用户名: 密码: 验证码:
热处理对FGH95镍基合金组织结构与蠕变行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对不同温度热等静压(HIP)制备的FGH95粉末镍基合金进行不同工艺热处理、蠕变性能测试及组织形貌观察,研究热处理工艺对合金组织结构和蠕变性能的影响;通过热力学计算预测合金中碳化物的析出行为,通过XRD曲线分析,研究了热处理工艺与合金中γ'、Y两相晶格应变、蠕变性能之间的依赖关系,通过微观形貌观察及衍衬分析,研究合金在蠕变期间的微观变形特征与断裂机制。得出如下结论:
     FGH95镍基合金的组织结构主要由Y基体、γ'相及碳化物组成,采用不同工艺热处理可使合金中γ'相、碳化物具有不同的尺寸、形态及分布,其中,γ'相按析出特征分为一次、二次和三次γ'相,采用电解萃取方法测定出合金中γ'相的体积分数约为47~48%,且合金中可析出(Nb,Ti)C和(Cr,W)23C6碳化物。随着热等静压(HIP)温度升高,合金中原始颗粒边界(PPB)区域的一次粗大γ'相尺寸和数量减小,不同温度热等静压(HIP)合金经1155℃固溶、550℃盐浴及时效处理,晶界处仅存在少量粗大γ'相,并有较多粒状碳化物在晶内及晶界弥散析出;1120℃CHIP合金经1150℃固溶和时效处理后,颗粒边界区域仍存在较多粗大γ'相和γ'相贫化区,随固溶温度提高,粗大γ'相及γ'相贫化区数量减少。当固溶温度提高到1160℃,合金中粗大γ'相完全溶解,γ'相贫化区消失,其获得的组织是高体积分数细小γ'相在晶内弥散分布,并有粒状碳化物在晶内及沿晶界不连续析出;经1165℃固溶,合金的晶粒尺寸明显长大,并有片状碳化物膜沿晶界连续析出。热力学计算确定出NbC、TiC、Cr23C6和W23C6碳化物自合金中析出的温度分别为1353K、1090K、1009K和1536K;在583℃计算出合金中析出TiC、NbC、WC碳化物的相变驱动力为:-9.77J·mol-1、-11.23J·mol-1和13.48J·mol-1,形核驱动力为:-80.69J·mol-1、-59.95J·mol-1、-36.01Jmol-1;与元素Nb、Ti相比,Cr是弱碳化物形成元素,其中,析出TiC、NbC有较大的形核驱动力,是使合金中析出TiC、NbC或(Nb、Ti)C相的主要原因。随热等静压(HIP)温度提高,合金中γ、Y'两相的晶格常数值略有增加,而错配度逐渐减小,经完全热处理后,合金错配度由0.3322%减少到0.2838%;随固溶温度提高,合金中Y、γ'两相的晶格常数和错配度逐渐减小;与油浴处理合金相比,盐浴处理合金中Y、γ'两相具有较高的晶格错配度,是使合金具有较高蠕变抗力的原因之一。长期时效期间,合金中细小γ'相尺寸及晶格常数随着时效温度和时间的增加略有增大,而合金中γ、γ'两相间的错配度略有减小;与时效时间相比,时效温度对合金中γ、γ'两相的尺寸及晶格常数、错配度具有较大影响。
     不同温度热等静压(HIP)合金经1155℃固溶和550℃盐浴处理后,1180℃HIP合金具有较好的蠕变性能;随着固溶温度的升高,合金中原始颗粒边界区域的尺寸逐渐减小,且当碳化物沿晶界呈粒状分布时,合金具有较长的蠕变寿命,而当碳化物沿晶界呈片状连续析出时,合金的蠕变寿命大幅度降低;随时效温度的提高和时间延长,合金的蠕变寿命逐渐降低。在实验条件下,分别测出经工艺16、工艺5和工艺15制备合金的蠕变激活能分别为:Q1=597-2kJ·mol-、Q2=578.6kJ·mol-1和Q3=480.3kJ·mol-1。
     “油浴”处理合金的变形特征是位错在晶内发生单取向或双取向滑移;“盐浴”处理合金的变形机制是微孪晶变形、位错剪切或绕过Y'相,其中,当<110>位错切入Y或γ'相时,可分解形成1/6<112>肖克莱不全位错(或1/3<112>超肖克莱不全位错)+层错的位错组态;且合金中的微孪晶是由1/2<110>位错在γ基体中分解,形成“两1/6<112>肖克莱不全位错+层错”所组成。同时,蠕变期间,合金中可形成六角形或四边形的位错网络,且在γ'/γ两相界面形成的位错网可释放晶格错配应力,减缓应力集中,提高合金的蠕变抗力。合金在蠕变后期,“油浴”处理合金中晶内可发生双取向滑移,且在滑移迹线区域有细小碳化物析出,并在γ'相贫化区发生晶界组织的碎化;而在盐浴处理合金中晶内发生单取向滑移,随着蠕变进行,位错在晶界处塞积,并引起应力集中,致使裂纹在晶界处萌生并沿晶界扩展是合金的蠕变断裂机制。
In the paper, by means of heat treatment at different regimes, creep propertiesmeasurement and microstructure observation, the effects of heat treatment on microstructureand creep behaviors of FGH95superalloy prepared by hot isostatic pressing (HIP) at differenttemperatures have been investigated. The precipitating behaviors of the carbides are forecastedby thermodynamic method. By means of XRD curves measurement, the dependence of the heattreatment regimes on the J c laJttice strain and creep properties of alloy is investigated. In thefurther, the deformation features and fracture mechanisms of the alloy during creep are analyzedby microstructure observation and diffraction contrast analysis of dislocations configuration.
     The results show that the microstructure of FGH95alloy consists of Jmatrix, J cphase andcarbides, and the various sizes, morphologies and distribution of them may be obtained bydifferent heat treatment regimes. Thereinto, the J cparticles may be divided into primary,secondary and tertiary J cphase according to the precipitating features, and the volume fractionof J cphase is measured to be47~48%by electrolytic extraction method, and the precipitatedcarbides are identified as (Nb, Ti)C and (Cr, W)23C6phases. As the HIP temperature increases,the amount and size of coarser J cphase in the previous particle boundaries (PPB) decrease.When the alloy is solution treated at1155and cooled in molten salt at550, a few ofcoarse J cphase distributes in the boundary regions, and some granular carbide precipitatedispersedly in the grains and boundaries. After the1120HIP alloy is solution treated at1150
     and aged, some coarse J cprecipitates and J-cfree zone appear in the previous particleboundaries (PPB), and the amount of them decreases with the solution temperature increasing.When the solution temperature enhances to1160, the coarse J cphase is completely dissolvedto disappear the J-cfree zone. As the solution temperature increases to1165, the grain size ofthe alloy increase obviously and the carbide in the form of the films precipitates along theboundaries. By means of thermodynamic method, the precipitating temperatures of NbC, TiC, Cr23C6and W23C6carbides are defined to be1353K,1090K,1009K and1536K, respectively.Moreover, the driving force values of the phase transformation for TiC, NbC and WC carbidesin the alloy at583are calculated to be-9.77J mol-1,-11.23J m ol-1and-13.48J m ol-1,respectively, and the nucleating driving force of TiC, NbC and WC carbides are calculated to be-80.69J mol-1,-59.95J mol-1and-36.01J mol-1, respectively. Thereinto, the fact that TiC, NbCcarbides possess the bigger nucleating driving force is thought to be the main reasons for theTiC, NbC and (Nb, Ti)C carbides precipitating in the alloy.
     As the HIP temperature enhances, the parameters of J and J cphases in alloy increaseslightly, and the misfits increase gradually. After full heat treatment, the misfits between Jand J cphases decrease from0.3322%to0.2838%. As the solution temperature increases, theparameters and misfits of J and J cphase decrease gradually. Compared with the “oil cooling”alloy, the “molten salt cooling” alloy possesses a bigger misfit, which is one of the reasons forthe alloy having a better creep resistance. During long-term aging, the size and parameters of J cphase increase with the aging temperature and time, while the misfit in alloy decreases slightly.And compared to the aging time, the aging temperature has a bigger effect on the size of J cphase and misfits in the alloy.
     After the different temperature HIP alloys are solution treated at1155and cooled inmolten salt at550,1180HIP alloy possesses better creep property. As the solutiontemperature enhances, the size of PPB regions decreases gradually, and the granular carbidesare precipitated along boundaries, which results in the better creep resistance of alloy. But thecreep lifetime of the alloy decreases obviously once the carbide films appears along boundaries.In the range of the applied stresses and temperatures, the creep activation energy of the alloyprepared by technique16,5and15are calculated to be Q1=597.2kJ mol-1, Q2=578.6kJ m ol-1and Q3=480.3kJ m ol-1, respectively.
     The deformation features of the “oil bath” treated alloy during creep are that the single ordouble orientations slipping of dislocations activated in the J matrix. And the deformationmechanism of the “salt bath” treated alloy during creep is that dislocations slipping in the Jmatrix or shearing into the J cphase and the micro-twinning deformation, Thereinto, the <110>dislocation shearing into Jor J cphases may decompose to form the configuration of16<112>Shockley partials or13<112> super-Shockley partials plus stacking fault. The activating micro-twinning in the alloy during creep consists of16<112> Shockley partials and stacking fault, which is attributed to the decomposition of1
     2<110> dislocation shearing into J or J cphases.Moreover, the dislocation networks with hexagon and quadrangle may be formed in the alloyduring creep. And the dislocation networks formed in the J/c J interface may release the latticestrain energy to decrease the stress concentration for enhancing the creep resistance of the alloy.In the later stage of creep, the slipping traces with double oriented feature appear within thegrains, and the fine carbides precipitate along the slipping traces in the “oil bath” treated alloy,and the fine grains appear in the free-J cphase zone of the boundary. However, the slippingtraces with single oriented feature appear in the “salt bath” treated alloy in the later stage ofcreep, and significant amount of dislocations are piled up in the boundaries regions to bring thestress concentration, which may results in the initiation and propagation of the cracks alongboundaries, this is thought to be the fracture mechanism of the alloy during creep.
引文
[1]Zainul H. Development of heat-treatment process for a P/M superalloy for turbine blades. Materials and Design,2007,28(5):1664-1667.
    [2]胡本芙,刘国权,贾成厂,等.新型高性能粉末高温合金的研究与发展.材料工程,2007,(2):49-57.
    [3]Alniak M O, Bedir F. Modeling of deformation and microstructural changes in P/M Rene95under isothermal forging conditions. Materials Science and Engineering A,2006,429(1-2):295-303.
    [4]张义文,上官永恒.粉末高温合金的研究与发展.粉末冶金工业,2004,14(6):30-43.
    [5]Michel N, Atef F. Equicohesion:intermediate temperature transition of the grain size effect in the nickel-base superalloy PM3030. Journal of Materials Engineering and Performance,2010,19(3):395-400.
    [6]张仁鹏,李付国,肖军.基于类等势场的粉末高温合金盘件等温锻造预成形设计.热加工工艺,2007,36(9):70-74.
    [7]张莹,张义文,陶宇.俄罗斯EP741NP粉末高温合金的研究.钢铁研究学报,2006,18(8):58-62.
    [8]Park N K, Kim I S. Hot forging of a nickel-base superalloy. Journal of Materials Processing Technology,2001,111(1-3):98-102.
    [9]阎光宗,彭志方.两相镍基合金中相成分和含量的最优化测算法.金属学报,2005,41(4):363-368.
    [10]胡本芙,尹法章,贾成厂,等.热处理工艺对热挤压变形粉末高温合金FGH95组织与性能的影响.北京科技大学学报,2006,28(12):1121-1125.
    [11]Chen H M, Hu B F, Zhang Y W, et al. The influence of processing parameters on granularity distribution of superalloy powders during PREP. Journal of Materials Science and Technology,2003,19(6):587-590.
    [12]杨治国.粉末高温合金材料的力学特性及其在涡轮盘上的应用研究:(博士学位论文).南京:南京航空航天大学,2007.
    [13]邹金文,汪武祥.粉末高温合金研究进展与应用.航空材料学报,2006,26(3):244-250.
    [14]孙克云,丁传毅.我国粉末冶金工业炉的发展现状.粉末冶金工业,2008,18(6):36-39.
    [15]叶途明,易健宏,彭元东,等.粉末冶金温压工艺的技术特点及其新发展.材料工程,2007,(5):61-65.
    [16]Atkinson V H, Davies S. Fundamental aspects of hot isostatic pressing:an overview. Metallurgical and Materials Transactions A,2000,31(1):2981-3000.
    [17]Sofiane T, Raphael C, Laure G, et al. Modeling the plastic deformation during high-temperature creep of a powder-metallurgy coarse-grained superalloy. Materials Science and Engineering A,2008,483-484(2):598-601.
    [18]Jin D, Liu Z Q, Yi W, et al. Influence of cutting speed on surface integrity for powder metallurgy nickel-based superalloy FGH95. The International Journal Advanced Manufacturing Technology,2011,56(7-8):553-559.
    [19]Salem G H, Sadek A A. Fabrication of high performance PM nanocrystalline bulk AA2124. Journal of Materials Engineering and Performance,2010,19(3):356-357.
    [20]国为民,张凤戈,张莹,等.镍基粉末高温合金的组织、性能与成型和热处理工艺关系的研究.材料导报,2003,17(3):11-15.
    [21]Williams B. Review of trends in European PM production and technology. Powder Metallury and Metallurgy and Metal Ceramics,1999,38(1-2):102-107.
    [22]Lieblich M, Gongzalez-Carrasco L J, Garcia-Cano F. Asymmetrical phase growth in a PM Al/Ni3Al composite. Journal of Materials Science Letters,1999,18(11):905-908.
    [23]Diaz C, Gonzalez-Carrasco L J, Caruana G, et al. N13AI intermetallic particles as wear-resistant reinforcement for Al-base composites processed by powder metallurgy. Metallurgical and Materials Transactions A,1996,27(10):3259-3266.
    [24]Veldhuis C S, Dosbaeva K G, Elfizy A, et al. Investigations of white layer formation during machining of powder metallurgical Ni-based ME16superalloy. Journal of Materials Engineering and Performance,2010,19(7):1031-1036.
    [25]Bhowal R P, Wright F E, Raymond L E. Effects of cooling rate and γ' morphology on creep and stress-rupture properties of a powder metallurgy superalloy. Metallurgical Transactions A,1990,21(6):1709-1717.
    [26]Peng Y D, Yi J H, Luo S D, et al. Microstructure analysis of microwave sintered ferrous PM alloys. Journal of Wuhan University of Technology Materials Science Edition,2009,24(2):214-217.
    [27]贾建,陶宇,张义文,等.FGH95合金长期时效过程中二次γ'相的“反粗化’分裂行为.稀有金属材料与工程,2012,41(7):1156-1160.
    [28]王相庆.DLMS技术致密度提高及微观缺陷消除的试验研究:(硕士学位论文).南京:南京航空航天大学,2007.
    [29]舒琴,葛昌纯,徐轶.喷射成形FGH95环坯的组织与性能.粉末冶金技术,2012,30(3):200-205.
    [30]叶途明,彭元东,易健宏,等.粉末冶金温压工艺的研究进展及其展望.粉末冶金材料科学与工程,2003,8(4):232-328.
    [31]Tian S G, Liu Y, Zhou X M, et al. Creep behaviors of FGH95powder Ni-base superalloy. Chinese Journal of Aeronautics,2009,22(4):444-448.
    [32]周晓明,汪殿龙,汪煜,等.夹杂物在FGH95中的损伤力学行为研究.航空材料学报,2008,28(2):1-4.
    [33]周晓明,汪武祥,王旭青,等.非金属夹杂物对FGH95合金微观拉伸行为的影响.稀有金属材料与工程,2007,36(2):231-235.
    [34]罗学军,王晓峰,马国君,等.热处理对FGH95合金组织和性能的影响研究.粉末冶金技术,2012,30(1):12-17.
    [35]魏大盛,王延荣,陆利蓬.粉末冶金盘损伤容限的边界元分析,航空动力学报,2009,24(6):1299-1304.
    [36]凡进军,赵剑峰.激光直接烧结FGH95合金温度场的有限元模拟.应用激光,2010,30(4):284-290.
    [37]温志勋,岳珠峰,万建松,等.粉末冶金涡轮盘简单模拟件低周疲劳寿命研究.实验力学,2007,22(1):90-96.
    [38]张国栋,刘绍伦,何玉怀,等.粉末冶金盘材料FGH95热机械疲劳寿命预测.失效分析与预防,2008,3(1):54-58.
    [39]胡本芙,田高峰,贾成厂,等.双性能粉末高温合金涡轮盘的研究进展,航空材料学报,2007,27(4):80-84.
    [40]Guleryuz F L, Ozan S, Uzunsoy D, et al. An investigation of the microstructure and mechanical properties of B4C reinforced PM magnesium matrix composites. Powder Metallurgy and Metal Ceramics,2012,51(7-8):456-462.
    [41]Medeiros C S, Frazier G W, Prasad K R V Y. Hot deformation mechanisms in a powder metallurgy nickel-base superalloy IN625. Metallurgical and Materials Transactions A,2000,31(9):2317-2325.
    [42]Sidhu R K, Ojo O A, Chaturvedi M C. Microstructural response of directionally solidified Rene80superalloy to gas-tungsten arc welding. Metallurgical and Materials Transactions A,2009,40(1):150-162.
    [43]Hwang J Y, Banerjee R, Tiley J, et al. Nanoscale characterization of elemental partitioning between y and γ' phases in Rene88DT nickel-base superalloy. Metallurgical and Materials Transactions A,2009,40(1):24-35.
    [44]李伟,梁学锋,谢永军,等.均匀化和均匀化后处理对GH742合金γ'相的影响.材料工程,2005,(12):33-36.
    [45]国为民,董建新,吴剑涛,等.FGH96镍基粉末高温合金的组织和性能.钢铁研究学报,2005,17(1):59-63.
    [46]Gilles R, ukherji D, Tobbens D, et al. Neutron X-ray and electron diffraction measurements for the determination of y'/y lattice misfit in Ni-base superalloys. Applied Physics A,2002,74(1):1446-1448.
    [47]Tian S G, Wang M G, Yu X F, et al. Influence of element Re on lattice misfits and stress rapture properties of single crystal nickel-based superalloys. Materials Science and Engineering A,2010,527(16-17):4458-4465.
    [48]胡壮麒,刘丽荣,金涛,等.单晶镍基高温合金的发展.航空发动机,2005,31(3):1-7.
    [49]Hopgood A A, Martin J W. Study of crystallographic creep parameters of nickel-based single crystal. Materials Science and Engineering A,1986,82(1-2):27-36.
    [50]Muller L, Glatzel U, Feller K M. Modeling thermal misfit stresses in nickel-based superalloy containing high volume fraction of y'phase. Acta Metallurgica Materialia,1992,40(4):1321-1327.
    [51]胡文波,贾成厂,胡本芙,等.FGH96合金原始颗粒边界(PPB)及其对冲击性能的影响.粉末冶金技术,2012,30(5):327-333.
    [52]赵军普,陶宇,袁守谦,等.粉末冶金高温合金中的原始颗粒边界(PPB)问题.粉末冶金工业,2010,20(4):43-49.
    [53]刘东明,张莹,刘培英.FGH95粉末高温合金原始颗粒边界及其对性能的影响.粉末冶金工业,2006,16(3):1-5.
    [54]马文斌,刘国权,胡本芙,等.粉末高温合金FGH96中的原始颗粒边界及对其合金拉伸断裂行为的影响.粉末冶金材料科学与工程,2013,18(1):1-7.
    [55]Parkash T L, Chari Y N, Bhagiradha E S, et al. Microstructure and mechanical properties of hot isostatically pressed powder metallurgy alloy APK-1. Metallurgy Transactions A,1983,14(4):733-742.
    [56]Jiang L, Hu R, Kou H C, et al. The effect of M23C6carbides on the formation of grain boundary serrations in a wrought Ni-based superalloy. Materials Science and Engineering A,2012,536(1):37-44.
    [57]Raisson G, Evolution of PM nickel base superalloy processes and products. Powder Metallurgy,2008,50(1):10-13.
    [58]Rao G, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and properties of hot isostatically pressed superalloy Incone1718. Materials Science and Engineering A,2003,355(1-2):114-125.
    [59]胡本芙,陈焕铭,宋铎,等.镍基高温合金快速凝固粉末颗粒中MC型碳化物相的研究.金属学报,2005,41(10):1042-1046.
    [60]Chen H M, Hu B F, Li H Y. Surface characteristics of rapidly solidified nickel-based superalloy powders prepared by PREP. Rare Metals,2003,22(4):309-314.
    [61]Guo W M, Wu J T, Zhang F G, et al. Microstructure, properties and heat treatment process of powder metallurgy superalloy FGH95. Journal of Iron and Steel Research International,2006,13(5):65-68.
    [62]Sharma K K, Balasubramanian T V, Misra R D K. Effect of boron on particle surfaces and prior particle boundaries in a P M nickel based superalloy. Scripta Metallurgica,1989,23(4):573-577.
    [63]张义文,张凤戈,张莹,等.一种消除粉末高温合金中PPB的方法.钢铁研究学报,2003,15(7):513-518.
    [64]Yang W H, Mao J, Wang W X, et al. Effects of heat treatment on prior particle boundary precipitation in a powder metallurgy nickel base superalloy. Advanced Performance Materials,1995,2(3):269-279.
    [65]陈焕铭,胡本芙,宋铎,等.快速凝固FGH95合金粉末中的碳化物及其稳定性.兰州大学学报(自然科学版),2006,42(3):71-75.
    [65]陈焕铭,胡本芙,余泉茂,等.FGH95粉末枝晶间合金元素偏析的研究.材料工程,2002,(3):32-35.
    [66]胡本芙,陈焕铭,李慧英,等.等离子旋转电极雾化FGH95高温合金原始颗粒边界中碳化物的研究.材料工程,2003,(1):6-9.
    [67]刘建涛,张义文,陶宇,等.预处理过程中FGH96合金粉末中碳化物演变.材料热处理学报,2012,33(5):53-58.
    [68]马文斌,吴凯,刘国权,等PREP FGH4096粉末凝固组织和碳化物研究.钢铁研究学报,2011,23(s2),490-493.
    [69]吴凯,刘国权,胡本芙,等.新型镍基粉末高温合金微量元素的相研究.稀有金属材料与工程,2011,40(2):279-284.
    [70]郭岩,周荣灿,候淑芳,等.镍基合金的析出相及强化机制.金属热处理,2011,36(7):46-50.
    [71]李伟,牛建科.热处理对GH188合金650℃拉伸塑性的影响.特钢技术,2004,9(4):10-11.
    [72]胥国华,焦兰英,张北江,等.固溶冷却速度对GH4586合金组织及850℃拉伸性能的影响.材料热处理学报,2006,27(2):47-49.
    [73]于慧臣,谢世殊,赵光普,等.GH141合金的高温拉伸及持久性能.材料工程,2003,(9):3-6.
    [74]Thorsten K, Dietmar B, Eckhard N. The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation. Acta Materialia,2004,52(4):2095-2108.
    [75]颜晓峰,马惠萍,卢亚轩,等.碳含量对GH648合金组织和性能的影响.钢铁研究学报,2001,13(6):40-42.
    [76]柴国明,陈希春,郭汉杰.FGH96高温合金中一次碳化物形成规律.中国有色金属学报,2012,22(8):2205-2213.
    [77]赵军普,袁守谦,陶宇,等.FGH96合金中γ'和碳化物相平衡计算.稀有金属材料与工程.2011,40(6):1019-1024.
    [78]郑磊,焦少阳,董建新,等.690合金等温热处理过程中晶界碳化物和贫铬区演化规律.机械工程学报,2010,46(12):48-52.
    [79]Tsai W T, Wu T F. Pitting corrosion of alloy690in thiosulfate-containing chloride solutions. Journal of Nuclear Materials,2000,277(2-3):169-174.
    [80]Casales M, Salinas B V M, Martinez V A, et al. Effect of heat treatment on the stress corrosion cracking of alloy690. Materials Science and Engineering A,2002,332(1-2):223-230.
    [81]胡本芙,田高峰,贾成厂,等.涡轮盘用高性能粉末高温合金的优化设计探讨.粉末冶金技术,2009,27(4):292-300.
    [82]曾强,燕平,邵冲,等.K480铸造镍基高温合金900℃高温时效过程中晶界粗化行为研究金属学报,2013,49(1):63-70.
    [83]黄福祥,尹平,李司山,等.计算合金热力学性质的Miedema理论.重庆理工大学学报(自然科学),2010,24(1):92-97.
    [84]石国梁,张丁非,戴庆伟,等Mg-6Zn-1Mn镁合金中MgZn相析出的热力学计算.稀有金属材料与工程,2009,38(11):1940-1944.
    [85]Jesser W A, Zhang B W. Formation energy of ternary alloy systems calculated by an extended Miedema model. Physica B:Condensed Matter,2002,315(1):123-132.
    [86]范鹏,周围治.由组元的物性参数预测金属熔体的热力学性质.金属学报,1999,35(4):421-426.
    [87]吴春峰,李慧改,郑少波,等.二元合金热力学模型Miedema模型.上海金属学报,2011,33(4):1-5.
    [88]汤振雷,王为.计算合金系统热力学性质的Miedema模型的发展.材料导报,2008,22(3):115-118.
    [89]Zhang R F, Liu B X. Proposed model for calculating the standard formation enthalpy of binary transition-metal systems. Applied Physics Letters,2002,81(7):1219-1221.
    [90]Wang W C, Li H F, Yan H F, et al. A thermodynamic model proposed for calculating the standard formation enthalpies of ternary alloy systems. Scripta Materialia,2007,56(11):975-978.
    [91]Ouyang Y, Zhong X P, Du Y, et al. Enthalpies of formation for the Al-Cu-Ni-Zr quaternary alloys calculated via a combined approach of geometric model and miedema theory. Journal of Alloys and Compounds,2006,420(1-2):175-181.
    [92]Tian S G, Zhang J H, Wu X, et al. Features and effect factors of creep of single crystal nickel base superalloys. Metallurgical and Materials Transactions A,2001,32(12):2947-2957.
    [93]Chen Q Z, Jones C N, Knowles D M. The grain boundary microstructures of the base and modified RR2072bicrystal superalloys and their effects on the creep properties. Materials Science and Engineering A,2004,385(1-2):402-418.
    [94]Nganbe M, Heilmaier M. Creep behavior and damage of Ni-base superalloys PM1000and PM3030. Metallurgical and Materials Transactions A,2009,40(12):2971-2979.
    [95]Sundararaman M, Singh J B. Design considerations for a high temperature creep resistant nickel base alloy. Transactions of the Indian Institute of Metals,2010,63(2-3):313-320.
    [96]Semiatin S L, Mclary K E, Rollett A D, et al. Microstructure evolution during supersolvus heat treatment of a powder metallurgy nickel-base superalloy. Metallurgical and Materials Transactions A,2012,43(5):1649-1661.
    [97]Tian S G, Li Z R, Zhao Z G, et al. Influence of deformation level on microstructure and creep behavior of GH4169alloy. Materials Science and Engineering A,2012,550(4):235-242.
    [98]Viswanathan G B, Sarosi P M, Deborah H W, et al. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy Rene88DT. Materials Science and Engineering A,2005,400-401(3):489-495.
    [99]Kovarik L, Unocic R R, Li J, et al. Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Progress in Materials Science,2009,54(6):839-873.
    [100]崔伟华,万建松,岳珠峰,等.镍基粉末冶金FGH95高温合金的拉伸机低周疲劳性能研究.稀有金属材料与工程,2007,36(12):2119-2123.
    [101]张义文,刘建涛,贾建.热等静压冷却速度对粉末冶金高温合金组织及性能的影响.粉末冶金工业,2010,20(6):11-17.
    [102]李红宇,宋西平,王艳丽,等.FGH95合金中γ'相稳定性研究.稀有金属材料与工程,2009,38(1):64-67.
    [103]Ferndez R, Lecomte J C, Katamis T Z. Effect of solidification parameters on growth geometry of MC carbide in IN-100dendritic monocrystals. Metallurgical Transaction A,1978,9(12):1381-1386.
    [104]Hu B F, Zhang S H. Carbide phases in Ni-based P/M superalloy. Journal of University of Science and Technology Beijing,1994,1(1):1-7.
    [105]Bor H Y, Chao C G, Ma C Y. The influence of magnesium on carbide characteristics and creep behavior of the MAR-M247superalloy. Scripta Materialia,1998,38(2):329-334.
    [106]Huang X B, Zhang Y. Effect of small amount of nitrogen on carbide characteristics in unidirectional Ni-base superalloy. Metallurgical and Materials Transactions A,1997,28(10):2143-2147.
    [107]Youdelis W V, Kwon O. Carbide phases in nickel base superalloy nucleation properties of MC type carbide. Metal Science,1983,17(8):385-388.
    [108]张小彬,刘常升,吕俊英,等.镍基高温合金长期时效过程中第二相的析出.东北大学学报(自然科学版),2005,26(4):253-256.
    [109]Appa R G, Srinivas M, Sarma D S. Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel718. Materials Science and Engineering A,2006,435-436(8):84-99.
    [110]Cui Y C, Jin T, Sun F X. Effects of heat treatments on the serrated flow in a Ni-Co-Cr-base superalloy. Journal of Materials Science,2011,46(16):5546-5552.
    [111]余胜文,王为,杨军军,等Al-5Mg-Er合金中A13Er相的析出及其热力学计算分析.中国稀土学报,2006,24(4):470-474.
    [112]Jesser W A, Zhang B W. Formation energy of ternary alloy systems calculated by an extended miedema model. Physica B,2002,315(1):123-132.
    [113]孙顺平,易丹青,臧冰.基于Miedema模型和Toop模型的Al-Si-Er合金热力学参数计算.稀有金属材料与工程,2010,39(11):1974-1978.
    [114]Zhang R F, Sheng S H, Liu B X, et al. Predicting the formation enthalpies of binary intermetallic compounds. Chemical Physics Letters,2007,442(4-6):511-514.
    [115]Tao X M, Wang H, Zhu W J, et al. Thermodynamic description of the Mg-Eu binary system. Computer Coupling of Phase Diagrams and Thermochemistry,2008,32(3):462-465.
    [116]Hojvatde T R, Soriano M R, Pepe M E, et al. Calculation of metastable free-energy diagrams and glass formation in the Mg-Cu-Y alloy and its boundary binaries using the Miedema model. Intermetallics,2006,14(3):297-307.
    [117]韦文楼,陈红梅,欧阳义芳,等.贵金属嵌入原子参数及贵金属二元合金稀溶解热的计算.稀有金属材料与工程,2005,34(11):1694-1697.
    [118]Monajati H, Jahazi M, Bahrami R. The influence of heat treatment conditions on γ' characteristics in Udimet720. Materials Science and Engineering A,2004,373(1-2):286-293.
    [119]Diologent F, Caron P, Jacques A, et al. The γ'/γ mismatch in Ni based superalloys:In situ measurements during creep test. Nuclear Instruments and Methods in Physics Research Section B,2002,200(4):346-351.
    [120]张伟红,李荣彬,蔡大勇,等.GH4169合金中γ'、γ"相含量比值的测定.物理测试,2001,(6):23-26.
    [121]Baldan A. Review progress in Ostwald ripening theories and their applications to the y'-precipitates in nickel-base superalloys part II nickel-base superalloys. Journal of Materials Science,2002,37(12):3165-3172.
    [122]Li H Y, Zuo X P, Wang Y L, et al. Coarsening behavior of γ' particles in a nickel-base superalloy. Rare Metals,2009,28(2):197-201.
    [123]刘新灵,陈星,侯学勤.FGH95粉末冶金高温合金损伤与断裂特性研究.稀有金属材料与工程,2009,38(7):1179-1183.
    [124]崔伟华,岳珠峰,温志勋.FGH95缺口小试样高温拉伸和蠕变断裂性能.材料科学与工程学报,2008,26(2):239-245.
    [125]Knowles M D, Hunt D W. The influence of microstructure and environment on the crack growth behavior of powder metallurgy nickel superalloy RR1000. Metallurgical and Materials Transaction A,2002,33(10):3165-3172.
    [126]Tian S G, Su Y, Qian B J, et al. Creep behavior of a single crystal nickel-based superalloy containing4.2%Re. Materials and Design,2012,37(9):236-242.
    [127]Tian S G, Zhang J H, Xu Y B, et al. Stress-induced precipitation of fine γ' phase and thermodynamics analysis. Journal of Materials Science and Technology,2001,17(2):257-259.
    [128]吴凯,刘国权,胡本芙,等.合金元素对新型镍基粉末高温合金的热力学平衡相析出行为的影响.北京科技大学学报,2009,31(6):719-727.
    [129]Radavich J, Carneiro T, Furrer D, et al. Effect of processing and composition on the structure and properties of PM EP741NP type alloys. Chinese Journal of Aeronautics,2007,20(2):97-106.
    [130]Thompson A W. Calculation of true volume grain diameter. Metallagraphy,1972,5(4):366-369.
    [131]Cocks U F. A statistical theory of flow stress and work-hardening. Philosophical Magazine,1966,13(123):541-566.
    [132]谢世殊,杨洪才,王志兴,等.GH585合金的晶界碳化物高温强化.东北大学学报(自然科学版),1998,19(6):577-580.
    [133]张俊善.材料的高温变形与断裂.北京:科学出版社,2007,310-313.
    [134]钟群鹏.断口学.北京:高等教育出版社,2006,178-180.
    [135]Raujiol S, Pettinari F, Locq D, et al. Creep straining micro-mechanisms in a powder-metallurgical nickel-based superalloy. Materials Science and Engineering A,2004,387-389(2):678-682.
    [136]Unocic R R, Viswanathan G B, Sarosi P M, et al. Mechanisms of creep deformation in polycrystalline Ni-base disk superalloys. Materials Science and Engineering A,2008,483-484(4):25-32.
    [137]Tao Y, Jia J, Liu J T. Microstructure character and mechanical properties of FGH95turbine blade retainers. Journal of Iron and Stress Research International,2010,17(9):73-78.
    [138]Mackay R A, Ebert L J. The development of y-y'lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing. Metallurgical Transactions A,1985,16(11):1969-1982.
    [139]Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in Rene88DT. Acta Materialia,2005,53(17):3041-3057.
    [140]Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep. Acta Materialia,2005,53(3):4623-4633.
    [141]Ardell A J. Precipitation hardening. Metallurgical Transactions A,1985,16(12):2131-2165.
    [142]Gerold V, Haberkorn H. On the critical resolved shear stress of solid solutions containing coherent precipitates. Physica Status Solidi B,1966,16(2):675-684.
    [143]Tian S G, Yu X F, Yang J H, et al. Deformation features of a nickel-base superalloy single crystal during compress creep. Materials Science and Engineering A,2004,379(1-2):141-147.
    [144]Yu X F, Tian S G, Wang M G, et al. Creep behaviors and effect factors of single crystal nickel crystal nickel-base superalloys. Materials Science and Engineering A,2009,499(1-2):352-359.
    [145]Lu Z Z, Liu C L, Yue Z F. Probabilistic safe analysis of the working life of a powder metallurgical turbine disc. Materials Science and Engineering A,2005,395(1-2):153-159.
    [146]杨刚,孙利军,张丽娜,等.形变孪晶的消失与退火孪晶的形成机制.钢铁研究学报,2009,21(2):39-43.
    [147]Kibry S, Liu J B, Joson D D, et al. Predicting twinning stress in fcc metals:linking twin-energy pathways to twin nucleation. Acta Materialia,2007,55(20):6843-6851.
    [148]Kovarik L, Unocic R R, Li J, et al. The intermediate temperature deformation of Ni-based superalloys: importance of reordering. Journal of Metals,2009,61(2):42-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700