用户名: 密码: 验证码:
钛合金铣削刀具磨损及表面完整性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金是二十一世纪最有价值的战略金属材料,是航空、航天领域发展必不可少的“脊柱”之一。钛合金切削过程中刀具磨损严重、加工表面质量差、加工效率低等问题已经成为制约其发展的瓶颈。研究钛合金切削过程中刀具磨损及加工表面质量的形成机理、优化合理的钛合金切削参数对航空、航天等领域的发展具有重要的意义。
     研究了钛合金侧铣过程中粗、精加工条件下铣削参数对刀具磨损寿命的影响规律,建立了粗、精加工条件下刀具磨损寿命的经验预报模型。分析了钛合金侧铣过程中刀具的破损形式和磨损机理,提出了改善刀具磨损的措施。
     研究了铣削过程中铣削参数、冷却条件、刀具磨损等因素对铣削力和铣削温度的影响规律,建立了铣削力和铣削温度的经验预报模型。分析了冷却条件、铣削参数和刀具磨损对表面层残余应力的大小、性质及表面层深度的影响规律,建立了残余应力的经验预报模型。基于试验中测得的铣削力和铣削温度,探讨了表面层残余应力的产生机理。
     分析了冷却条件、铣削参数、刀具磨损对加工表面粗糙度的影响规律,建立了表面粗糙度的经验预报模型,从材料性能和铣削过程两个方面综合探讨了表面粗糙度形成的理论模型。
     分析了铣削参数及刀具磨损对表面层金相组织和显微硬度分布的影响规律,探讨了表面层显微硬度的产生机理。试验结果表明表面层金相组织会随着铣削速度的增加而发生相变。
     以本文试验结果为依据,建立了以铣削参数为设计变量,分别以材料去除率、刀具寿命和以材料去除率、表面粗糙度、表面残余应力为目标函数的多目标优化模型,通过遗传算法得到满足目标函数要求的铣削参数,并对优化结果进行了试验验证,验证结果表明优化结果可信度较高。
Titanium alloy is one of the most valuable strategic metal material in the21thcentury, and it is the essential material in the aerospace field. Serious tool wear, poormachined surface quality and low machining efficiency have become the mainproblems restricting the development of titanium alloy. Research on the mechanism oftool wear and surface quality in titanium alloy cutting process and optimizing propercutting parameters are of important significance in aerospace field.
     The laws of tool life influenced by milling parameters were studied in titaniumalloy milling process under rough and finish machining conditions, and predictionmodels of tool life were established under the rough and finish machining conditions.The tool wear mechanism and breakage form were analysed, and the methods wereproposed to improve the tool wear.
     The laws of cutting force and cutting temperature influenced by cuttingparameters, cooling conditions and tool wear were studied in machining process, andprediction models of cutting force and cutting temperature were established. The size,property and influence depth of residual stress in surface layer influenced by coolingconditions, milling parameters and tool wear were analysed, and residual stressprediction models influenced by milling parameters were established. The mechanismof surface residual stress was discussed based on the milling force and millingtemperature obtained from the experiments.
     The laws of surface roughness influenced by cooling conditions, cuttingparameters and tool wear were analysed, and the prediction models of surfaceroughness under different machining conditions were established. The theory modelsof surface roughness were established and discussed based on the material propertyand milling process.
     The change laws of surface layer metallographic structure and microhardnessinfluenced by milling parameters and tool wear were analysed, and the formationmechanism of surface layer microhardness was discussed. The experimental resultsshow that phase transition was taken place with the increase of milling speed.
     Different multi-objective optimization models were established with the millingparameters as design variables, material removal rate, tool life and material removalrate, surface roughness, surface residual stress as the objective functions, respectively.The milling parameters which meet the different optimization models were obtained by the genetic algorithm and the optimization results were verified by the millingexperiments. Experimental results show that the optimization results are in goodreliability.
引文
[1]高敬,姚丽,国内外钛合金研究发展动态,世界有色金属,2001,2:4-7.
    [2]曹春晓,航空用钛合金的发展概况,航空科学技术,2005,4:3-6.
    [3]彭艳萍,曾凡昌,王俊杰等,国外航空钛合金的发展应用及其特点分析,材料工程,1997,10:3-6.
    [4]王桂生,田荣璋,钛的应用技术,湖南:中南大学出版社,2007.
    [5]张喜燕,赵永庆,白晨光,钛合金及其应用,北京:化学工业出版社,2005.
    [6]莫畏,钛,北京:冶金工业出版社.
    [7]艾兴,高速切削加工技术,北京,国防工业出版社,2003.
    [8]耿国胜,钛合金高速铣削技术的基础研究:[博士学位论文],南京,南京航空航天大学,2006.
    [9]陶春虎,曹春晓,张卫芳,航空用钛合金零件的失效及其预防,北京:国防工业出版社,2002.
    [10] Z.G. Wang, M. Rahman, Y.S. Wong, Tool wear characteristics of binderlessCBN tools used in high-speed milling of titanium alloys, Wear,2005,258:752-758.
    [11] N. Corduan, T. Himbart, G. Poulachon, Wear mechanisms of new tool materialsfor Ti-6Al-4V high performance machining, CIRP Annals-ManufacturingTechnology,2003,52(1):73-76.
    [12] J. Sun, Y.B. Guo, A comprehensive experimental study on surface integrity byend milling Ti-6Al-4V, Journal of Materials Processing Technology,2009,209:4036-4042.
    [13] Durul Ulutan, Tugrul Ozel,Machining induced surface integrity in titanium andnickel alloys: A review, International Journal of Machine Tools&Manufacture,2011,51:250-280.
    [14]田荣鑫,史耀耀,杨振朝,TC17钛合金铣削刀具磨损对残余应力影响研究,航空制造技术,2011,1/2:134-138.
    [15]罗国珍,钛的研究发展评述,稀有金属材料与工程,1993,22(5):19-27.
    [16]李梁,孙健科,孟祥军,钛合金的应用现状及发展前景,钛工业进展,2004,21(5):19-24.
    [17] Eberhard Abele,何宁,高速加工理论与应用,北京:科学出版社,2010.
    [18] Farhad, Nabhani, Machining of aerospace titanium alloys, Roboties andcomputer-integrated Manufacturing,2001,17(l-2):99-106.
    [19] E.O. Ezugwu, Z.M. Wang, Titanium alloys and their machinability-a review,Journal of Materials Processing Technology,1997,68:262-274.
    [20]杜敏,姜增辉,冯吉路,钛合金切削加工特点及刀具材料选用,航空制造技术,2011,14:55-57.
    [21]陈五一,袁跃峰,钛合金切削加工技术研究进展,航空制造技术,2010,15:26-30.
    [22]杨冠军,钛合金研究和加工技术的新进展,钛工业进展,2001,3:1-5.
    [23]陈明,袁人炜,推动我国高速切削工艺发展若干问题的探讨,中国机械工程,1999,10:1296-1299.
    [24]张春江,钛合金切削加工技术,西安:西北工业大学出版社,1986.
    [25] E.O. Ezugwu, J Bonney, Y Yamane, An overview of the machinability ofaeroengine alloys, Journal of Materials Processing Technology,2003,134:233-253.
    [26] E.O. Ezugwu, Z.M Wang, Titanium alloys and their machinability-a review,Journal of Materials Processing Technology,1997,68:262-274.
    [27] Mustafizur Rahman, Z.G. Wang, Yoke Sun Wong, A review on high speedmaching of titanium alloy, JSME Internationnal Jounal,2006,1:11-20.
    [28] P.J. Arrazola, A. Garay, L.M. Iriarte, Machinability of titanium alloys (Ti6A14Vand Ti555.3), Journal of materials processing technology,2009,209:2223-2230.
    [29] Farhad Nabhani, Machining of aerospace titanium alloys, Robotics andComputer Integrated Manufacturing,2001,17:99-106.
    [30] P.A. Dearnley, Evaluation of principal wear mechanism of cemented carbidesand ceramics used for machining titanium alloys and IMI318, Material Sciencesand Technology,1986,2:47-58.
    [31] A. Ginting, M. Nouari, Experimental and numerical studies on the performanceof alloyed carbide tool in dry milling of aerospace material, International Journalof Machine Tools&Manufacture,2006,46:758-768.
    [32] T. Kitagawa, A. Kubo, K. Maekawa, Temperature and Wear of Cutting Tools inHigh Speed Machining of Inconel718and Ti-6A1-6V-2Sn, Wear,1997,202(2):142-148.
    [33] A. Jawaid, S. Sharif, S. Koksal, Evalution of wear mechanisms of coated carbidetools when face milling titanium alloy, Journal of Materials ProcessingTechnology,2000,99:266-274.
    [34] N. Corduan, T. Himbert, G. Poulachon, Wear mechanisms of new tool materialsfor Ti6A14V high performance Machining, Annals of the CIRP,2003,52:73-76.
    [35] M. Nouari, A. Ginting, Wear characteristics and performance of multi-layerCVD-coated alloyed carbide tool in dry end milling of titanium alloy, Surface&Coatings Technology,2006,200:5663-5676.
    [36] J. Vigneau, S. Derrien, High speed milling of difficult to machine alloys, FirstFrench and German Conference on High Speed Machining,1997.
    [37] S.K. Bhaumik, C. Divakar, A.K. Singh, Machining Ti-6A1-4V alloy with aWBN-CBN composite tool, Materials&Design,1995(4):221-226.
    [38] L.N.L. Lacalle, J. Perez, J.L Llorente, Advanced Cutting Conditions for theMilling of Aeronautical Alloys, Journal of Materials Processing Technology,2000,2(5):1-11.
    [39] Z.G. Wang, M. Rahman, Y.S. Wong, Tool wear characteristics of binderless CBNtools used in high speed milling of titanium alloys, Wear,2005,(5-6):752-758.
    [40] Z.G. Wang, Y.S Wong, M. Rahman, High-speed miling of titanium alloys usingbinderless CBN tools, Journal of Machine Tools&Manufacture,2005,(45):105-114.
    [41] N.A.K.M. Amin, A.F. Ismail, Khairusshima, Effectiveness of uncoated WC-Coand PCD inserts in end milling of titanium alloy Ti-6A1-4V, Journal of MaterialsProcessing Technology,2007,4:1-12.
    [42] N.A.K.M. Amin, Talantov, Influence of the instability of chip formation andpreheating of work on tool life in machining high temperature resistant steel andtitanium alloys, Mechanical Engineering Research Bulletin (Dhaka),1986,9:52-56.
    [43] E.O. Ezugwu, R.B.D. Silva, J. Bonney, Evaluation of the performance of CBNtools when turning Ti-6Al-4V Alloy with High Pressure Coolant Supplies,International Journal of Machine Tool&Manufacture,2005(45):1009-1014.
    [44] E.O. Ezugwu, J. Bonneya, R.B.D. Silvab, Surface integrity of finished turnedTi-6A1-4V alloy with PCD tools using conventional and high pressure coolantsupplies, International Journal of Machine Tools and Manufacture,2007,47:884-891.
    [45] S.Y. Hong, I. Markus, W. Jeong, New cooling approach and tool lifeimprovement in cryogenic machining of titanium alloy Ti-6A1-4V, InternationalJournal of Machine Tools&Manufacture,2001,41:2245-2260.
    [46] S.Y. Hong, Y.C. Ding, Cooling approaches and cutting temperatures in cryogenicmachining of Ti-6A1-4V, International Journal of Machine Tools&Manufacture,2001,41:1417-1437.
    [47]李友生,邓建新,张辉,高速车削钛合金的硬质合金刀具磨损机理研究,摩擦学学报,2008,28:443-447.
    [48]秦龙,董海,张弘弢,钛合金切削加工中刀具寿命和刀具磨损的研究,工具技术,2102,44:16-19.
    [49]王晓琴,艾兴,赵军,硬质合金刀具高速干车削Ti6A14V切削力及刀具寿命研究,高速加工技术,2008,4:36-39.
    [50]王晓琴,艾兴,赵军,硬质合金刀具铣削Ti6A14V时刀具磨损及切削力研究,工艺与检测,2008,2:102-105.
    [51]杨发展,艾兴,赵军,细晶粒硬质合金刀具铣削钛合金损坏机理的研究,工具技术,2008,42:12-15.
    [52]张守全,铣削TC4钛合金的刀具磨损对比试验,新技术新工艺,2011,9:46-49.
    [53]贾庆莲,乔彦峰,涂层硬质合金刀具磨损机理的研究,工具技术,2005,39:37-40.
    [54]张义平,钛合金高速铣削刀具磨损的试验研究,工具技术,2007,41(1):55-59.
    [55]陆丰玮,李乐洲,朱平国,车削TC4钛合金的刀具磨损与切屑形态分析,制造技术研究,2009,6:18-21.
    [56]吴欣,张柳,徐锋,钛合金零件高速铣削刀具磨损的试验研究,工具技术,2007,32:254-263.
    [57]李甜甜,吴冉,高速切削钛合金PCBN刀具损坏机理的研究,工具技术,2013,47(2):26-29.
    [58]徐锦泱,郑小虎,陈明,高速铣削TC6钛合金的刀具磨损机理,上海交通大学学报,2012,46(7):1037-1042.
    [59]王鑫,钛合金TC11和TC17的铣削加工性研究:[硕士学位论文],山东,山东大学,2010.
    [60]常浩,何宁,满忠雷,TC4的铣削加工中铣削力和刀具磨损研究,航空精密制造技术,2003,39(3):30-33.
    [61]满忠雷,何宁,李亮等,氮气介质下铣削钛合金时的刀具磨损研究,机械科学与技术,2003,22(6):996-998.
    [62]赵威,基于绿色切削的钛合金高速切削机理研究:[博士学位论文],南京,南京航空航天大学,2006.
    [63]舒彪,何宁,无污染切削介质下钛合金铣削刀具磨损机理研究,机械科学与技术,2005,24(4):454-461.
    [64] I.S. Jawahir, R. Ghosh, X.D. Fang, An investigation of the effects of chip flow ontool wear in machining with complex grooved tools, Wear,1995,184:145-154.
    [65] J.A. Arsecularafie, R.F. Fowle, P. Mathew, Prediction of tool life in obliquemachining with nose radius tools, Wear,1996,198:220-228.
    [66] J.A Arsecularafie, Prediction of tool life and tool deformation conditions inmachining with restricted contact tools, Journal of Machine Tools&Manufacture.2003,(43):657-669.
    [67] J.A. Arsecularatne, Prediction of tool life for restricted contact and grooved toolsbased on equivalent feed, Journal of Machine Tools&Manufacture,2004,44:1271-1282.
    [68] J.A. Arsecularafie, L.C. Zhanga, C. Montross, Wear and tool life of tungstencarbide, PCBN and PCD cutting tools, International Journal of Machine Tools&Manufacture,2006,(46):482-491.
    [69] Y. Huang, T.G. Dawson, Tool crater wear depth modeling in CBN hard turning,Wear,2005,(258):1455-1461.
    [70] Y. Huang, Predictive modeling of tool wear with application to CBN hardturning, Atlanta: Georgia Institute of Technoloty,2002,15:125-189.
    [71] A. Molinari, M. Nouari, Modeling of tool wear by diffusion in metal cutting,Wear,2002252:135-149.
    [72] M. Nouari, A. Molinari, Experimental verification of a diffusion tool wear modelusing a42CrMo4steel with an uncoated cemented tungsten carbide at variouscutting speeds, Wear,2005,(259):1151-1159.
    [73] X. Luo, K. Cheng, R. Holt, Modeling flank wear of carbide tool insert in metalcutting, Wear,2005,(259):1235-1240.
    [74]杨振朝,张定华,姚倡锋,TC4钛合金高速铣削参数对表面完整性的影响研究,西北工业大学学报,2009,27:538-543.
    [75]杨世春,汪鸣铮,张银喜,表面质量与光整技术,北京,机械工业出版社,1992.
    [76]杨荣福,董申,金属切削原理,北京,机械工业出版社,1988.
    [77]周泽华,于启勋,金属切削原理,上海,上海科学技术出版社,1993.
    [78]王素玉,高速铣削加工表面质量的研究:[博士学位论文],山东,山东大学,2006.
    [79] P.G. Benardos, G.C. Vosnikaos, Predicting surface roughness in machining: areview, Journal of Machine Tools&Manufacture,2003,43:833-844.
    [80] M. Alauddin, M.A. Bardaie, M.S.J Hashmi, Computer-aided analysis of asurface-roughness model for end milling, Journal of Materials ProcessingTechnology,1995,55:123-127.
    [81] Z.A. Zoya, R. Krishnamurthy, The performance of CBN tools in the machiningof titanium alloys, Journal of Materials Processing Technology,2000,100:80-86.
    [82] M.V. Ribeiro, M.R.V. Moreira, J.R. Ferreira, Optimization of titanium alloy(Ti-6Al-4V) machining, Journal of Materials Processing Technology,2003,143-144:458-463.
    [83] N.A.K.M. Amin, A.F. Ismail, N.M.K. Khairusshima, Effectiveness of uncoatedWC-Co and PCD inserts in end milling of titanium alloy Ti-6Al-4V, Journal ofMaterials Processing Technology,2007,(192):147-158.
    [84]杨振朝,张定华,姚倡锋,高速铣削速度对TC4钛合金表面完整性影响机理,南京航空航天大学学报,2009,41:644-648.
    [85]张雷,高速铣削机理研究:[硕士学位论文],南京,南京理工大学,2002.
    [86]孙忠厚,傅玉灿,刘鹏,PCD刀具高速铣削钛合金表面粗糙度的研究,机械制造,2012,41(6):36-39.
    [87]史兴宽,陈明,张树全,钛合金TC4高速铣削表面完整性的研究,航空制造技术,2001,1:30-32.
    [88]邹浩波,高速切削加工表面粗糙度的研究,[硕士学文论文],昆明,昆明理工大学,2006.
    [89]宋一平,钛合金TC4高速铣削的理论和试验研究,[硕士学文论文],湖南,湖南科技大学.
    [90]田刚,钛合金高速切削过程中的切削力和表面粗糙度建模及参数优化,[硕士学文论文],山东,山东大学,2003.
    [91] W. Wang, S.H. Kweon, S.H. Yang, A study on roughness of the micro-end-milledsurface produced by a miniatured machine tool, Journal of Materials ProcessingTechnology,2005,162-163:702-708.
    [92] M.C. Kang, I.W Park, K.H. Kim, Performance evaluation of AIP-TiALN coatedtool for high speed machining, surface and coatings technology,2003,163-164:734-738.
    [93] A.R.C. Sharman, J.J. Hughes, K. Ridgway, Workpiece surface integrity and toollife issues when turning Inconel718nickel based superalloy, Machining Scienceand Technology,2004,8(3):399-414.
    [94] A. Ginting, M. Nouari, Surface integrity of dry machined titanium alloys,International Journal of Machine Tools and Manufacture,2009,49:325-332.
    [95] C.H. Che-Haron, A. Jawaid, The effect of machining on surface integrity oftitanium alloy Ti-6%Al-4%V, Journal of Materials Processing Technology,2005,166:188-192.
    [96] E. Kilickap, O.C. CkIr, M. Aksoy, Study of tool wear and surface roughness inmachining of homogenised SiC-preinforced aluminium metal matrix composite,Journal of Materials Processing Technology,2005,(164):862-867.
    [97] S. Ekinovi, S. Dolin ek, E. Begovi, Machinability of90MnCrV8steel duringhigh-speed machining, Journal of Materials Processing Technology,2005,(162-163):603-608.
    [98] H.A. Kishawy, M. Dumitrescu, E.G. Ng, Effect of coolant strategy on toolperformance chip morphology and surface quality during high-speed machiningof A356aluminum alloy, Journal of Machine Tools&Manufacture,2005,(45):219-227.
    [99]李亮,何宁,高速铣削铝合金时切削力和表面质量影响因素的试验研究,工具技术,2002,36:16-19.
    [100]储成龙,钛合金铣削表面粗糙度预测建模,[硕士学文论文],南京,南京航空航天大学,2010.
    [101]张为,高速切削钛合金薄壁件表面完整性及型面变形预测,[博士学文论文],哈尔滨,哈尔滨理工大学,2011.
    [102]姚倡锋,武导侠,TB6钛合金高速铣削表面粗糙度与表面形貌研究,航空制造技术,2012,21:91-97.
    [103]M.B. Mhamdi, M. Boujelbene, E. Bayraktar, Surface Integrity of Titanium AlloyTi-6Al-4V in Ball end Milling,2012International Conference on Solid StateDevices and Materials Science Physics Procedia,2012,(25):355-362.
    [104]杨波,新型钛合金切削加工表面完整性及切削参数优化研究,[硕士学文论文],南京,南京航空航天大学,2010.
    [105]J.L. Canteroa, M.M. Tardiob, J.A. Marcosc, Dry drilling of alloy Ti-6Al-4V,International Journal of Machine Tools&Manufacture,2005,(45):1246-1253.
    [106]任开强,高强度钛合金的高速铣削研究,[硕士学文论文],南京,南京航空航天大学,2003.
    [107]H.H. SU, P. Liu, Y.C. Fu, Tool Life and Surface Integrity in High-speed Millingof Titanium Alloy TA15with PCD/PCBN Tools, Chinese Journal of Aeronautics2012,(25):784-790.
    [108]张义平,秦义,钛合金高速铣削表面完整性研究,机械设计与制造,2006,9:106-108.
    [109]E.O. Ezugwu, J. Bonneya, R.B.D. Silvab, Surface integrity of finished turnedTi-6Al-4V alloy with PCD tools using conventional and high pressure coolantsupplies, Journal of Machine Tools&Manufacture,2007,(47):884-891.
    [110]魏树国,BT20钛合金低温切削机理的研究,[硕士学文论文],辽宁,辽宁工程技术大学,2003.
    [111]E.K. Henriksen, Residual stresses in machined surfaces, Transactions of theASME,1951,73(1):18-27.
    [112]C.R. Liu, M.M. Barash, The mechanical state of the sub-layer of a surfacegenerated by chip-removal process part l: cutting with a sharp tool, Transactionsof the ASME1976,11:1192-1201.
    [113]C.R. Liu, M.M. Barash, The mechanical state of the sub-layer of a surfacegenerated by chip-removal process part2: cutting with a tool with flank wear,Transactions of the ASME,1976,11:1202-1208.
    [114]Y. Matsumoto, M.M. Barash, C.R. Liu, Effect of hardness on the surfaceintegrity of AISI4340steel, Journal of Engineering for Industry,1986,108(1):69-75.
    [115]E. Brinksmeier, Residual stresses in hard metal cutting, Residual StressesScience Technology,1987,(2):839-847.
    [116]Y. Kono, A. Hara, S. Yazu, Cutting performance of sintered CBN tools Cuttingtool materials, Proceedings of the International Conference, American Societyfor Metals,1980,9:218-295.
    [117]E. Schreiber, H. Schlicht, Residual stresses after turning of hardened, ResidualStresses Science Technology,1987,2:853-860.
    [118]H.K. Tonshoff, H.C Wobker, D. Brandt, Tribological aspects of hard turningwith ceramic tools, Journal of the Society of Tribologists and LubricationEngineers,1995,51:163-168.
    [119]M. Jacobson, Surface integrity of hard-turned M50steel. Proceedings of theMechanical Engineers, Part B: Journal of Engineering Manufacture,2002,216(1):47-54.
    [120]Norihiko Narutaki, Akio Murakoshi, Suguru Motonishi, Study on Machining ofTitanium Alloys, CIRP Annals-Manufacturing Technology,1983,32(1):65-69.
    [121]X.P. Yang, C.R. Liu, A.F. Grandt, An experimental study on fatigue life variance,residual stress variance, and their correlation of face-turned and groundTi-6Al-4V samples, Journal of manufacture science and engineering,2002,124:809-819.
    [122]A.L. Mantle, D.K. Aspinwall, Surface integrity of a high speed milled gammatitanium aluminide, Journal of Materials Processing Technology,2001,118:143-150.
    [123]B.R. Sridhar, G. Devananda, K. Ramachandra, Effect of machining parametersand heat treatment on the residual stress distribution in titanium alloy IMI-834,Journal of Materials Processing Technology,2003,139:628-634.
    [124]L.Chen, T.I.El-Wardany, W.C. Harris, Modeling the effects of flank wear landand chip formation on residual stresses, CIRP Annals-Manufacturing Technology,2004,53(1):95-98.
    [125]陈立国,刘献礼,PCBN刀具切削淬硬GCr15已加工表面完整性的试验研究,哈尔滨理工大学学报,1999,4(8):43-46.
    [126]孔庆华,于云鹤,车削加工残余应力的试验研究,同济大学学报,1999,27(5):449-552.
    [127]孔庆华,曹金海,刨削加工残余应力的试验研究,同济大学学报,2004,4:23-25.
    [128]胡华南,周泽华,陈澄洲,切削加工表面残余应力的理论预测,中国机械工程,1995,6(1):48-51.
    [129]胡华南,周泽华,陈澄洲.预应力加工表面残余应力的理论分析,华南理工大学学报,1994,22(2):17-26.
    [130]程足发,预应力高速铣削钛合金抗疲劳加工基础研究:[硕士学位论文],南京:南京航空航天大学,2006.
    [131]陈建岭,李剑锋,孙杰,钛合金铣削加工表面残余应力研究,机械强度,2010,32(1):53-57.
    [132]田荣鑫,史耀耀,杨振朝等,TC17钛合金铣削刀具磨损对残余应力影响研究,航空制造技术,2011,1/2:134-138.
    [133]罗秋生,姚倡锋,任军学,TC17钛合金高速铣削参数对表面残余应力影响研究,机械科学与技术,2011,9(30):1500-1503.
    [134]陈建岭,钛合金高速铣削加工机理及铣削参数优化研究:[博士学位论文],山东,山东大学,2009.
    [135]徐孱,车铣加工表面质量的研究:[硕士学位论文],沈阳,沈阳理工大学,2009.
    [136]N. Zlatin, M.E. Merchant, Hardness distribution in chip and machined surfaces,The iron age,1947.
    [137]P. Oxley, Shear angle solutions orthogonal machining, International of Journal ofMachine Tool Design Research,1965,2:219-229.
    [138]T.I. EI-Wardany, H.A. Kishawy, M.A. Elbestawi, Surface Integrity of DieMaterial in High Speed Hard Machining, Part1: Micrographical Analysis.Transactions of the ASME, Journal of Manufacturing Science and Engineering,2000,122(11):620-631.
    [139]T.I. EI-Wardany, H.A. Kishawy, M.A. Elbestawi, Surface Integrity of DieMaterial in High Speed Hard Machining, Part2: Microhardness Variations andResidual Stresses, Transactions of the ASME. Journal of Manufacturing Scienceand Engineering,2000,122(11):632-641.
    [140]A.L. Mantle, D.K. Aspinwall, Surface integrity and fatigue life of turned gammatitanium aluminide, Journal of Materials Processing Technology,1997,72:413-420.
    [141]K.Weinert, D. Biermann, S. Bergmann, Machining of high strength light weightalloys for engine applications, Annals of the CIRP,2007,56(1):105-108.
    [142]Y. Kevin Chou, C.J. Evans, White layers and thermal modeling of hard turnedsurfaces, International Journal of Machine Tools&Manufacture,1999,39:1863-1881.
    [143]Y. Kevin Chou, H. Song, Thermal modeling for white layer predictions in finishhard turning, International Journal of Machine Tools&Manufacture,2005,45:481-495.
    [144]S.S. Bosheh, P.T. Mativenga, White layer formation in hard turning of H13toolsteel at high cutting speeds using CBN tooling, International Journal of MachineTools&Manufacture,2006,46:225-233.
    [145]Q. Shi, N. He, L. Li, Analysis on surface integrity during high speed milling fornew damage tolerant titanium alloy, transaction of Nanjing university ofaeronautics and astronautics,2012,29(3):222-226.
    [146]ISO3685,1993(E): Tool-life testing with single-point turning tools.1993.
    [147]张幼帧,金属切削理论,北京:航空工业出版社,1988,6.
    [148]米谷茂,残余应力的产生和对策,北京:机械工业出版社,1983.
    [149]F. Klocke, S. Hoppe, Mechanisms of chip formation in high speed cutting,H.Schulz, Scientific Fundamentals of HSC, Hanser Press,2001.
    [150]G. Arndt, Ultra-high-speed machining: a review and an analysis of cutting force,Proceedings of the Institution of Mechanical Engineers,1973,(187):625-634.
    [151]A. Sahm, S. Siems, Influence of chip segmentation on cutting force, ScientificFundamentals of HSC,2001.
    [152]舒畅,高速铣削钛合金的切削温度研究:[硕士学位论文],南京,南京航空航天大学,2005.
    [153]Eberhard Abele,何宁,高速加工理论与应用,北京:科学出版社,2010.
    [154]张定铨,何家文,材料中残余应力的X射线衍射分析和作用,西安:西安交通大学出版社,1999.
    [155]袁发荣,伍尚礼,残余应力测试与计算,长沙:湖南大学出版社,1987,8.
    [156]王立涛,许玲萍,张海涛,铣削加工残余应力研究的基本理论和方法.安徽工程科技学院学报,2004,19(2):36-40.
    [157]胡华南,已加工表面残余应力的理论预测及控制,广州,华南理工大学,1993.
    [158]克拉盖尔斯基,摩擦磨损计算原理,北京:机械工业出版社,1982.
    [159]杨桂通,弹性力学,北京:高等教育出版社,2005.
    [160]杨世春,汪鸣铮,张银喜,表面质量与光整技术,北京,机械工业出版社,1992.
    [161]臼井英治,切削磨削加工学,北京:机械工业出版社,1982,12,58-85.
    [162]王祖唐,关廷栋,金属塑性成形理论,北京:冶金工业出版社,1989.
    [163]范继美,位错理论在金属切削加工中的应用,上海:上海交通大学出版社,1991.
    [164]赵永庆,洪权,钛及钛合金金相图谱,长沙:中南大学出版社,2011.
    [165]崔逊学,多目标进化算法及其应用,北京:国防工业出版社,2006.
    [166]郑金华,多目标进化算法及其应用,北京:科学出版社,2007.
    [167]K. Sastry, Single and Multiobjective Genetic Algorithm Toolbox for Matlab inC++, Illinois Genetic Algorithm Laboratory,2007,17:2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700