用户名: 密码: 验证码:
淬火碳钢温变形流变行为与微观组织演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织细化是开发新一代钢铁材料的核心技术,现行组织细化工艺可将铁素体晶粒细化至微米级。为进一步细化钢的组织达到超细晶的目标,需研究新的理论,开发新的技术。
     本文研究目的是通过淬火碳钢在低温低应力下变形制备超细晶钢,并研究其温变形流变行为和变形过程中组织演变特征。
     利用Gleeble-3500热模拟试验机对淬火10、20、T8、T10A和T12钢在Ac1温度以下的温变形流变行为进行了研究,并建立了各碳钢温变形本构关系方程;利用光学显微镜、扫描电镜和透射电镜研究了不同工艺条件下碳钢温变形试样的组织特征;基于加工图理论,建立碳钢温变形能量耗散图和加工图,为温加工工艺制定和优化提供理论依据。
     实验结果表明,随着变形温度的提高和应变速率的降低,淬火碳钢温变形流变应力下降。在较低温度和较高应变速率(600℃,0.1-1s~(-1))下,流变应力随碳含量的增加而增大;在较高温度和较低应变速率下(700℃,0.01-0.001s~(-1)),流变应力在高碳范围内呈下降趋势。碳含量低于0.78wt.%,淬火碳钢温变形激活能随含碳量增加而降低,碳含量高于0.78wt.%时,淬火碳钢温变形激活能随含碳量增加而增加。在相同变形条件下,能量耗散效率最大值随着碳含量的增加呈增大趋势。淬火碳钢温变形可制备出由亚微米级等轴铁素体晶粒和纳米级碳化物颗粒组成的超细晶组织。温变形过程中不仅发生了动态再结晶,同时发生了形变诱导碳化物析出。T12钢马氏体组织温变加工软化率大于退火组织温变形的软化率;马氏体组织软化机制主要为动态再结晶,退火组织温变形软化机制主要是动态回复。加工图表明,T12钢淬火组织失稳区域是能量耗散效率η低于19%的区域,安全区是能量耗散效率η为19%-33%的区域;球化退火组织失稳区域是能量耗散效率η低于21%的区域,安全区是能量耗散效率η为21%-32%的区域。温变形过程促进了短片状碳化物的溶断和颗粒碳化物的细化;碳化物在温变形过程中的细化主要为短片状碳化物的溶断和碳原子的扩散共同作用的结果;短片状碳化物的溶断是由亚晶界处凹槽的扩展导致。淬火T8钢不同变形量温变形后硬度随着变形量的增大呈先降低后增大的趋势,在变形量为50%时,碳化物完全细化,硬度值最低。
Refinement of microstructure is the key technology of new steel, current techniquefor microstructure refinement can just obtain micron-size ferrite grains. In order toproduce ultrafine grain steels,it need new theory and new technology.
     The aim for this dissertation is to obtain ultrafine grain steels by warm deformationof initially quenched steels at low temperature and low flow stress, and investgate thewarm deformation behavior of quenched carbon steels and the microstructure evolutionduring the warm deformation.
     The warm deformation behavior of initially quenched steels, such as10,20, T8,T10A and T12, at temperatures below Ac1was studied by Gleeble-3500thermal simulationmachine, and constitutive equations of the warm deformation were set up. Microstructurecharacteristics during the warm deformation with different processes were examined byoptical microcopy, scanning electron microscopy (SEM) and transmission electronmicroscopy (TEM). Based on the theory of processing map, the power dissipationefficiency and processing maps were established to determine the region of plasticinstability.
     Experiment results show that the flow stress of the warm deformation of the initiallyquenched steels decreases with the deformation temperature elevating and the strain ratereducing. The flow stress increases with the increase of carbon content at low deformationtemperature and high strain rate(600℃,0.1-1s~(-1)); which decrease at high deformationtemperature and low strain rate(700℃,0.01-0.001s~(-1)) with high carbon content. Thewarm deformation activation energy decrease with increase of carbon content(<0.78wt%)and increase with increase of carbon content(>0.78wt%). The maximum of powerdissipation efficiency of warm deformation at strain of0.5increases with increase ofcarbon content at same deformation conditions. Ultrafine microstructures with equiaxialultrafine/submicron-grained ferrite and nano cementite particles can be obtained by warmdeformation of initially quenched steels. Dynamic recrystallization of ferrites andcementites precipitation can be seen during warm deformation of initially quenched steels.The main softening mechanism during warm deformation of initially quenched T12steel is dynamic recrystallization, with higher work-softening effect than that of initiallyspheroidized T12steel, and the power dissipation efficiency of initially quenched steel ishigher tan that of initially spheroidized steel. The warm compression promotes thefragmentation and the spheroidization of lamellar cementites in the initially quenchedsteels. The fragmentation of lamellar cementites was due to the extension ofsub-grainboundary in the cementite, and the spheroidization of cementites depended onthe diffusion of carbon atoms at the tip of bended and breakup cementites. Themicrohardness of initially quenched T8steel after warm deformation shows a trend fromdescent to ascent with the increase of strain, and microhardness reaches minimum at strainof0.5, with fully globularize cementites.
引文
[1]师昌绪.二十一世纪初的材料科学技术[J].中国科学院院刊.2001(02):42-53.
    [2]翁宇庆.超细晶钢—钢的组织细化理论与控制技术[M].北京:冶金工业出版社.2003:4-9..
    [3] Eghbali B, Shaban M. Warm Deformation Microstructure of a Plain Carbon Steel[J]. Journal ofIron and Steel Research, International,2011.18(7):41-46.
    [4] Langdon T.G. The principles of grain refinement in equal-channel angular pressing[J]. MaterialsScience and Engineering: A,2007.462(1–2):3-11
    [5]雍歧龙.微合金钢物理和力学冶金[M].北京:机械工业出版社.1989:338.
    [6] Kumar K.S, H Van Swygenhoven, S Suresh. Mechanical behavior of nanocrystalline metals andalloys[J]. Acta Materialia.2003,51(19):5743-5774.
    [7] Hidaka H, Tsuchiyama T, Takaki S. Relation between microstructure and hardness in Fe-C alloyswith ultra fine grained structure[J]. Scripta Materialia,2001.44(8–9):1503-1506.
    [8] Liu M.Y, Shi B, Wang C, et al.Normal Hall–Petch behavior of mild steel with submicrongrains[J].Materials Letters,2003,57(19):2798-2802.
    [9] Majta J, Muszka K. Mechanical properties of ultra fine-grained HSLA and Ti-IF steels[J].Materials Science and Engineering: A,2007,464(1–2):186-191.
    [10] Zhao M, Li J.C, Jiang Q. Hall–Petch relationship in nanometer size range[J]. Journal of Alloys andCompounds,2003.361(1–2):160-164.
    [11] Hahn H, Mondal P, Padmanabhan K.A. Plastic deformation of nanocrystalline materials[J].Nanostructured Materials,1997,9(1–8):603-606.
    [12] Han B.Q, Yue S. Processing of ultrafine ferrite steels[J]. Journal of Materials ProcessingTechnology,2003,136(1–3):100-104.
    [13] Zaichenko S, Glezer A. Disclination mechanism for plastic deformation of nanocrystallinematerials[J]. Physics of the Solid State,1997,39(11):1810-1814.
    [14] Arzt E. Size effects in materials due to microstructural and dimensional constraints: a comparativereview[J]. Acta Materialia,1998,46(16):5611-5626.
    [15]范建文.800MPa级低合金钢超细晶组织与力学性能研究[D].2000.[钢铁研究总院博士后论文].35-38.
    [16] Okitsu Y. Takata N, Tsuji N. A new route to fabricate ultrafine-grained structures in carbon steelswithout severe plastic deformation[J]. Scripta Materialia,2009,60(2):76-79.
    [17] Hurley P.J, Hodgson P.D. Formation of ultra-fine ferrite in hot rolled strip: potential mechanismsfor grain refinement[J]. Materials Science and Engineering: A,2001,302(2):206-214.
    [18] Koch C.C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals[J].Scripta Materialia,2003,49(7):657-662.
    [19] Cheng S, Spencer J.A, Milligan W.W. Strength and tension/compression asymmetry innanostructured and ultrafine-grain metals[J]. Acta Materialia,2003,51(15):4505-4518.
    [20] Kim S.I, Yong D.L, Yoo Y.C. Prediction of the Flow Stress Curves in Austenitic Stainless Steels[J].Materials Science Forum,2003,426-432:1071-1076.
    [21] Valiev R. Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plasticdeformation[J]. JOM,2006,58(4):33-39.
    [22] Valiev R.Z, Langdon T.G. Principles of equal-channel angular pressing as a processing tool forgrain refinement[J]. Progress in Materials Science,2006,51(7):881-981.
    [23] Liu M, Shi B, Bi G, et al. A submicron mild steel produced by simple warm deformation[J].Materials Science and Engineering: A,2003,360(1–2):101-106.
    [24]董瀚.先进钢铁材料[M].北京:科学出版社.2008:16.
    [25] Zhao M.C, Yang K, Shan Y. The effects of thermo-mechanical control process on microstructuresand mechanical properties of a commercial pipeline steel[J]. Materials Science and Engineering: A,2002,335(1–2):14-20.
    [26]袁武华,周恒,傅强.控轧控冷工艺参数对B微合金化中碳钢组织的影响[J].特殊钢,2010,31(5):55-57.
    [27]钟金红. WSM30A控轧控冷工艺研究[J].宽厚板,2007,13(1):27-30.
    [28]韩宝军,徐洲.钢铁晶粒超细化方法及其研究进展[J].材料导报,2010,24(1):99-103.
    [29]孟光,刘东雨.超细晶晶粒细化处理工艺的研究现状[C].北京:[华北电力大学第五届研究生学术交流年会论文集].2007:1-6.
    [30] Valiev R.Z, Korznikov A.V, Mulyukov R.R. Structure and properties of ultrafine-grained materialsproduced by severe plastic deformation[J]. Materials Science and Engineering: A,1993,168(2):141-148.
    [31] Segal V.M, Reznilkov V.I, Drobyshekij A.E. Plastic Working of Metals by Simple Shear[J].Materials Science and Engineering: A,1995,197(2):157-164.
    [32] Neishi K, Horita Z, Langdon T.G. Achieving superplasticity in a Cu–40%Zn alloy through severeplastic deformation[J]. Scripta Materialia,2001,45(8):965-970.
    [33] Horita Z, Furukawa M, Nemoto, M, et al. Superplastic forming at high strain rates after severeplastic deformation[J]. Acta Materialia,2000,48(14):3633-3640.
    [34]廉晓洁. Gleeble-3800热/力模拟系统的性能特点及使用[J].大型铸锻件,2005,3:43-45.
    [35]郑芳,宋红梅. Gleeble3800热模拟试验机在宝钢的典型应用与功能开发[J].宝钢技术,2003,5:29-32.
    [36] Ivanisenko Y, Wunderlich R.K, Valiev R.Z, et al. Annealing behaviour of nanostructured carbonsteel produced by severe plastic deformation[J]. Scripta Materialia,2003,49(10):947-952.
    [37] Costa A.L.M, Reis A.C.C, Kestens L, et al. Ultra grain refinement and hardening of IF-steel duringaccumulative roll-bonding[J]. Materials Science and Engineering: A,2005,406(1–2):279-285.
    [38] Xiong Y, Sun S, Li Y, et al. Effect of warm cross-wedge rolling on microstructure and mechanicalproperty of high carbon steel rods[J]. Materials Science and Engineering: A,2006,431(1–2):152-157.
    [39]黄斌,王永善,王占领.40Cr钢晶粒超细化工艺研究[J].热处理,2006,21(4):34-36.
    [40]杜忠泽,冯广海,符寒光. ECAP变形与材料组织性能控制的研究[J].材料工程,2006(03):64-68
    [41] Shin D.H, Kim B.C, Kim Y.S, et al. Microstructural evolution in a commercial low carbon steel byequal channel angular pressing[J]. Acta Materialia,2000,48(9):2247-2255.
    [42]范建文,易敏,孟振生.普通碳锰钢的中温变形研究[M].北京:[中国钢铁年会论文集]2003:2322-2326.
    [43]李维娟,张红梅,杜林秀.中温加工对低碳钢显微组织的影响[J].钢铁研究,2000,05:44-46.
    [44]黄俊霞,王经涛,张郑.珠光体组织的等径弯曲通道变形[J].材料研究学报,2005,2:200-206.
    [45] Storojeva L, Kaspar R, Ponge D. Effects of heavy warm deformation on microstructure andmechanical properties of a medium carbon ferritic-pearlitic steel[J]. Iron and Steel Institute ofJapan. Tokyo.2004:6.
    [46] Ueji R, Fujii H, Cui L, et al. Friction stir welding of ultrafine grained plain low-carbon steelformed by the martensite process[J]. Materials Science and Engineering: A,2006,423(1–2):324-330.
    [47]黄睿,张静武,缑慧阳.冷轧15钢高压再结晶组织的TEM分析[J].物理测试,2006,24(3):1-4.
    [48] Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and ironproduced by ARB and annealing[J]. Scripta Materialia,2002,47(12):893-899.
    [49] Liu J, Chang H.B, Hsu T.Y, et al. Prediction of the flow stress of high-speed steel during hotdeformation using a BP artificial neural network[J]. Journal of Materials Processing Technology,2000,103(2):200-205.
    [50]刘芳,单德彬,吕炎.2A70铝合金本构关系的新模型[J].哈尔滨工业大学学报,2005,37(4):449-450,517.
    [51] He X, Yu Z, Lai X. A method to predict flow stress considering dynamic recrystallization duringhot deformation[J]. Computational Materials Science,2008,44(2):760-764.
    [52] Huang Y.D, Yang W.Y, Sun Z.Q. Formation of ultrafine grained ferrite in low carbon steel byheavy deformation in ferrite or dual phase region[J]. Journal of Materials Processing Technology,2003,134(1):19-25.
    [53]张斌,张鸿冰.20CrMnTi结构钢热变形行为及其数学模型[J].上海交通大学学报,2003,37(12):1826-1830.
    [54] Murty S.V, Torizuka S, Nagai K, et al. Dynamic recrystallization of ferrite during warmdeformation of ultrafine grained ultra-low carbon steel[J]. Scripta Materialia,2005,53(6):763-768.
    [55]熊毅,傅万堂,厉勇.高碳钢的温变形行为[J].钢铁研究学报,2007,5:58-62.
    [56]李治华,许云波,吴迪. C-Mn钢高温变形过程再结晶及位错密度的研究[J].钢铁研究,2004,4:35-38.
    [57] Rao K.P, Prasad Y.K.D.V, Hawbolt E.B. Hot deformation studies on a low-carbon steel: Part1-flow curves and the constitutive relationship[J]. Journal of Materials Processing Technology,1996,56(1–4):897-907.
    [58]蔺永诚,陈明松,钟掘.42CrMo钢的热压缩流变应力行为[J].中南大学学报(自然科学版),2008,39(3):549-553.
    [59] Smith A.W.F. Ultra-Fine Grained High Carbon Steel by Innovative Deformation[J]. MaterialsScience Forum,2007,550:301-306.
    [60] Oudin A, Barnett M.R, Hodgson P.D. Grain size effect on the warm deformation behaviour of aTi-IF steel[J]. Materials Science and Engineering: A,2004,367(1–2):282-294.
    [61]张麦仓,董建新,曾燕屏. Q235低碳钢高温变形过程的动态组织演化分析[J].北京科技大学学报,2005,27(2):183-186.
    [62] Luo G, Wu J.S, Fan J.F, et al. Deformation behavior of an ultrahigh carbon steel (UHCS-3.0Si) atelevated temperature[J]. Materials Science and Engineering: A,2004,379(1–2):302-307.
    [63]苏连锋,王昭东,刘相华.用蠕变方程建立高强微合金钢的流变应力预测模型[J].钢铁研究,2002,30(2):23-26.
    [64] Kim S.I, Lee Y, Byon S.M. Study on constitutive relation of AISI4140steel subject to large strainat elevated temperatures[J]. Journal of Materials Processing Technology,2003,140(1–3):84-89.
    [65] Huang C, Hawbolt E.B, Chen X, et al. Flow stress modeling and warm rolling simulation behaviorof two Ti–Nb interstitial-free steels in the ferrite region[J]. Acta Materialia,2001,49(8):1445-1452.
    [66]戴铁军,刘战英,刘相华.30MnSi钢金属塑性变形抗力的数学模型[J].塑性工程学报,2001,8(3):17-20.
    [67]魏立群. B30MnSi钢的动态再结晶行为[J].特殊钢,2005,26(4):13-15.
    [68]王艳,王明家,蔡大勇.高强度奥氏体不锈钢的热变形行为及其热加工图[J].材料热处理学报,2005,26(4):65-68.
    [69]杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒尺寸的控制[J].金属学报,2000,35(10):1050-1054.
    [70] Prangnell P.B, Bowen J.R, Apps P.J. Ultra-fine grain structures in aluminium alloys by severedeformation processing[J]. Materials Science and Engineering: A,2004,375–377(0):178-185.
    [71] Nambu S, Michiuchi M, Ishimoto Y, et al. Transition in deformation behavior of martensitic steelduring large deformation under uniaxial tensile loading[J]. Scripta Materialia,2009,60(4):221-224.
    [72] Tsuji N, Kamikawa N, Minamino Y. Effect of Strain on Deformation Microstructure andSubsequent Annealing Behavior of IF Steel Heavily Deformed by ARB Process[J]. MaterialsScience Forum,2004,467-470:341-348.
    [73]王昭东,刘相华,王国栋. Ti-IF钢铁素体区热变形行为研究和Zener-Hollomen参数方程的建立[J].材料科学与工艺,2000,8(4):6-10.
    [74]齐俊杰,杨王玥,孙祖庆.低碳钢过冷奥氏体形变过程中的组织及取向变化[J].金属学报,2002,38(6):629-634
    [75]谭洪锋,杨王玥,陈国安.初始组织形态对中碳钢温变形组织演变的影响[J].北京科技大学学报,2008,30(4):368-373.
    [76] Hayakawa M, Matsuoka S, Furuya Y. Nanoscopic measurement of local plastic deformation for atempered martensitic steel by atomic force microscopy[J]. Materials Letters,2003,57(20):3037-3042.
    [77]冯广海,杜忠泽,王经涛, et al. ECAP温变形碳素钢中铁素体晶粒的细化机制[J].材料研究学报,2011.25(2):151-157.
    [78]赵新,荆天辅,高聿为.板条马氏体大变形轧制工艺的晶粒细化机制[J].钢铁研究学报,2004,16(6):69-73
    [79]高聿为,荆天辅,赵新.09MnNiD钢马氏体大压下量温轧及低温退火后的组织与力学性能[J].金属热处理,2005,30(12):5-8
    [80] Lan H.F, Liu W.J, Liu X.H. Ultrafine Ferrite Grains Produced by Tempering Cold-rolledMartensite in Low Carbon and Microalloyed Steels[J]. ISIJ International,2007,47(11):1652-1657.
    [81] Belyakov A, Miura H, Sakai T. Dynamic recrystallization under warm deformation of a304typeaustenitic stainless steel[J]. Materials Science and Engineering: A,1998,255(1–2):139-147.
    [82]李龙飞,杨王玥,孙祖庆.低碳钢在Ac1点以下温度变形时的铁素体动态再结晶[J].金属学报,2003,39(4):419-425
    [83]李龙飞,杨王玥,孙祖庆.原始晶粒尺寸对低碳钢中铁素体动态再结晶的影响[J].金属学报,2004,40(2):141-147.
    [84] Eghbali B, Abdollah A. Deformation-induced ferrite transformation in a low carbon Nb–Timicroalloyed steel[J]. Materials&Design,2007,28(3):1021-1026.
    [85] Beladi H, Hodgson P.D. Effect of carbon content on the recrystallization kinetics of Nb-steels[J].Scripta Materialia,2007,56(12):1059-1062.
    [86]陈国安,杨王玥,郭守真.低碳微量铌钢形变过程中动态相变的特点[J].材料热处理学报,2006,27(6):89-94.
    [87]宋洪伟.微米、亚微米与纳米超细晶粒钢的研究进展[J].世界科技研究与发展,2002,24(5):31-34.
    [88] Poorganji B, Miyamoto G, Maki T, et al. Formation of ultrafine grained ferrite by warmdeformation of lath martensite in low-alloy steels with different carbon content[J]. ScriptaMaterialia,2008,59(3):279-281.
    [89] Syn C.K, Donald R.L, Sherby D, et al. Stress-Strain Rate Relations in Ultrahigh Carbon SteelsDeformed in the Ferrite Range of Temperature[J]. Materials Science Forum,2003,426-432:853.
    [90]蔺永诚,陈明松,钟掘.形变温度对42CrMo钢塑性成形与动态再结晶的影响[J].材料热处理学报,2009,30(1):70-74.
    [91] Furukawa M, Horita Z, Nemoto M, et al.The use of severe plastic deformation for microstructuralcontrol[J]. Materials Science and Engineering: A,2002,324(1–2):82-89.
    [92] Tian Y, Li Z. Effects of Warm Deformation on Mechanical Properties of TRIP Aided Fe-C-Mn-SiMultiphase Steel[J]. Journal of Iron and Steel Research, International,2012.19(6):47-52.
    [93]荆天辅,付万堂,张静武.塑性变形诱发内生复合板的强化机制[J].物理测试,1997,1:17-21
    [94]大森章夫,高宏适,曹涵清.中温轧制法试制超细铁素体-渗碳体组织钢板的性能[J].世界钢铁,2004,4(2):20-26.
    [95]曹乃光.金属塑性加工原理[M].北京:冶金工业出版社.1983,第1版:76-82.
    [96]周继锋,荆天辅,高聿为.中碳钢马氏体组织温塑性变形力学行为[J].钢铁研究学报,2007,19(3):45-48.
    [97] Yanagida A, Yanagimoto J. A novel approach to determine the kinetics for dynamicrecrystallization by using the flow curve[J]. Journal of Materials Processing Technology,2004,151(1–3):33-38
    [98] Li Q, Wang T.S, Li H.B, et al. Warm Deformation Behavior of Steels Containing Carbon of0.45%to1.26%With Martensite Starting Structure[J]. Journal of Iron and Steel Research, International,2010.17(5):34-37.
    [99]周纪华,管克智.金属塑性变形阻力[M].北京:机械工业出版社,1989:59-98.
    [100]Sellars C.M, McTegart W.J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14(9):1136-1138.
    [101]Jin N, Zhang H, Han Y, et al. Hot deformation behavior of7150aluminum alloy duringcompression at elevated temperature[J]. Materials Characterization,2009,60(6):530-536.
    [102]Luton M.J, Sellars C.M. Dynamic recrystallization in nickel and nickel-iron alloys during hightemperature deformation[J]. Acta Metallurgica,1969,17(8):1033-1043.
    [103]Pilehva F, Zarei-Hanzaki A, Ghambari M, et al. Flow behavior modeling of a Ti–6Al–7Nbbiomedical alloy during manufacturing at elevated temperatures[J]. Materials&Design,2013,51(0):457-465.
    [104]Zener C. Relaxation phenomena in metals[J]. Physica,1949,15(1–2):111-118.
    [105]曾卫东,周义刚,周军.加工图理论研究进展[J].稀有金属材料与工程,2006,35(5):673-677.
    [106]Ravichandran N, Prasad Y.V.R.K. Dynamic recrystallization during hot deformation of aluminum:A study using processing maps[J]. Metallurgical Transactions A,1991,22(10):2339-2348.
    [107]Raj R. Development of a Processing Map for Use in Warm-Forming and Hot-FormingProcesses[J]. Metallurgical Transactions A,1981,12(6):1089-1097.
    [108]Prasad Y.V.R.K, Gegel H.L, Malas J.C, et al. Modeling of dynamic material behavior in hotdeformation: Forging of Ti-6242[J]. Metallurgical Transactions A,1984,15(10):1883-1892.
    [109]Semiatin S.L, Thomas J.F, Dadras P. Processing-microstructure relationships forTi-6Al-2Sn-4Zr-2Mo-0.1Si[J]. Metallurgical Transactions A,1983,14(11):2363-2374.
    [110]Venugopal S, Sivaprasad P.V, Vasudevan M, et al. Validation of processing maps for304Lstainless steel using hot forging, rolling and extrusion[J]. Journal of Materials ProcessingTechnology,1996,59(4):343-350.
    [111]Sun Y, Zeng W.D, Zhao Y.Q, et al. Constructing processing map of Ti40alloy using artificialneural network[J]. Transactions of Nonferrous Metals Society of China,2011,21(1):159-165.
    [112]Padmavardhani D, Prasad Y.V.R.K. Characterization of hot deformation behavior of brasses usingprocessing maps: Part I. α Brass[J]. Metallurgical Transactions A,1991,22(12):2985-2992.
    [113]Cavaliere P, Evangelista E. Isothermal forging of metal matrix composites: Recrystallizationbehaviour by means of deformation efficiency[J]. Composites Science and Technology,2006,66(2):357-362.
    [114]Prasad Y.V.R.K. Recent advances in the science of mechanical processing[J]. Indian J Tech,1990,28:435-451.
    [115]Ziegler H. Progress in Solid Mechanics[M]. New York: Wiley Press,1963,Vol.1:154-159Prasad Y.V.R.K. Processing maps: A status report[J]. Journal of Materials Engineering andPerformance,2003,12(6):638-645.
    [116]Venugopal S, Sivaprasad P.V. A journey with prasad’s processing maps[J]. Journal of MaterialsEngineering and Performance,2003,12(6):674-686.
    [117]Venugopal S, Mannan S.L, Prasad Y.V.R.K. Optimization of cold and warm workability instainless steel type AISI316L using instability maps[J]. Journal of Nuclear Materials,1995,227(1–2):1-10.
    [118]薛克敏,段园培,李萍. TB8钛合金的热变形行为及加工图[J].材料工程,2007(z1):57-60.
    [119]张艳,党紫九.影响流变应力曲线测试的因素[J].北京科技大学学报,1997,19(1):117-121.
    [120]黄光杰,程虎.3104铝合金流变应力行为[J].重庆大学学报(自然科学版),2007,30(1):70-72.
    [121]张红钢,张辉,刘婉容. C194铜合金热压缩变形流变应力[J].湘潭大学自然科学学报,2003,25(3):82-86.
    [122]张胜华,肖荫果,章冰. HAL62-3-3-0.7合金的高温本构方程[J].中南工业大学学报(自然科学版),2002,33(5):491-494
    [123]Switzner N.T, Van Tyne C.J, Mataya M.C. Effect of forging strain rate and deformationtemperature on the mechanical properties of warm-worked304L stainless steel. Journal ofMaterials Processing Technology[J],2010.210(8):998-1007.
    [124]Niechajowicz A, Tobota A. Warm deformation of carbon steel[J]. Journal of Materials ProcessingTechnology,2000,106(1–3):123-130.
    [125]Shi J, Liu C.R. Flow stress property of a hardened steel at elevated temperatures with temperingeffect[J]. International Journal of Mechanical Sciences,2004,46(6):891-906.
    [126]张治民,杨卓越,张宝红.20CrMnTi钢温变形流变应力和组织变化研究[J].塑性工程学报,2000,7(02):9-11.
    [127]Wray P.J. Effect of carbon content on the plastic flow of plain carbon steels at elevatedtemperatures[J]. Metallurgical Transactions A,1982,13(1):125-134.
    [128]荆天辅,王明智,许守廉.15CrMnMoV钢分层致韧效应的研究[J].钢铁,1992,27(2):44-48.
    [129]Jing T.F, Zhang F.C. The work-hardening behavior of medium manganese steel under impactabrasive wear condition[J]. Materials Letters,1997,31(3–6):275-279.
    [130]Courtney T.H. Mecanical Behavior of Materials[M]. Beijing: Machine Press,2004, Vol.167:46-121.
    [131]Krasilnikov N, Lojkowski W, Pakiela Z, et al. Tensile strength and ductility of ultra-fine-grainednickel processed by severe plastic deformation[J]. Materials Science and Engineering: A,2005,397(1–2):330-337.
    [132]Azushima A, Kopp R, Korhonen A, et al.Severe plastic deformation (SPD) processes for metals[J].CIRP Annals-Manufacturing Technology,2008,57(2):716-735.
    [133]Krauss G. Martensite in steel: strength and structure[J]. Materials Science and Engineering: A,1999,273–275(0):40-57.
    [134]Meyrick G, Powell G.W. Phase Transformations in Metals and Alloys[J]. Annual Review ofMaterials Science,1973,3(1):327-362.
    [135]Fukuda Y, Oh-ishi K, Horita Z, et al. Processing of a low-carbon steel by equal-channel angularpressing[J]. Acta Materialia,2002,50(6):1359-1368.
    [136]戚运莲. Ti600高温钛合金的热变形行为及加工图研究[D].[西北工业大学工学硕士学位论文].2007:41-46.
    [137]张玲,薛春霞,杨王玥.粗晶奥氏体HTP钢中形变诱导析出的定量研究[J].金属学报,2007,43(8):791-796.
    [138]Sangid M.D, Ezaz Tawhid, Sehitoglu Huseyin, et al. Energy of slip transmission and nucleation atgrain boundaries[J]. Acta Materialia,2011,59(1):283-296.
    [139]Cao B, Joshi S.P, Ramesh K.T. Strengthening mechanisms in cryomilled ultrafine-grainedaluminum alloy at quasi-static and dynamic rates of loading[J]. Scripta Materialia,2009,60(8):619-622.
    [140]Siegel R.W. Synthesis and properties of nanophase materials[J]. Materials Science andEngineering: A,1993,168(2):189-197.
    [141]Hase K, Tsuji N. Effect of initial microstructure on ultrafine grain formation through warmdeformation in medium-carbon steels[J]. Scripta Materialia,2011.65(5):404-407.
    [142]Rao K.P, Prasad Y.V.R.K, Suresh K. Hot working behavior and processing map of a γ-TiAl alloysynthesized by powder metallurgy[J]. Materials&Design,2011,32(10):4874-4881.
    [143]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1988:290-295.
    [144]杨仁山.45号钢快速循环球化退火的研究[J].上海金属,1994,16(6):42-45.
    [145]陈皓.碳素工具钢的球化处理新工艺[J].金属热处理,1990,8:42-43.
    [146]Storojeva L, Kaspar R, Ponge D. Ferritic-Pearlitic Steel with Deformation Induced SpheroidizedCementite[J]. Materials Science Forum,2003,426-432:1169-1174.
    [147]王泾文,王雄文,马本骥.温变形对碳钢组织细化的作用[J].安徽机电学院学报,1999,14(4):10-13.
    [148]封秀敏,王宝奇,谷南驹.中温变形对圆环链用钢23MnNiCrMo54组织的影响[J].钢铁研究学报,2005,17(3):42-46.
    [149]Harrigan M.J, Sherby O.D. Kinetics of spheroidization of a eutectoid composition steel asinfluenced by concurrent straining[J]. Materials Science and Engineering,1971,7(4):177-189.
    [150]Porter L.F, Rosenthal P.C. Effect of applied tensile stress on phase transformations in steel[J].Acta Metallurgica,1959,7(7):504-514.
    [151]Wang B, Song X, Peng H. Design of a spheroidization processing for ultrahigh carbon steelscontaining Al[J]. Materials&Design,2007,28(2):562-568.
    [152]Champagne B, Angers M.B. R. Metallography of boron carbide[J]. Metallography,1976,9:357-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700