Mechanism of stress corrosion cracking ofalloy 600 in high temperature water, Corrosion Science, 1996, 38(6): 971~988.
    [64] Harle B.A, Beavers J.A, Jaske C.E, Low-pH stress corrosion crack propagationin API X-65 line pipe steel, Corrosion, 1993,49(10),861~863.
    [65] Kushida T, Nose K, Asahi H, et al, Effects of metallurgical factors andtestconditions on near neutral pH SCC of pipeline steels, Houston, TX: NACEInternational, 2001.
    [66] Harle B A, Beavers J A, Low-pH stress corrosion crack propagation in APIX-65 line pipe steel, Corrosion, 1993, 49: 861~863.
    [67] Zheng W, R W Revie, F A MacLeod, et al, Pipeline SCC in near-near pH environ-ment recenprogress,The 1996 1st International Pipeline Conference, 1996,485~493.
    [68] 汪兵,刘素娥,朱自勇等,管线钢在近中性 pH 值溶液中的应力腐蚀开裂,腐蚀科学与防护技术,2001,13(2):71~73.
    [69] RN Parkins, WK Blanchard Jr, BS Delanty, Transgranular stress corrosioncracking of high-pressure pipelines in contact with solution of near neutral pH,corrosion, 1994(50):394~408.
    [70] Beavers J A, Harle B A, American society of mechanical engineer edproc 1st Intpipeline conf, IPC/96, New York: American society of mechanical engineers,1996: 573~580.
    [71] 郭浩,李光福,蔡珣等,外加电位对 X70 管线钢在近中性 pH 溶液中的应力腐蚀破裂的影响[J],中国腐蚀与防护学报,2004,24(4):208~212.
    [72] 郭浩,蔡珣,杨武,影响管线钢应力腐蚀破裂的力学和材料因素[J],机械工程材料,2002,26(4):1~5.
    [73] 张美华,张斌,池鸽霞等,不锈钢应力腐蚀试验方法的对比,腐蚀与防护,1993,14(3):119~122.
    [74] 顾濬祥,林天辉,钱祥荣,现代物理研究方法及其在腐蚀科学中的一个应用[M],北京:化学工业出版社,1990.
    [75] 李金桂主编,腐蚀控制设计手册,北京:化学工业出版社,2006.
    [76] 高克玮,陈奇志,褚武扬等,纳米级解理微裂纹的形核和扩展,中国科学,1994,24:993~998.
    [77] Perng T P, Altstetter C J, Effects of water vapor on hydrogen induced slow crackgrowth in austenitic stainless steels[J]. Metall Trans A, 1998, 19(3): 651~656.
    [78] 曹楚南编著,腐蚀电化学,北京:化学工业出版社,1994.
    [79] 张美华,张斌,池鸽霞等,不锈钢应力腐蚀试验方法的对比,腐蚀与防护,1993,14(3):119~122.
    [80] 黄春波,李光福,杨武,X70 管线钢焊缝应力腐蚀开裂的研究,腐蚀与防护,2005,26(1):1~5.
    [81] R.B.Rebak, Z.Xia, R.Safruddin, et al, Effect of solution composition andelectrochemical potential on stress corrosion cracking of X-52 pipeline steel[J],Corrosion, 1996, 52 (5): 396~405.
    [82] R.N.Parkins, R.W.Staehle, Stress corrosion cracking and hydrogen embrittle-ment of iron base alloy, NACE, Houston, 1977.
    [83] 李明星,王荣,白真权,X70 管线钢在模拟近中性土壤介质中的电化学特性,腐蚀科学与防护技术,2004,1(1):17~20.
    [84] 吴荫顺,金属腐蚀研究方法,北京:冶金工业出版社,1992.
    [85] Nesic S, Postlethwaite J, Olsen S, An electrochemical model for prediction ofcorrosion of mild steel in aqueous carbon dioxide solutions[J], Corrosion,1996, 52(4): 280~289.
    [86] 谷飚,高克玮,黄一中等,腐蚀促进位错发射和运动导致应力腐蚀裂纹的形核,中国科学,1996,26:481~487.
    [87] 霍立兴,焊接结构工程强度,北京:机械工业出版社,1995.
    [88] 田锡唐,焊接结构,北京:机械工业出版社,1982.
    [89] 霍立兴,焊接结构的断裂行为及评定,北京:机械工业出版社,1995.
    [90] 李晓钢,石化设备在线安全评定技术进展,石油化工腐蚀与防护,1998,16(3):1~4.
    [91] 孟广喆,贾安东,焊接结构强度和断裂,北京:机械工业出版社,1986.
    [92] 李培宁,压力容器及管道断裂评定技术研究进展,第四届全国压力容器学术会议,合肥:<<压力容器>>杂志编辑部出版,1997.
    [93] 华东化工学院化工机械研究所译,R/H/R6Ver.3,有缺陷结构完整性评定标准,1998.
    [94] Guidance methods for assessing the acceptability of flaws in fusion weldedstructures, British Standards Institution, PD6493, 1991.
    [95] BS7910:1999(incorporating Amendment No.1) Guide on methods for assessingthe acceptability of flaws in metallic structures, British Standards Institution,London, 2000API.579, Recommended practice for fitness-for-service Wa-shington, D.C.American Petroleum Institute, 2000.
    [96] 荆树峰,国外压力容器缺陷评定标准,北京:劳动出版社,1982.
    [97] 焊接结构合于使用的评定指南(草案 IIW/IIS-SST-1157-90),八五国家科技攻关课题在役锅炉压力容器安全评定评估与爆炸预防技术研究研究成果和参考资料(85-924-02),合肥通用机械研究所,1994:501.
    [98] ASME Boiler and Pressure Vessel Code Section XI, ASME 1983.
    [99] Harrison RP, Loosemore K, Milne I, Assessment of structures containing defects,CEGB Report R/H/R6, 1976.
    [100] 钟群鹏,李培宁主编,在役含缺陷压力容器安全评估规程(SAPV-95 综合稿),1995.
    [101] 中华人民共和国国家技术监督局,CVDA-84 压力容器评定规范,北京:中国压力容器学会与化工机械与自动化学会,1984.
    [102] 中华人民共和国国家技术监督局,JB/T5104-91,焊接接头脆性破坏的评定,北京:机械工业标准出版社,1991.
    [103] R.N.Parkins, Development of slow strain rate testing and its implications, Stresscorrosion cracking: the slow strain rate technique, Toronto, Canada, 1979, 5~25.
    [104] 上田幸雄,山川武人,有限要素法にょゐ热弹塑性举动解析,溶接学会志,1973,6:61~66.
    [105] V.Sagalevich, S.Mezentseva, Calculation of strains and stresses in circularwelds, Svar.Proiz, 1974, 9, 7~10.
    [106] R.Nickell, H.Hibbitt, Thermal and mechanical analysis of welded structures,Nuclear Engineering and Design, 1975, 32, 110~120.
    [107] Y.Iwamura, E.F.Rybickil, A Transient elastic-plastic thermal stress analysisof flame forming, ASME Journal of Engineering for Industry, Feb, 1973.
    [108] B.A.B.Andersson, Thermal stresses in large butt welded plate, Jounal ofThermal Stresses, 1981, 4, 491~500.
    [109] D.W.Lobitz, R.Nickell, Residual stresses and distortion in multipass welding,Numerical Modeling of Manufacturing Processes, 1977, 25, 81~96.
    [110] Leblond J B, G Mottet, J C Devaux, A theoretical and numerical approach to theplastic behaviour of steels during phase transformations.I.Derivation of generalrelations, Journal Mechanics Physics of Solids, 1986, 34(4): 395~409.
    [111] Tsai C L, Feng Z L, A computational analysis of thermal and mechanicalconditions for weld metal solidification cracking, Welding research Abroad,1996, 42(1): 32~35.
    [112] J.H.Argyris, J Szimmat, KJ William, Computational aspects of welding stre-sses analysis, Computer Methods in Applied Mechanics and Engineering, 1982,33, 635~666.
    [113] S.E.Chidiac, F.A.Mirza, Thermal stress analysis due to welding process by thefinite element method, Computers and Structures, 1993, 46(3), 407~412.
    [114] M.R.Frewin, D.A.Scott, Finite element modeling ofpulsed laser welding,Welding research supplement, 1999(1): 39~45.
    [115] Ydong, Jkhong, Cltsal, et al, Finite element modeling of reaidual stresses inaustenitic stainless steel pipe girth welds, Welding Journal, 1997, 10: 442~ 449.
    [116] J.H.Argyris, Computational aspects of welding stresses analysis, ComputerMethods in Applied Mechanics and Engineering, 1982, 33, 635~666.
    [117] S.E.Chidiac, F.A.Mirza, Thermal stress analysis due to welding process by thefinite element method, Computers and Structures, 1993, 46(3), 407~412.
    [118] NagasakaY., Brimacombe J.K. , Hawbolt, E.B. ,et al, Mathematical model of phasetransformations and elasto-plastic stress in the water spray quenching of steelbars, Metallurgical Transactions A, 1993, 24, 795~808.
    [119] F.Fernandes, S.Denis, A.Simon, Mathematical model coupling phase transform-ation and temperature evolution during quenching of steels, Materials Scienceand Technology, 1985, 1, 839~856.
    [120] B.A.B.Andersson, Thermal stresses in a submerged are welded joint consideringphase transformations, ASME Journal of Pressure Vessel Technology, 1978, 100,356~362.
    [121] YVL Murthy, V Rao, Parametric study of parallel heat welding process viafinite element simulation, Materials Science and Technology, 1994, 10,981~985.
    [122] V.J.Papazoglou, Numerical analysis of thermal stresses during weldingincluding phase transformation effects, ASME Journal of Pressure VesselTechnology, 1982, 104, 198~203.
    [123] B.L.Josefson, Effects of transformation plasticity on welding residual stressfields in thin walled pipes and thin plates, Materials Science and Technology,1985(1):904~908.
    [124] B.Taljat, B Radhakrishnan, T Zacharia, Numerical analysis of GTA weldingprocess with emphasis on post-solidification phase transformation effects onresidual stresses, Materials Science and Engineering, 1998, 246, 45~54.
    [125] 陈楚等编著,数值分析在焊接中的应用,上海:上海交通大学出版社,1985.
    [126] 汪建华,钟晓敏,焊接过程的三维热弹塑性有限元分析,力学与实践,1995,17(3):27-30.
    [127] 汪建华,陈楚,管板接头三维焊接变形的数值模拟,焊接学报,1995,16(3):140~145.
    [128] 汪建华,陈楚,压缩机焊接变形的三维数值模拟,机械工程学报,1996,32(1):85~91.
    [129] 武传松,曹振宁,熔透情况下三维 TIG 焊接熔池流场和热场的数值分析,金属学报,1992.,28(10):427~432.
    [130] 曹振宁,武传松,TIG 焊接熔池表面变形对流场和热场的影响,金属科学与工艺,1992.,11(3):108~113,98.
    [131] 武传松,郑炜,脉冲电流作用下 TIG 焊接熔池行为的数值模拟,金属学报,1998,34(4):416~422.
    [132] 鹿安理,史清宇,赵海燕等,厚板焊接过程温度场、应力场的三维有限元数值模拟,中国机械工程,2001,12(2):183~186.
    [133] 王维斌,史耀武,雷永平等,400MPa 超细晶粒钢直流电阻闪光对焊接头组织的数值模拟,机械工程学报,2005,41(1):77~81.
    [134] 关桥,郭德伦,航宇薄壳结构的低应力无变形焊接新技术,航空工艺技术,1996,4,4~7.
    [135] 董俊慧,管道环焊缝接头焊接应力应变数值模拟,[博士学位论文],天津:天津大学,2001.
    [136] 金晓军,霍立兴,张玉凤等,双相不锈钢管道全位置焊接残余应力三维有限元数值模拟,焊接学报,2004,25(2):1~9.
    [137] 陈芙蓉,霍立兴,张玉凤等,BT20 钛合金电子束焊接残余应力三维有限元数值模拟,焊接学报,2004,25(1):61~64,70.
    [138] 陈翠欣,李午申,王庆鹏等,焊接温度场的三维动态有限元模拟,天津大学学报,2005,38(5):10~12,16.
    [139] Delanty B, O’Beime J, Major field study compares pipeline SCC with coatings,Oil Gas Journal, 1992, 90(24): 39~44.
    [140] Robert L Sutherby, Sc M, Eng P, The CEPA report on cir-cumferential stresscorrosion cracking[A], 1998 International Pipeline Conference-Volume 1[C],ASME, l998, 493~503.
    [141] Delanty B O, Beime J, Major field study compares pipeline SCC with coating,Oil Gas Journal, 1992, 90(24):39~44.
    [142] Parkins R N, Belhimer E, Blanchard W K, Stress corrosion cracking charac-teristics of a ranger of pipeline steels in carbonate-bicarbonate solution,Corrosion, 1993, 49(12): 951~966.
    [143] Parkins R N, Mechanistic aspects of intergranular stress corrosion cracking offerritic steels[J], Corrosion, 1996, 52(5):363~374.
    [144] 闫茂成,翁永基,环境溶液对管道应力腐蚀过程电化学行为的影响,中国腐蚀与防护学报,2005,25(1):34~38.
    [145] 李明星,王荣,李鹏亮等,X70 管线钢在模拟土壤介质中裂纹扩展量化模型,中国腐蚀与防护学报,2004,24(3):163~167.
    [146] J M Blengino, M Keddam, J P Labbe, et a1, Physico-chemical characterizationof corrosion layers formed on iron in soditum carbonate-bicarbonate containingenvironment, Corosion Science, 1995, 37: 621~632.
    [147] 潘卫军,埋地管道材料的 H2S 应力腐蚀研究,[南京工业大学硕士论文],南京:南京工业大学,2004.
    [148] 黄春波,李光福,杨武,X70 管线钢焊缝应力腐蚀破裂的研究,腐蚀与防护,2005,26(1):1~5.
    [149] 朝日 均(日)等,超高强度管线钢管 X120 的开发,鞍钢技术,2006,(2):57~61.
    [150] Gu B, Yu W Z, Luo J L, et a1, Transgranular stress corrosion cracking of X80and X52 pipeline steels in dilute aqueous solution with near-neutral pH,Corrosion, 1999, 55(3): 312~319.
    [151] ChenW X, Wang S H, King Fraser, et al, Hydrogen permeation behavior of X70pipeline steel in a near-neutral pH soil environment[A], 2000 International Pipe-line Conference-Volume 2[C], ASME 2000: 953~960.
    [152] 金晓军,X65 管线钢焊接接头力学性能及 H2S 应力腐蚀研究,[天津大学硕士论文],天津:天津大学,2004.
    [153] R.N.Parkins, Slow strain rate testing-25 years experince, Slow strain rate tetingfor the evaluation of environmentally induced cracking: research and enginee-ring applications, ASTM STP1210, Russell D, Kane, Editor, Philadephia, 1993,7 ~21.
    [154] 中华人民共和国国家技术监督局,GB12445.3-90,高强度合金楔性张开加载(WOL)预裂纹试样应力腐蚀试验方法,北京:中国标准出版社,1990.
    [155] 郭献忠,钝化膜(或疏松层)引起的内应力和应力腐蚀的相关性,[北京科技大学博士论文],北京:北京科技大学,2001.
    [156] 李贺林,郭生武,冯耀荣等,高强度微合金管线钢显微组织分析与鉴别图谱,北京:石油工业出版社,2001.
    [157] 张文钺,焊接传热学,北京:机械工业出版社,1989.
    [158] 雷卡林著,徐碧宇等译,焊接热过程计算,北京:中国工业出版社,1958.
    [159] 莫春立,钱百年,国旭明等,焊接热源计算模式的研究进展,焊接学报,2001,22(3):93~96.
    [160] 刘哲,李午申,陈翠欣等,热-冶金相互作用下焊接温度场的三维动态有限元模拟,机械科学与技术,2005,24(12):1396~1399.
    [161] 薛小怀,杨淑芳,吴鲁海等,X80 管线钢的研究进展,上海金属,2004,26(2):45~49.
    [162] 池琳,管线钢的应力腐蚀行为与检测技术基础研究,[北京工业大学硕士论文],北京:北京工业大学,2004.
    [163] L.Josefson, Effects of transformation plasticity on welding residual stress fieldsin thin walled pipes and thin plates, Materials Science and Technology, 1985, 1,904~908.
    [164] 董俊慧,林燕,林文光等,相变对管道环焊缝残余应力的影响,中国机械工程,2005,16(5):460~463.
    [165] Y Sharir, A Grill, J Pelleg, Computation of temperatures in thin tantalum sheetwelding, Metallurgical Transactions, 1980, 11, 257~265.
    [166] 谢元峰,基于 ANSYS 的焊接温度场和应力场的数值模拟研究,[武汉理工大学硕士论文],武汉:武汉理工大学,2006.
    [167] 陈翠欣,X80 高强管线钢焊接性及模拟仿真,[天津大学博士论文],天津:天津大学,2005.
    [168] 程久欢,陈俐,于有生,焊接热源模型的研究进展,焊接技术,2004,33(1):13~15.
    [169] 董志波,魏艳红,刘仁培等,不锈钢焊接温度场的三维数值模拟,焊接学报,2004,25(2):9~14.
    [170] 佐藤邦彦,焊接接头的强度与设计,北京:机械工业出版社,1983.
    [171] RI Karlsson, BL Josefson, Three dimensional finite element analysis oftemperatures and stresses in a single- pass butt-welded pipe, ASME Journal ofPressure Vessel Technology, 1990, 112, 76~84.
    [172] B.L.Josefson, Residual stresses and their redistribution during annealing of agirth-butt welded thin-walled pipe, ASME Journal of Pressure VesselTechnology, 1982, 104, 245~250.
    [173] 中国机械工程学会焊接学会编,焊接手册(1),北京:机械工业出版社,1992.
    [174] D.拉达伊著,熊第京等译,焊接热效应,北京:机械工业出版社,1997.
    [175] J.B.Leblond, J Devaux, A New kinetic model for anisothermal etallurgicaltransformations in steels including effect of austenite grain size, Acta metal,1984,32(1): 137~146.
    [176] 王庆鹏,X80 管线钢粗晶区相变的模拟及性能研究,[天津大学硕士论文],天津:天津大学,2005.
    [177] ESI GROUP, Technical description of capabilities, SYSWORLD 2000.
    [178] 邓彩艳,海底油气管道断裂性能及安全评定研究,[硕士论文学位论文],天津:天津大学,2003.
    [179] BS 7448: Part1: 1991, Fracture mechanics toughness tests,Method for deter-mination of KIC, critical CTOD and critical J values of metallic materials.
    [180] 7448: Part2: 1997, Fracture mechanics toughness tests. Method for determinea-tion of KIC, critical CTOD and critical J values of welds metallic materials.
    [181] 张小鹏,刘增利,刘维波,大尺寸金属焊接接头 CTOD 试验研究,大连理工大学学报,2001,41(2):144~148.
    [182] 刘宏伟,基于 BS7910 的 X65 钢焊接管线疲劳评定,[天津大学硕士论文],天津:天津大学,2004.
    [183] Ainsworth, R.A.Developments in the flaw assessment procedures of R6 re-vision 4 and BS7910, American Society of Mechanical Engineers,PressureVessels and Piping Division, 2003, 463: 19~25.
    [184] Burdekin F.M, Evelopments in european defect assessment, American Societyof Mechanical Engineers, PressureVessels and Piping Division (Publication)PVP, 1999, 392, 217~223.
    [185] 李会录,应力腐蚀的研究,[北京科技大学博士论文],北京:北京科技大学,2002.
    [186] 邓彩艳,张玉凤,霍立兴,基于 BS7910 海底外输管线 ECA 评估,焊接学报,2006,27(1):17~20,25.
    [187] 刘俊龑,X56 海底管线的 ECA 评估,[天津大学硕士论文],天津:天津大学,2004.
    [188] Conelly, Zettlemoyer N, Stress concentrations at girth welds of tubular withaxial wall misalignment, Proc[A], Conf, 5th international symposium of tubularstructures[C], Nottingham UK, August, 1993.
    [189] British Standard institution, BS 7910: 1999, Guide on methods for assessing theacceptability of flaws in fusion welded structures.
    [190] Yau T.L, The performance of zirconium alloys in sulifide solutions, Corrosion,1982, 38 (12): 615~620.
    [191] Turn J.C, JR.Wilde , Bilde B.E, et al, On the sulifide stress cracking of line pipesteels, Corrosion, 1983, 39(9): 64~370.
    [192] 中华人民共和国国家技术监督局,GB/T15970.7-2000,金属和合金的腐蚀-应力腐蚀试验第 7 部分:慢应变速率试验,北京:中国标准出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700