用户名: 密码: 验证码:
铜材料的激光表面强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜及铜合金因其优异的导电导热性能而广泛应用于电子、电力、冶金、航空航天等工业领域。但是铜的强度较低,不能完全满足工业应用,尤其是一些极端条件下使用的零部件,如电磁炮导轨、高铁机车电力线等。强度的提高一直是铜合金研究的主要方向,传统方法制备的铜合金在强度显著提高的同时,却是以牺牲其导电性能为代价的,且导电性随着合金化程度的提高而降低;而表面改性技术则可以实现增强表面强度且保持铜合金整体的高导电性,激光技术在众多表面改性技术中因其独特的优势而具有较强的竞争力,已广泛应用于工业制造领域中。但目前利用激光技术对铜合金进行表面强化的研究较少,主要受铜的光反射率高、导热快等特性影响。因此,如何寻找或改进工艺,有效地提高铜材料表面强度是目前激光强化铜合金技术研究的重点。
     本论文研究目的是利用激光技术对纯铜进行表面强化,使其兼具表面高耐磨性和整体高导电性。基于此,通过对激光表面强化的工艺设计,选择相对激光熔覆而言对导电性影响更小的激光合金化工艺,并使用预置粉末法来提高基体的光吸收;根据合金化材料的选择原则使用润湿性较好的Ni基合金粉末作为强化材料。通过大量前期实验进行工艺优化,获得了最佳参数,不同样品尺寸对应的工艺参数略有不同,重点研究了扫描速度对合金强化层的组织和性能的影响。在此基础上,使用Ni基合金对纯铜进行表面强化,然后利用激光原位合成技术分别将两种陶瓷颗粒(TaC和NbC)加入Ni基合金强化层以提高其耐磨性,分析了不同合金强化层的组织特征和形成机理,研究了样品的显微硬度、耐磨性能和导电性能的变化。主要结论如下:
     1.通过预涂粉末方法提高纯铜对CO2激光的吸收,有效完成铜基材的激光表面强化,工艺参数:基材尺寸50mm×30mm×5mm,激光功率2.2kW,扫描速度4mm/s,离焦量50mm,预涂层厚度0.9mm,搭接率40%。而在基材尺寸为50mm×25mm×5mm,只需激光功率改为2kW即可。
     2.扫描速度是本论文工艺中的关键参数,随扫描速度在一定范围内的增加,晶粒细化,硬度提高,合金化程度高,稀释率大,因此可以制备出表面高耐磨的高导电铜基材料。
     3.强化层均无裂纹,组织细小、致密,均匀弥散分布在基体中,具有典型的快速凝固特征。(Cu, Ni, Fe)固溶体的形成表明Ni基合金与铜材料有很好的浸润性,为冶金结合。
     4.Ni合金强化层的平均硬度高达HV0.1650,是纯铜基材的7倍;耐磨性提高了4倍,主要是颗粒强化、固溶强化和细晶强化共同作用的结果。而两种陶瓷颗粒强化层的硬度和耐磨性均有显著提高,其中TaC颗粒强化层效果更好,平均硬度是Ni基合金强化层的1.56倍;磨损失重仅为Ni基合金强化层的2/5。这主要归因于原位生成的细小的高硬度的陶瓷颗粒及其弥散分布。
     5.激光表面强化技术并未使铜基材的导电性能明显降低,而导电性能的下降程度取决于合金化程度(稀释率)的影响,稀释率大,则导电率高,合适的稀释率可以保持导电率在90%IACS以上。因此,优化工艺参数控制合适的稀释率是制备出表面高耐磨高导电铜基复合材料的关键。
     6.铜材料的导电性能主要受Ni基合金的影响,而受陶瓷颗粒的加入影响很小。不同的陶瓷颗粒对导电性能的影响有所差别,就本文两种陶瓷颗粒比较而言,NbC颗粒的加入影响略小。适量加入陶瓷颗粒可以大幅提高铜材料的表面性能而对导电性能仅有微小的影响,为制备陶瓷颗粒增强表面改性铜基复合材料提供了实验基础。
     7.相对于其他表面技术,激光表面强化使合金层与基材形成了牢固的冶金结合,而且极大地提高了表面性能,甚至赋予表面特殊性能,扩大了铜合金的应用范围,具有很好的经济效益和应用前景。
Copper and its alloys with excellent electrical and thermal conductivity are widely applied to electronics, electricity, metallurgy, aerospace industrial fields, etc. However, the low strength of copper are unable to meet all the requirements of the applications in industry, especially the parts used in extreme conditions, such as the conducting rails of electromagnetic railgun, contact wires for high speed electric railway, etc. The enhancement of strength is always primary investigation in copper alloys. Copper alloys prepared by traditional methods have the strength enhanced at the expense of its conductive properties, which lowers with increasing the strength of alloys. Surface modification technique (SMT) attracts wide attentions due to enhanced surface strength and remaining high conductive properties of the integral copper alloy. In all SMTs, laser technique possesses stronger competition and is widely used in the industrial manufacturing field. Whereas, so far, the investigation of employing laser technique to enhance the strength of copper alloys is relatively less because of high reflection and rapid thermal conductivity of copper. Consequently, finding or improving technology to enhance effectively surface strength of copper is the emphases of laser surface modification on copper.
     The intention of the dissertation is to strengthen the surface of copper employing laser surface modification to confer the surface with high wear resistance and high electrical conductivity. For this purpose, the technology for laser surface modification of copper is designed. Laser surface alloying is selected because it has less influence on electrical conductivity of copper than laser cladding. The light absorption of copper is increased with pre-placed powders. Ni-based alloy powders with better wettability are used as strengthening material depending on selecting principle of alloying materials. The optimal parameters have been obtained through a large amount of prior experiments, which have small difference for different sizes of samples. The effects of scanning speed on microstructure and properties are investigated especially. Based on these works, firstly, the surface of copper is strengthened by employing Ni-based alloy, and then two ceramic particles (TaC and NbC) are added into Ni-based alloy layer by in-situ laser synthesis, respectively. The microstructure and formation mechanism of three modified layers are discussed. The micro-hardness, wear resistance and electrical conductivity are investigated also. The primary conclusions are as follows:
     1. The absorption to CO2laser of copper is improved through pre-placed powders. Therefore, laser surface modification of copper is accomplished with low laser power. The optimal parameters are as follows:copper substrate sizes,50mm x30mm x5mm; laser power,2.2kW; scanning speed,4mm/s; defocusing amount,50mm; depth of pre-placed powders,0.9mm; overlapping ratio,40%. For copper substrate with sizes of50mm x25mm x5mm, laser power of2kW is enough.
     2. Scanning speed is key parameter of laser surface modification in the dissertation. With increasing the scanning speed within a certain scope, grain refinement, increased hardness, high alloying degree and high dilution rate are obtained. Consequently, Cu-based materials are prepared with high surface wear resistance and high integral electrical conductivity.
     3. All of three modified layers are free from cracks with the characteristic of rapid solidification, which have homogeneous fine microstructures dispersed uniformly in the matrix. The presence of (Cu, Ni, Fe) solid solution exhibits good wettability between Ni-based alloy and copper, and the formation of metallurgical bonding between the modified layer and the substrate.
     4. The average hardness of Ni-based alloy modified layer is enhanced to HV0.1650, which is7times of that of copper substrate. The wear resistance is improved by4times. It is attributed to particulate reinforcement, solid solution strengthening and grain refinement. The hardness and wear resistance of two ceramic particles reinforced Ni-based alloy modified layer are improved remarkably. TaC reinforcements has better effects on hardness and wear resistance of the modified layer, which has average hardness of1.56times and wear mass loss of2/5of Ni-based alloy modified layer. This result is attributed to the presence and the uniform distribution of in-situ synthesized ceramic particles.
     5. The electrical conductivity of copper substrate is slightly affected by laser surface modification. The level of decrease of electrical conductivity depends on alloying degree (dilution rate). High dilution rate leads to high electrical conductivity. The electrical conductivity can remain above90%IACS with suitable dilution rate. Therefore, optimizing parameters to control suitable dilution rate is critical to prepare Cu-based composite material with high surface wear resistance and high integral electrical conductivity.
     6. The electrical conductivity is affected primarily by Ni-based alloy. Adding ceramic particles have little influence on it. The influence of different ceramic particles on electrical conductivity is not same. For the two ceramic particles in this dissertation, the addition of NbC particles has less effect. Suitable doping of ceramic particles can improve greatly the surface property and has little effect on the electrical conductivity, which provides primary experimental foundation to prepare particulate reinforced surface modified Cu-based composite materials.
     7. Comparing to other surface techniques, laser surface modification leads to metallurgical bonding between the modified layer and the substrate, and can enhance the characteristics of the metal surface, especially gives the surface special characteristics. It breaks the using limits of copper alloys, which possesses better economic benefits and promising applications.
引文
[1]黄伯云,李成功,石力开等主编.中国材料工程大典.第4卷.有色金属材料工程(上)[M].北京:化学工业出版社,2005.217
    [2]J R Davis. ASM Specialty Handbook:Copper and Copper Alloys [M]. ASM International, Materials Park, OH,2001.153-168
    [3]王祝堂,田荣璋.铜合金及其加工手册[M].长沙:中南大学出版社,2002
    [4]王尊贤.国际铜价决定机制与影响因素之实证分析[D].[硕士学位论文].台湾:中原大学,2006
    [5]徐滨士,刘世参主编.中国材料工程大典.第16卷.材料表面工程(上)[M].北京:化学工业出版社,2005.5
    [6]晁明举.金属材料表面激光淬火和激光熔覆若干关键技术研究[D].[博士学位论文].郑州:郑州大学,2003
    [7]张现虎.原位合成复合颗粒增强镍基激光熔覆层研究[D].[硕士学位论文].郑州:郑州大学,2009
    [8]张魁武.国外激光熔覆应用和直接熔覆金属零件及梯度材料制造[J].金属热处理,2002,27(9):1-4
    [9]Huan He, Wei Hua Guo, Min Xiao, et al. Effect of Laser Cladding Al3Ti-Based Coatings on the Wear and Corrosion Resistances of AA6063 Aluminum Alloy [J]. Advanced Materials Research,2013,652-654:1897-1903
    [10]Rongjuan Yang, Zongde Liu, Yongtian Wang, et al. Synthesis and characterization of MoS2/Ti composite coatings on Ti6A14V prepared by laser cladding [J]. AIP Advances,2013, 3(2):022106
    [11]孙荣禄,牛伟,雷贻文.镁合金表面激光熔覆Al-Si合金涂层的组织和耐磨性[J].材料热处理学报,2012,33(11):143-147
    [12]钟仁显,卢百平.高强高导铜合金的若干进展[J].铸造技术,2007,28(3):384-388
    [13]帅歌旺,张萌.高强度、高导电铜合金及铜基复合材料研究进展[J].特种铸造及有色合金,2005,25(9):534-538
    [14]李家枢,严绍华.实用锻工手册[M].北京:中国劳动出版社,1990.35
    [15]李文生,王智平,路阳等.高强铜基合金材料的研究与应用现状[J].有色金属,2002,54(2):30-33
    [16]谢春生,翟启明,徐文清等.高强度高导电性铜合金强化理论的研究与应用发展[J].金属热处理,2007,32(1):12-20
    [17]赵冬梅,董企铭,刘平等.铜合金引线框架材料的发展[J].材料导报,2001,15(5):18
    [18]郑雁军,姚家鑫,李国俊.高强高导铜合金的研究现状及展望[J].材料导报,1997,11(6):52
    [19]王深强,陈志强,彭德林等.高强高导铜合金的研究概述[J].材料工程,1995(7):3
    [20]沈宁福,汤亚力,关绍康等.凝固理论进展与快速凝固[J].金属学报,1996,32(7):673~683.
    [21]A Bell, H A Davies. Solid solubility extension in Cu-V and Cu-Cr alloys produced by chill block melt-spinning [J]. Mater Sci Eng A,1997,226-228:1039-1041
    [22]苏勇,陈翌庆,丁厚福等.快速凝固Al-Cu-Mg-Fe-Ni合金的显微组织和析出过程[J].稀有金属,2002,(4):253
    [23]J B Correia, H A Davies, C M Sellars. Strengthening in Rapidly Solidified Age Hardened Cu-Cr and Cu-Cr-Zr alloys [J]. Acta Mater,1997,45(1):177-190
    [24]D G Morris, M A Morris. High strength Cu-Zr prepared by rapid solidification technologies [J]. Materials Science and Engineering A,1992,158:111-117
    [25]J A Juarez, R Perez, L A Albarran, et al. Development of high-strength, high-conductivity copper alloys by rapid solidification [J]. Journal of Materials Science Letters,1992,11:1104-1110
    [26]F Lopez, J Reyes, B Campillo. Rapid Solidification of Copper Alloys with High Strength and High Conductivity [J]. J Mater Eng Perform,1997,6(5):611-614
    [27]张瑞丰,沈宁福.快速凝固高强高导铜合金的研究现状及展望[J].材料科学与工程,2001,19(1):143~147
    [28]R P Singh, A Lawley, S Friedman, et al. Microstructure and properties of spray cast Cu-Zr alloys [J]. Materials Science and Engineering A,1991,145(2):243-255
    [29]L Arnberg, U Backmark, N Backstrom, et al. A new high strength, high conductivity Cu-0.5wt.%Zr alloy produced by rapid solidification technology [J]. Mater Sci Eng,1986, 83(1):115-121
    [30]M J Tenwick, H A Davies. Enhanced strength in high conductivity copper alloys [J]. Materials Science and Engineering,1988,98(C):543-546
    [31]L K Tan, Y Li, S C Ng, et al. Effects of rare earth additions on structures and properties of rapidly solidified copper alloys [J]. Materials Science and Technology,1999,15(2):169-179
    [32]J M Sainz-Borda, I Gutierrez, C Fernandez, et al. Constitution, Microstructure, and Hardness of Water Atomised and Hot Isostatically Consolidated Copper Alloy Powders [J]. Powder Metallurgy,1995,38(1):31-38
    [33]李振宇,沈军,曹福洋等.快速凝固铜合金的研究现状[J].粉末冶金技术,1998(16):59
    [34]陆德平.高强高导电铜合金研究[D].[博士学位论文].上海:上海交通大学,2007
    [35]王庆娟,徐长征,郑茂盛.高强高导电铜合金的研究现状[J].西安建筑科技大学学报(自然科学版),2006,38(5):731~736
    [36]董仕节,史耀武,雷永平.烧结工艺对TiB2增强铜基复合材料性能的影响[J].西安交通大学学报,2000,34(7):73
    [37]D Y Ying, D L Zhang. Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling [J]. Materials Science and Engineering A,2000,286:152
    [38]F Chi, M Schmerling, Z Eliezer, et al. Preparation of Cu-TiN alloy by external nitridation in combination with mechanical alloying [J]. Mater Sci Eng,1995, A190:181
    [39]张红霞,胡树兵,涂江平.颗粒增强铜基复合材料的研究进展[J].材料科学与工艺,2005,13(4):359
    [40]刘碧兰.弥散强化高强高导电铜合金研究[D].[硕士学位论文].长沙:中南工业大学,2000
    [41]郭明星,汪明朴,李周等.机械合金化制备不同粒子弥散强化铜合金的研究[J].稀有金属,2004,28(5):926-970
    [42]张颖异,李运刚,田颖.高导电高耐磨铜基复合材料的研究进展[J].稀有金属与硬质合金,2011,39(3):48-53
    [43]顾冬冬,沈以赴.选区激光烧结WC-10%Co颗粒增强Cu基复合材料的显微组织[J].稀有金属材料与工程,2006,35(s2):276-279
    [44]Dong-dong Gu, Yi-fu Shen, Peng Dai, et al. Microstructure and property of sub-micro WC-10%Co particulate reinforced Cu matrix composites prepared by selective laser sintering [J]. Transactions of Nonferrous Metals Society of China,2006,16:357-362
    [45]Dongdong Gu, Yifu Shen. Direct laser sintered WC-10%Co/Cu nanocomposites [J].2008, 254(13):3971-3978
    [46]Dongdong Gu, Yifu Shen. WC-Co particulate reinforcing Cu matrix composites produced by direct laser sintering [J].2006,60(29-30):3664-3668
    [47]顾冬冬,沈以赴.添加La203对激光烧结(WC-Co)p/Cu金属基复合材料组织和成形性能的影响[J].金属学报,2007,43(9):968-976
    [48]徐少春,杨军,崔雅茹.陶瓷颗粒增强铜基复合材料研究进展[J].材料热处理技术,2009,38(10):105-108
    [49]M C Somani, L P Karjalainen. Improving the mechanical properties of copper alloys by thermo-mechanical processing [J]. Acta Metallurgica Sinica,2004,17(2):111-117
    [50]杨朝聪.高强高导电铜合金的研究及进展[J].云南冶金,2000,29(6):26-30
    [51]廖乐杰,何福忠.稀土在铜及铜合金中的作用及其应用效果[J].特种铸造及有色合金,1997,(2):522-531
    [52]谈荣生.稀土对变形铅黄铜高温性能的影响[J].中国稀土学报,1992,(3):239-242
    [53]戴妓燕.高强导电铜合金制备及其相关基础研究[D].[博士学位论文].长沙:中南大学,2009
    [54]毛向阳,方峰,谈荣生等.稀土对铜及铜合金组织和性能影响的研究进展[J].稀土,2008,29(3):75-80
    [55]刘枝文.稀土对铜铬锆合金性能的影响[J].金属热处理,1994,(1):24-27
    [56]M Xie, J L Liu, X Y Lu. Investigation on the Cu-Cr-RE alloys by rapid solidification [J]. Mater Sci Eng A,2001,304-306:529
    [57]I Manna, P P Chatterjee, R Srinivas, et al. Codeposition of nanocrystalline NbAl3 particles on Cu [J]. Scr Mater,1999,40(4):409
    [58]I Manna, P P Chattopadhyay, B Chatterjee, et al. Codeposition of nanocrystalline aluminides on a copper substrate [J]. Journal of Materials Science,2001,36(6):1419-1424
    [59]刘志农,莫德锋,胡正飞等.高导电高耐磨铜基材料研究进展[J].材料导报,2007,21:421
    [60]石岩,张宏,徐春鹰.铜基粉末冶金摩擦材料激光表面改性处理[J].中国激光,2009,36(5):1247-1250
    [61]许彪.Cr3C2颗粒增强高强高导铜基复合材料研制[D].[博士学位论文].南昌:南昌大学,2008
    [62]邓启明,孙峰岳.石墨含量对铜-石墨材料机械性能和摩擦特性的影响[J].粉末冶金技术,1989,7(1):62
    [63]H T Zhou, J W Zhong, X Zhou, et al. Microstructure and properties of Cu-1.0Cr-0.2Zr-0.03Fe alloy [J]. Materials Science and Engineering A,2008,498:225-230
    [64]Y Liu, P Liu, W Li, et al. Aging behavior and electrical sliding wear properties of Cu-Cr-Zr-Ce alloy [J]. Tribology,2005,25(3):265
    [65]李强,王茜.高强高导铜合金的强化技术研究与展望[J].材料热处理技术,2009,38(6):8-11
    [66]左孝青,王吉坤.有色金属矿产资源的开发及加工技术(加工部分)[M].昆明:云南科技出版社,1993
    [67]S G Mu, F A Guo, Y Q Tang, et al. Study on microstructure and properties of aged Cu-Cr-Zr-Mg-RE alloy [J]. Materials Science and Engineering A,2008,475:235-240
    [68]刘德宝,崔春翔.TiN颗粒增强铜基复合材料的制备及性能研究[J].稀有金属,2004,28(5):56
    [69]S Skai, H G Suzuki, K Mihara. Effect of Sn addition on the mechanical and electrical properties of Cu-15%Cr in-situ composites [J]. Mater Trans,2003,44(2):232
    [70]姜训勇,李忆莲,王童.高强度高导电铜合金[J].上海有色金属,1995,16(5):284-288
    [71]GlidCop technical data sheet:http://www.spotweldingconsultants.com/glidcop.htm [OL]. 2013-2-25
    [72]任虎平,杨贵荣,宋文明等.铜及铜合金表面改性技术的研究进展[J].铸造,2005,54(3):213-216
    [73]S N Rosenwasser. Recent advances in large railgun structures and materials technology [J]. IEEE Transactions on Magnetics,1991,27(1):444-451
    [74]徐滨士,刘世参主编.中国材料工程大典.第16卷.材料表面工程(上)[M].北京:化学工业出版社,2005.3-6
    [75]赵文轸.材料表面工程导论[M].西安:西安交通大学出版社,1998.190-191
    [76]于金库,王庚华,邢广忠等.在铜合金上获得Ni-Fe合金镀层的电镀工艺研究[J].燕山大学学报,1999,23(2):123-125
    [77]李忠宝,陈天军.钼铜合金表面电镀的方法[P].中国专利,CN201110293206.4.2012-02-08
    [78]K Nitta, S Inazawa, K Okada, et al. Analysis of tungsten film electrodeposited from a ZnCl2-NaCl-KCl melt [J]. Electrochimica Acta,2007,53 (1):20-23
    [79]张迎春,刘艳红,刘其宗.纯铜或铜合金基体上熔盐电镀厚钨涂层的制备方法[P].中国专利,ZL201010575369.7.2012-07-04
    [80]刘艳红,张迎春,刘其宗.电流密度对熔融盐电沉积金属钨镀层性能的影响[J].电镀与装饰,2012,31(5):1-5
    [81]H Nakajima, T Nohira, R Hagiwara, et al. Electrodeposition of metallic tungsten films in ZnCl2-NaCl-KCl-KF-WO3 melt at 250℃ [J]. Electrochimica Acta,2007,53(1):24-27
    [82]饶江平,李光,王俊杰.连铸结晶器表面电镀Ni-W-P-B4C复合镀层的性能研究[J].武汉科技大学学报(自然科学版),2007,4(30):364-367
    [83]吕春雷,曹为民,印仁和等.连铸结晶器铜板电镀层的研究进展[J].电镀与精饰,2010,32(1):15-19
    [84]A Agarwal, N B Dahotre, T S Sudarshan. Evolution of interface in Pulsed electrode deposited titanium diboride on copper and steel [J].. Surface Engineering,1999,15(1):27-32
    [85]朱厚菲,黄文全,杨超等.钨铜合金表面化学镀Ni-P镀层性能研究[J].腐蚀科学与防护技术,2009,21(3):347-349
    [86]李竹君,刘秉余.铜合金化学镀Ni-P表面强化的探讨[J].金属热处理,1995,(12):18-20
    [87]刘金良.铜合金表面处理技术研究进展[J].有色金属加工,2008,37(4):45-48
    [88]练友运,刘翔,许增裕等.铜基表面化学气相沉积制备钨涂层的组织与性能[C].见:中国核科学技术进展报告(第二卷)—中国核学会2011年学术年会论文集第7册(核聚变与等离子体物理分卷).贵阳,2011:162-166
    [89]袁庆龙,侯文义,曹晶晶等.一种纯铜表面磁控溅射制备耐磨抗电蚀合层的方法[P].中国专利,CN200910066337.1.2010-4-21
    [90]慕伟意.直流磁控溅射法在铜基合金上制备TiN层[J].稀有金属快报,2004,23(11):40-41
    [91]徐滨士,刘世参主编.中国材料工程大典.第16卷.材料表面工程(上)[M].北京:化学工业出版社,2005.603-607
    [92]徐滨士,刘世参主编.中国材料工程大典.第16卷.材料表面工程(上)[M].北京:化学工业出版社,2005.644-645
    [93]张跃飞.纯铜双层辉光离子渗钛及渗工艺和性能的研究[D].[硕士学位论文].太原:太原理工大学,2002
    [94]袁庆龙.纯铜双辉等离子渗钦、镍表面合金化研究[D].[博士学位论文].太原:太原理工大学,2004
    [95]张平则,徐重,张高会等.双辉等离子表面冶金TiCu阻燃合金的制备工艺[J].中国有色金属学报,2005,15(1):110-115.
    [96]徐建林,杨波.表面强化技术及其在铜合金中的应用[J].铸造技术,2008,29(1):75-79
    [97]肖世航.多元共渗及其在高炉风口上的应用[J].兵器材料科学与工程,1993,16(6):46-51
    [98]方绿频.紫铜-钼-硅-稀土多元共渗的研究[D].[硕士学位论文].福州:福州大学,2005
    [99]G X Hu, Z X Xu, J J Liu, et al. Microstructure and corrosion resistance of simultaneous Al-Fe coating on copper by Pack cementation [J]. Surface & Coatings Technology,2009, 203(22):3392-3397
    [100]岳立新.纯铜、黄铜多元共渗及热处理工艺研究[D].[硕士学位论文].沈阳:辽宁工程技术大学,2005
    [101]董世知,杨芳,李智超.黄铜多元共渗研究[J].兵器材料科学与工程,2008,31(1):30-32
    [102]孙远敬,岳立新,张雅玲.纯铜多元共渗及热处理工艺研究[J].煤矿机械,2006,27(6):1021-1022
    [103]张德生,王家超,马真兰.铜的Al-Mn-Cr-Fe-RE多元共渗研究[J].金属热处理,2002,27(6):21-23
    [104]彭昶,王一平,王志.铜渣口的多元共渗表面处理[J].湖南冶金,1999,(2),7-10
    [105]王春明,庞兆夫,王书惠.多元共渗金属铜表面强化机制的研究[J].鞍钢技术,1998,(8):16-21
    [106]袁庆龙,苏永安.纯铜表面Al-Ni基自熔合金粉末共渗研究[J].太原理工大学学报,2001,33(3):320-323
    [107]杨贵荣.铜合金表面铸渗工艺及渗层性能的研究[D].[博士学位论文].兰州:兰州理工大学,2006
    [108]宋文明,杨贵荣,刘洪峰等.铜合金表面Ni基铸渗层的热疲劳行为研究[J].铸造,2007,56(2):145-147
    [109]G R Yang, W M Song, Y Hao, et al. Microstructure of surface composite Al2O3/Ni on copper substrate Produced by vacuum infiltration casting [J]. Materials Science and Engineering A,2006,418(1-2):223-228
    [110]杨贵荣,宋文明,郝远等.铜基表面铸渗法Ni/Al2O3复合渗层的组织和性能[J].腐蚀与防护,2007,28(6):275-279
    [111]W M Song, G R Yang, J J Lu, et al. Microstructure of Ni/WC surface composite on a copper substrate [J]. Materials Science and Engineering A,2007,445:537-542
    [112]杨贵荣,刘生龙,周启波等.铜合金表面Fe基铸渗层的热疲劳性能研究[J].金属铸锻焊技术,2008,37(17):32-34
    [113]W M Song, G R Yang, J J Lu, et al. Microstructure and wear behavior of Ni-based surface coating on copper substrate [J]. Wear,2007,262(7-8):868-875,
    [114]杨贵荣,马颖,宋文明等.铜合金表面铸渗的工艺参数及组织分析[J].铸造,2004,53(4):284-287
    [115]杨贵荣,郝远,宋文明等.铸渗法制备铜基表面复合材料[J].复合材料学报,2005,22(1):52-58
    [116]G R Yang, W M Song, Y Hao, et al. Surface composite fabrication using Fe-based alloying Powder through infiltration casting technique on copper substrate [J]. Materials Science and Engineering A,2006,419(1-2):153-161
    [117]付大军.、氧化铜反应铸渗对纯铜渗和氧化的影响[J].材料热处理技术,2012,41(22):167-169
    [118]杨贵荣,郝远,阎峰云等.铸渗法表面改性技术概述[J].铸造,2002,51(9):565-567
    [119]闫华.铜合金表面激光复合耐磨层及界面特性研究[D].[博士学位论文].武汉:华中科技大学,2010
    [120]徐滨士,刘世参主编.中国材料工程大典.第16卷.材料表面工程(上)[M].北京:化学工业出版社,2005.231
    [121]赵文轸.材料表面工程导论[M].西安:西安交通大学出版社,1998.145
    [122]马壮,董书琳,董世知.纯铜热喷涂陶瓷/渗复合涂层的制备及耐磨性研究[J].材料导报B:研究篇,2011,25(12):70-73
    [123]马壮,董书琳,董世知等.纯铜热化学反应热喷涂陶瓷/渗复合涂层耐蚀性研究[J].金属热处理,2011,36(9):38-41
    [124]马壮,董书琳,董世知等.纯铜表面火焰喷涂陶瓷/渗复合层及其性能[J].材料保护,2012,45(3):59-64
    [125]马壮,曲文超,李智超等.纯铜表面反应热喷涂法制备Al2O3基复合陶瓷涂层[J].材料保护,2008,41(12):38-40
    [126]马壮,曲文超,李智超等.纯铜表面SHS反应热喷涂Al2O3基复合陶瓷涂层的性能研究[J].腐蚀科学与防护技术,2010,22(1):28-31
    [127]赵文轸.材料表面工程导论[M].西安:西安交通大学出版社,1998.151-152
    [128]种法力,陈俊凌,李建刚.铜基体上爆炸喷涂钨涂层及其电子束热负荷实验研究[J].表面技术,2005,34(6):33-35
    [129]潘奇汉.铜及铜合金表面改性研究的可行性[J].有色金属,1996,48(1):75-77
    [130]徐滨士,刘世参主编.中国材料工程大典.第16卷.材料表面工程(上)[M].北京:化学工业出版社,2005.246
    [131]V V Sobolev, J M Guilemany, J A Calero. Development of coating structure and adhesion during high velocity oxygen-fuel spraying of WC-Co powder on a copper substrate [J]. Journal of Thermal Spray Technology,2000,9(1):100-106
    [132]王耀,陈惠国.增强铜表面热喷涂涂层结合力的探讨[J].有色金属(冶炼部分),2006(S):23-24
    [133]顾晓波,陈国权,杨大明.用热喷涂层防止锰铜合金螺旋桨腐蚀的研究[J].船舶工程,1999,(6):33-36
    [134]郭国林,段满意,李亚江.高炉铜质风口套亚音速喷涂层的性能分析[J].山东交通学院学报,2004,12(4):35-37
    [135]郭国林,李亚江,段满意等.C11300(T3)基体亚音速火焰喷涂层特性的研究[J].焊接技术,2005,34(2):14-17
    [136]霍树斌,王佳杰,王吉孝等.CrZrCu铜合金表面高速火焰喷涂涂层对其疲劳性能的改善[J].焊接,2006,(6):61-64
    [137]伍超群,周克崧,刘敏等.铜基体上超音速火焰喷涂镍基涂层残余应力分析[J].热加工工艺,2006,35(19):35-38
    [138]侯利锋,卫英慧.铜基体超音速火焰喷涂碳化物涂层界面研究[J].材料热处理学报,2005,26(3):70-73
    [139]李晨希,尹红霞,徐娜等.粘结层喷涂方法对铜基体与热障涂层结合强度的影响[J].材料保护,2008,42(4):59-63
    [140]简中华,马壮,王富耻等.热喷涂铜基W涂层工艺性能研究[J].兵器材料科学与工程,2007,30(2):27-30
    [141]徐滨士,刘世参主编.中国材料工程大典.第16卷.材料表面工程(上)[M].北京:化学工业出版社,2005.262-265
    [142]葛毅成,彭可,杨琳等.C/C-Cu复合材料表面等离子喷涂钨涂层[J].粉末冶金材料科学与工程,2010,15(2):136-120
    [143]种法力,陈俊凌,郑学斌.铜基体上等离子体喷涂钨涂层性能研究[J].特种铸造及有色合金,2011,31(2):110-113
    [144]李晨希,徐婷婷,徐娜等.铜基体上制备ZrO2-NiCrAlY梯度喷涂层的组织及其性能[J].材料保护,2010,43(3):11-14
    [145]宫文彪,郭亮,郑孝义等.铬锆铜表面等离子喷涂Cr3C2p/NiCr涂层的组织与性能[J].材料热处理学报,2012,33(8):147-150
    [146]付翀,蒋百灵,王俊勃.超音速等离子喷涂制备AgSnO2/Cu复合电接触材料及其性能研究[J].西安理工大学学报,2010,126(2):177-180
    [147]黄建军,王凡,刘英等.厚膜W/Cu涂层大气高速等离子体喷涂制备及性能研究[C].见:第十五届全国等离子体科学技术会议会议摘要集.安徽黄山,2011:48
    [148]徐滨士,刘世参主编.中国材料工程大典.第16卷.材料表面工程(上)[M].北京:化学工业出版社,2005.255
    [149]张忠礼,何越,鄂世国等.纯铜表面热喷涂扩散制备化物层工艺与组织结构[J].腐蚀科学与防护技术,2008,20(1):29-32
    [150]张忠礼,赵娇玉,王艳燕等.纯铜热喷涂扩散渗层的显微组织[J].沈阳工业大学学报,2008,30(4):437-443
    [151]张田宇.冷气动力喷涂铬锆铜涂层制备及组织性能研究[D].[硕士学位论文].上海:上海交通大学,2008
    [152]卜恒勇,卢晨.冷喷涂技术的研究现状及进展[J].材料工程,2010,(1):94-98
    [153]肖正涛.冷喷涂铜合金涂层制备工艺及其防护性能研究[D].[硕士学位论文].青岛:中国海洋大学,2011
    [154]S V Raj, C Barrett, J Karthikeyan, et al. Comparison of the cyclic oxidation behavior of cold sprayed CuCrAl-coated and uncoated GRCop-84 substrates for space launch vehicles [J]. Surface & Coatings Technology,2007,201(16-17):7222-7234
    [155]J S Kim, Y S Kwon, O I Lomovsky, et al. Cold spraying of in situ Produced TiB2-Cu nanocomposite Powders [J]. Composites Science and Technology,2007,67(11-12):2292-2296
    [156]卢柯,陶乃镕,王镇波等.金属材料表面纳米化技术和机理[Z].国家科技成果.2010
    [157]刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状[J].中国表面工程,2001,(3):1-6
    [158]K Lu, J Lu. Surface nanocrystallization (SNC) of metallic materials presentation of the concept behind a new approach [J]. J Mater Sci Technol,1999,15(3):193-197
    [159]王科,刘刚,许并社等.表面机械研磨处理纯铜的表面纳米化[C].见:纳米材料和技术应用进展—全国第三届纳米材料和技术应用会议论文集(下卷).南京,2011:651-654
    [160]林万明.铜及铜合金表面纳米化及其改性研究[D].[博士学位论文].太原:太原理工大学,2011
    [161]毕海香.纯铜表面纳米化及其扩散性能研究[D].[硕士学位论文].太原:太原理工大学,2008
    [162]苏娟.纳米化对铜合金组织及性能的影响[D].[硕士学位论文].太原:太原理工大学,2011
    [163]苏娟,卫英慧,林万明等.时效硬化Cu-2Ti合金表面纳米化过程研究[J].稀有金属材料与工程,2011,40(S2):555-559
    [164]孔晓丽,刘勇兵,曹占义等.表面覆纳米Cu-Zn层的铜基复合材料[J].中国有色金属学报,2002,12(4):687-692
    [165]徐滨士,刘世参主编.中国材料工程大典.第17卷.材料表面工程(下)[M].北京:化学工业出版社,2005.209-210
    [166]韩锦珠.铜合金离子注入层的组织结构及摩擦特性[D].[硕士学位论文].秦皇岛:燕山大学,2010
    [167]程国安,梁昌林,朱学涛等.MEVVA源强流Ti离子注入纯铜表面层的结构与性能研究[J].北京师范大学学报(自然科学版),2005,41(4):376-379
    [168]白亚奎,李杰池,郑瑞廷等.Ni离子注入纯铜的表面改性[J].中国有色金属学报,2008,18(5):818-822
    [169]王贻华,温梦全,王征祥等.离子注入提高铜合金耐磨性的初步研究[J].航空学报,1985,6(3):285-290
    [170]林万明,卫英慧,杜华云等.纯铜表面纳米化对Ti离子注入的影响[J].功能材料,2009,40(9):1552-1554
    [171]李勇.Ta离子注入对青铜耐磨性能的影响[J].热加工工艺,2009,38(22):39-41
    [172]卫英慧,毕海香,侯利锋等.纳米晶铜中离子注入碳后的组织结构研究[J].太原理工大学学报,2008,39(6):543-547
    [173]T Cabioc'hU, M Jaouen, E Thune, et al. Carbon onions formation by high-dose carbon ion implantation into copper and silver [J]. Surface and Coatings Technology,2000,128-129:43-50
    [174]A D Pogrebnjak, S M Duvanov, A D Mikhaliov, et al. Surface and near surface structure and composition of high-dose implanted and electron beam annealed single crystal copper [J]. Surface and Coatings Technology,1997,89:90-96
    [175]黄岩,黑祖昆,李国卿等.铁离子注入单晶铜引发亚结构组态变化的研究[J].大连理工大学学报,1997,37(2):192-198
    [176]张丽.锆离子注入铜合金表面改性及摩擦学研究[D].[硕士学位论文].秦皇岛:燕山大学,2011
    [177]关庆丰,邹阳,张在强等.强流脉冲电子束作用下纯铜的微观结构与腐蚀性能[J/OL].吉林大学学报(工学版),2012-10-22.http://www.cnki.net/kcms/detail/22.1341.T.20121022.1424.036.htm
    [178]郝胜智,姜利民,王轶农等.强流脉冲电子束辐照冷轧纯铜形成表面纳米晶层[C].见:2006年材料科学与工程新进展—“2006北京国际材料周”论文集.北京,2006:401-406
    [179]C W Draper, C A Ewing. Laser surface alloying:a bibliography [J]. Journal of Materials Science,1984,19(12):3815-3825
    [180]A Hirose, K F Kobayashi. Surface alloying of copper with chromium by CO2 laser [J]. Materials Science & Engineering A,1994, A174 (2):199-206
    [181]I Manna, S Abraham, G Reddy, et al. Laser surface alloying of aluminum on copper substrate [J]. Scripta Metallurgica et Materialia,1994,31(6):713-718
    [182]J D Majumdar, I Manna. Laser surface alloying of copper with chromium Ⅰ. Microstructural evolution [J]. Materials Science & Engineering A,1998, A268:216-226
    [183]J D Majumdar, I Manna. Laser surface alloying of copper with chromium Ⅱ. Improvement in mechanical properties [J]. Materials Science & Engineering A,1998, A268:227-235
    [184]C H Tang, F T Cheng, H C Man. Laser surface alloying of a marine propeller bronze using aluminum powder Part I:Microstructural analysis and cavitation erosion study [J]. Surface and coating technology,2006,200:2602-2609
    [185]安耿,梁工英,黄俊达等.激光重熔Cr等离子喷涂层的组织及其导电性的研究[J].热加工工艺,2004,(1):9-11
    [186]K F Tam, F T Cheng, H C Man. Enhancement of cavitation erosion and corrosion resistance of brass by laser surface alloying with Ni-Cr-Si-B [J]. Surface and coating technology,2002, 149:36-44
    [187]D W Zeng, C S Xie, M L Hu, et al. In situ laser synthesis of Co/Cu composite coating on copper substrate and its microstructural evolution [J]. Surface and coating technology,2006, 200:4605-4071
    [188]Fang Liu, Changsheng Liu, Suiyuan Chen, et al. Pulsed Nd:YAG laser post-treatment Ni-based crack-free coating on copper substrate and its wear properties [J]. Surface and coating technology,2007,201:6332-6339
    [189]C H Tang, F T Cheng, H C Man. Improvement in cavitation erosion resistance of a copper-based propeller alloy by laser surface melting [J]. Surface and Coatings Technology,2004, 182:300-307
    [190]Sen Yang, Yunpeng Su, Weidong Huang, et al. Microstructure characteristics of Cu-Mn alloys during laser surface remelting [J]. Materials Science and Engineering A,2004, 386:367-374
    [191]顾林喻,马乃恒.激光熔化处理对电工铜排导电性能的影响[J].热加工工艺,2000,(4):11-13
    [192]M A Pinto, N Cheung, M C F Ierardi, et al. Microstructural and hardness investigation of an aluminum-copper alloy processed by laser surface melting [J]. Materials Characterization,2003, 50(2-3):249-253
    [193]马文有,陈兴驰,周克崧等.铜合金表面热喷涂镍基合金层激光重熔后的显微组织及耐磨性能[J].材料保护,2010,43(2):47-50
    [194]马文有,刘敏,周克崧等.铜基体低压等离子体钨喷涂层激光重熔后的结构与性能[J].材料保护,2010,43(6):65-68
    [195]G Dehm, B Medres, L Shepeleva, et al. Microstructure and tribological properties of Ni-based claddings on Cu substrates [J]. Wear,1999,225-229:18-26
    [196]G Dehm, M Bamberger. Laser cladding of Co-based hardfacing on Cu substrate [J]. Journal of Materials Science,2002,37:5345-5353
    [197]K W Ng, H C Man, F T Cheng, et al. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts [J]. Applied Surface Science,2007,253:6236-6241
    [198]S Bysakh, K Chattopadhyay, T Maiwald, et al. Microstructure evolution in laser alloyed layer of Gu-Fe-Al-Si on Cu substrate [J]. Materials Science and Engineering A,2004, 375-377:661-665
    [199]B Adak, P Nash, D Chen, et al. Microstructural characterization of laser cladding of Cu-30Ni [J]. Journal of Materials Science,2005,40:2051-2054
    [200]Yong-zhong Zhang, Yi Tu, Ming-zhe Xi, et al. Characterization on laser clad nickel based alloy coating on pure copper [J]. Surface & Coatings Technology,2008,202:5924-5928
    [201]Fang Liu, Changsheng Liu, Xingqi Tao, et al. Laser cladding of Ni-based alloy on copper substrate [J]. Journal of University of Science and Technology Beijing,2006,13(4):329-332
    [202]田凤杰,刘伟军,尚晓峰.纯铜基体上激光熔覆Ni60A涂层的试验研究[J].金属热处理,2008,33(12):35-37
    [203]Hua Yan, Peilei Zhang, Zhishui Yu, et al. Development and characterization of laser surface cladding (Ti,W)C reinforced Ni-30Cu alloy composite coating on copper [J]. Optics & Laser Technology,2012,44:135-358
    [204]Hua Yan, Peilei Zhang, Zhishui Yu, et al. Microstructure and tribological properties of laser-clad Ni-Cr/TiB2 composite coatings on copper with the addition of CaF2 [J]. Surf Coat Technol,2012,206:4046-4053
    [205]刘芳,刘常升,陈岁元等.铜合金表面激光原位自生W2C增强镍基涂层[J].材料研究学报,2007,21(5):496-500
    [206]董江,刘芳,陈岁元等.铜合金表面添加SiC晶须的Ni-Cu激光熔覆层[J].东北大学学报(自然科学版),2009,30(]):79-83
    [207]陈岁元,刘大亮,刘常升等.铜合金表面激光诱导原位反应制备Ni基合金涂层[J].东北大学学报(自然科学版),2007,28(8):1136-1139
    [208]陈岁元,董江,陈军等.结晶器铜合金表面激光原位制备纳米颗粒增强钻基梯度涂层[J].中国激光,2011,38(7):131~137
    [209]李慧莉,陈岁元,刘大亮等.铜合金表面激光原位制备颗粒增强钴基合金涂层组织[J].中国激光,2008,35(4):620-624
    [210]董江,陈岁元,刘大亮等.铜合金表面激光原位制备钻基合金涂层的结构与机制[J].2009,36(5):1302-1307
    [211]陈岁元,董江,刘大亮等.铜合金表面激光原位制备陶瓷颗粒增强钴基合金梯度涂层[J].中国激光,2009,36(5):1218-1223
    [212]Suiyuan Chen, Jing Liang, Changsheng Liu, et al. Preparation of a novel Ni/Co-based alloy gradient coating on surface of the crystallizer copper alloy by laser [J]. Applied Surface Science 2011,258:1443-1450
    [213]Fang Liu, Changsheng Liu, SuiyuanChen, et al. Laser cladding Ni-Co duplex coating on copper substrate [J]. Optics and Lasers in Engineering,2010,48:792-799
    [214]Hua Yan, Aihua Wang, Kaidong Xu, et al. Microstructure and interfacial evaluation of Co-based alloy coating on copper by pulsed Nd:YAG multilayer laser cladding [J]. Journal of Alloys and Compounds,2010,505:645-653
    [215]李岩,张永忠,黄灿等.纯铜表面激光熔覆TiB2/Cu涂层的组织及导电性能[J].激光技
    术,2012,36(5):585-588[216]郭晓琴,李晓玲,张颂阳.激光表面原位合成TiB2/Cu复合涂层的性能[J].铸造技术,2011,32(7):958-960
    [217]高阳,潘峰,佟百运等.铜基材上热障涂层的激光熔敷[J].中国有色金属学报,2003,13(2):315-318
    [218]K P Cooper, H N Jones, R A Meger. Analysis of railgun barrel material [J]. IEEE Transactions on Magnetics,2007,43(l):120-125
    [219]R A Meger, K Cooper, H Jones, et al. Analysis of Rail Surfaces from a Multishot Railgun [J]. IEEE Transactions on Magnetics,2005,41(1):211-213
    [220]张永康主编.激光加工技术[M].北京:化学工业出版社,2004.216
    [221]ASM International. ASM Metals Handbook Vol.3. Alloys Phase Diagrams [M]. USA,1992.
    [222]叶宏,李晖,闫忠琳.激光表面合金化裂纹的研究[J].机械设计与制造工程,2001,30(3):60-62
    [223]李国英等.材料及其制品表面加工新技术[M].长沙:中南大学出版社,2003
    [224]徐滨士,刘世参主编.中国材料工程大典.第17卷.材料表面工程(下)[M].北京:化学工业出版社,2005.280
    [225]李岩.纯铜表面激光熔覆TiB2/Cu涂层的工艺及摩擦磨损性能研究[D].[硕士学位论文].北京:北京有色金属研究总院,2012
    [226]Mingju Chao, Wenli Wang, Erjun Liang, et al. Microstructure and wear resistance of TaC reinforced Ni-based coating by laser cladding [J]. Surface & Coatings Technology,2008, 202:1918-1922
    [227]周圣丰,曾晓雁.影响激光感应复合快速熔覆碳化钨金属陶瓷层的因素分析[J].中国激光,2010,37(7):1380-1385
    [228]H T Zhou, J W Zhong, X Zhou, et al. Microstructure and properties of Cu-1.0Cr-0.2Zr-0.03Fe alloy [J]. Materials Science and Engineering A,2008,498:225-230
    [229]R A Espinoza, R H Palma, A O Sepulveda, et al. Microstructural characterization of dispersion-strengthened Cu-Ti-Al alloys obtained by reaction milling [J]. Materials Science and Engineering A,2007,454-455:183-193
    [230]S G Mu, F A Guo, Y Q Tang, et al. Study on microstructure and properties of aged Cu-Cr-Zr-Mg-RE alloy [J]. Materials Science and Engineering A,2008,475:235-240
    [231]王文丽,晁明举,王东升等.原位生成TaC颗粒增强镍基激光熔覆层[J].中国激光,2007,34(2):277-282
    [232]M Das, V K Balla, D Basu, et al. Laser processing of in situ synthesized TiB-TiN-reinforced Ti6A14V alloy coatings [J]. Scripta Materialia,2012,66(8):578-581
    [233]M Li, J Huang, Y Y Zhu, et al. Effect of heat input on the microstructure of in-situ synthesized TiN-TiB/Ti based composite coating by laser cladding [J]. Surface and Coatings Technology,2012,206(19-20):4021-4026
    [234]L Z Zhao, M J Zhao, D Y Li, et al. Study on Fe-Al-Si in situ composite coating fabricated by laser cladding [J]. Applied Surface Science,2012,258(8):3368-3372
    [235]乐志强,薄胜民,王光建.无机精细化学品手册[M].北京:化学工业出版社,2001.874-876
    [236]周菊秋,黄列如,谭日善等.中国钽、铌碳化物的生产和应用[J].稀有金属材料与工程,1998,27(1):26-31
    [237]Ting Yu, Qilin Deng, Gang Dong, et al. Effects of Ta on microstructure and microhardness of Ni based laser clad coating [J]. Applied Surface Science,2011,257:5098-5103
    [238]梁英教,车荫昌,刘晓霞等.无机物热力学数据手册[M].沈阳:东北大学出版社,1990.1-7,83,88,120,124,355-356
    [239]M M Savalani, C C Ng, Q H Li, et al. In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding [J]. Appl Surf Sci,2012,258(7):3173-3177
    [240]Z D Liu, X C Zhang, F Z Xuan, et al. In situ synthesis of TiN/Ti3Al intermetallic matrix composite coatings on Ti6A14V alloy [J]. Mater Des,2012,37:268-273
    [241]A Emamian, S F Corbin, A Khajepour. Tribology characteristics of in-situ laser deposition of Fe-TiC [J]. Surface and Coatings Technology,2012,206(22):4495-4501
    [242]乐志强,薄胜民,王光建.无机精细化学品手册[M].北京:化学工业出版社,2001.862-863
    [243]D H Xiao, Y H He, M Song, et al. Y2O3-and NbC-doped ultrafine WC-lOCo alloys by low pressure sintering [J]. International Journal of Refractory Metals and Hard Materials,2010, 28(3):407-411
    [244]J Weidow, H O Andren. Grain and phase boundary segregation in WC-Co with TiC, ZrC, NbC or TaC additions [J]. International Journal of Refractory Metals and Hard Materials,2011, 29(1):38-43.
    [245]牛薪,晁明举,王文丽等.原位生成NbC颗粒增强镍基激光熔覆层[J].中国激光,2006,33(7):987-992
    [246]H Zuhailawati, Y Mahani. Effects of milling time on hardness and electrical conductivity of in situ Cu-NbC composite produced by mechanical alloying [J]. Journal of Alloys and Compounds,2009,476(1-2):142-146
    [247]B D Long, M Umemoto, Y Todaka, et al. Fabrication of high strength Cu-NbC composite conductor by high pressure torsion [J]. Materials Science and Engineering A,2011,528(3): 1750-1756
    [248]梁英教,车荫昌,刘晓霞等.无机物热力学数据手册[M].沈阳:东北大学出版社,1993,1-7,83,88,120,124,263-265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700