用户名: 密码: 验证码:
复杂工程结构可靠度分析的高斯过程动态响应面方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国正处在土木建筑行业的黄金机遇期,大型结构如雨后春笋,复杂程度越来越高,不确定因素越来越多,随着而来的是安全问题越来越重要。这就要求提出结构可靠度评估的与信息化时代相吻合的新理论和新方法。本文将针对大型复杂结构对应的功能函数具有计算代价高、隐式表达和高度非线性等特征,而传统方法难以或准确或快速地解决的问题,利用高斯过程机器学习方法善于处理高维数、小样本、非线性等复杂问题、能自适应获取最优超参数、预测结果具有概率意义等优点,在动态更新学习样本的基础上,采用高斯过程模型重构复杂结构的隐式功能函数,进而结合传统可靠度分析方法求解结构的可靠度问题,能较为高效快速地求解复杂结构可靠度问题。
     本文的主要研究工作如下:
     1.基于蒙特卡罗的高斯过程分类法研究。采用高斯过程分类模型来重构功能函数,基于马尔可夫链的样本生成机制,并将高精度的蒙特卡罗可靠度分析方法与分类性能优异的高斯过程分类模型相结合,在构建响应面拟合误差自适应修正机制的基础上,提出基于高斯过程分类-MCS动态响应面的结构可靠度分析方法,为含有隐式功能函数的复杂工程结构可靠度的高速求解提供一个新的选择。
     2.基于Breitung法的高斯过程回归动态响应面法研究。该方法利用有限元分析程序构造少量训练样本,利用训练后的高斯过程回归模型构建响应面,实现小样本条件下功能函数及其偏导数的显式表达,通过构造合理的迭代方式,利用各迭代步的验算点信息不断修正响应面的拟合误差,动态提升响应面对失效概率贡献较大区域的重构精度,进而结合Breitung法快速推求结构的可靠度指标。与传统响应面法相比较,该方法具有较高的计算精度与计算效率,且易于与既有的有限元软件相结合。
     3.基于蒙特卡罗的高斯过程回归动态响应面法研究。该方法利用有限元分析程序构造少量训练样本,据此利用高斯过程回归模型构建响应面,实现小样本条件下高度非线性隐式功能函数的高精度逼近与显式化,并采用蒙特卡罗随机抽样快速估计失效域中最可能失效点,通过迭代循环,利用最可能失效点信息不断修正响应面的拟合误差,从而动态提升响应面对失效概率贡献较大区域的重构精度,进而结合蒙特卡罗模拟快速推求结构失效概率。该方法简单易行,具有高效高精度的优点,适用于大型复杂工程结构的可靠度分析。
     4.基于粒子群优化的高斯过程动态响应面法研究。该方法将可靠度求解问题转化为最优化问题,在采用有限元法生成少量样本的基础上,采用高斯过程回归模型构建功能函数的响应面,实现小样本条件下隐式非线性功能函数的显式表达,进而利用粒子群优化算法搜索的全局最可能失效点,并构造合理的迭代方式,利用各迭代步的最可能失效点信息动态提升响应面对失效概率贡献较大区域的重构精度。最后,以迭代完成后的最可能失效点为抽样中心,采用重要抽样方法进一步推求结构失效概率。该方法是解决多峰值性质功能函数可靠度问题的有效方法。
     5.将上述成果应用于实际的大型复杂结构进行结构可靠度计算,进一步验证了本文方法的先进性和可行性,为大型复杂结构的可靠度评估提供了参考。
China is at a golden opportunity to develop civil construction industry.With the rapid appearance of large-scale structures, complexity is higher and higher, uncertain factors are increasing, security problem following is more and more important. It is required that the new theory and analysis methods are proposed to face new challenges in the area of structure reliability assessment. The performance function of large-scale complex structures has many features, such as high computational cost, implicit expression, highly nonlinear and the traditional method is often difficult to solve it. Because GP model is good at dealing with high dimensions, small samples, nonlinear complexities problems and can obtain optimal super-parameter self-adaptively and forecast results of probability, this paper will focus on approximating the implicit performance function by GP model and combining traditional structure reliability analysis method to handle the issues of structure reliability assessment, which is based on dynamic updating of learning samples.
     Four methods are proposed in this paper for reliability analysis which are based on GP model:GPC-based MCS, which combined the GPC with MCS simulation (MCS),GPR-based Breitung, which combined the GPR with Breitung method, GPR-based MCS,which combined the GPR with MCS simulation (MCS) and GPR-based PSO,which combined the GPR with Particle Swarm Optimization (PSO).Then, those methods are applied to large-scale structure existed, which provides a new choice to solve this problem quickly and accurately. In sum, the main works and results are listed as follows:
     1. MCS-GPC. Based on markov chain sample generation mechanism and GPC model which is used to approximate the implicit performance function,GPC are combined with MCS to solve the issues of structure reliability assessement.In this method,fitting error is self-adaptively in the aspects of approximating the response surface,which provides a new choice to solve this problem quickly and accurately.
     2. Breitung-.GPR. The small number of training samples were created using Finite Element method (FEM) code for building the GPR response surface. Thus, the implicit performance and its derivatives were approximated by the GPR with explicit formulation. Then, an iterative algorithm is presented to reduce the errors of GPR response surface by information of design point in order to improve constantly the reconstructing precision at the important region, which contributes to the failure probability significantly. Then, the classical Breitung method combined with GRP response surface was applied to calculate the structural reliability index. The results show that the proposed method has higher efficiency and higher accuracy compared to traditional response surface method. It can directly take advantage of existing engineering FEM code without modification.
     3. MCS-GPR.The small number of training samples were created using FEM code for building the GPR response surface. The highly nonlinear and implicit performance function is approximated by GPR with explicit formulation under small sample condition. Then, the most probable point (MPP) is predicted quickly using MCS Simulation without any extra FEM analysis. Furthermore, an iterative algorithm is presented to reduce the errors of GPR by using information of MPP in order to improve constantly the reconstructing precision at the important region, which contributes to the failure probability significantly. Then, MCS method combined with GRP surface is applied to get the structure of failure probability. The proposed method has advantages of high efficiency and high precision compared to traditional response surface method.and thus it is very suitable for reliability analysis of large-scale complicated engineering structure.
     4. PSO-GPR. The calculation of reliability index converted to optimization problem. Then, the small number of training samples were created using Finite Element method (FEM) code for building the GPR response surface. Thus, the highly nonlinear and implicit performance function is approximated by GPR with explicit formulation under small sample condition. Then, the most probable point (MPP) is searched quickly using PSO without any extra FEM analysis. Furthermore, an iterative algorithm is presented to reduce the errors of GPR by using information of MPP in order to improve constantly the reconstructing precision at the important region, which contributes to the failure probability significantly. Finally, Important simulation method (ISM) combined with GRP surface is applied to calculate the failure probability.It is a effective method to solve the issues of structure reliability assessment which involve multiple peak values function.
     Finally,the methods above are applied to calculate the structural reliability index for large-scale complex structures. It show that a series of methods proposed in this paper are more accurate, efficient, scientific and feasible, which can be a good reference for large-scale complex structure reliability assessment.
引文
[1]G.E.P.BOX, K.B.Wlson. On the experimental attainment of optimum condition[J]. Royal Statistical Society,1951,13 (series B):1-45.
    [2]W.J.Hill, W.G.HUNTER. A Review of Response Surface Methodology:A LiteratureReview[J]. Technometrics,1966,8:571-590.
    [3]R.Mead, D.J.Pike. A Review of Response Surface Methodology from A Biometrics Viewpoint[J]. Biometrics,1975,31 (12):803-851.
    [4]R.H.Myers, D.C.Montgomery. Response surface methodology[J]. Technometrics,1988,31 (2),204-215.
    [5]R.G.Henika. Use of Response Surface Methodology in Sensory Evaluation[J]. Food Technology,1986,36:96-101.
    [6]M.Shechter, E.O.HEADY. Response Surface Analysis and Simulation Models in Policy Choices[J]. American Journal of Agricultural Economics,1970,52:41-50.
    [7]F.S.Wong. Slope reliability and response surface method[J]. Geotechnical Engineering,1985,111 (1):32-53.
    [8]L.Faravelli. Response surface approach for reliability analysis[J]. Engineering Mechanics,1989,115(12):2736-2781.
    [9]C.G.Bucher, U.Bourgund. A fast and efficient response surface approach for structural reliability problems [J]. Structural safety,1990,7 (1):57-66.
    [10]M.R.Rajashekhar, B.R.Ellingwood. A new look at the response safe approach for reliability analysis[J]. Structural Safety,1993,12 (3):205-220.
    [11]杨淑莹.模式识别与智能计算:Matlab技术实现[M].北京:电子工业出版社,2011.
    [12]V.N.Vapnik. Statistical learning theory [M]. New York:John Wiley and Sons,1998.
    [13]V.N.Vapnik, Ja A. Chervonenkis. On the uniform convergence of relative frequencies of events to their prob-abilities[J]. Theory of Probability and its Applications,1971,16:264-280.
    [14]J.E.Hurtado, D.A.Alvarez. Neural-network-based reliability analysis:a comparative study[J]. Computer Methods in Applied Mechanics and Engineering,2001,191 (1):113-132.
    [15]C.M.Bishop. Neural Networks for pattern recognition [M]. Oxford:Oxford University Press,1995.
    [16]B.D.Ripley. Pattern Recognition and neural networks [M]. Cambridge:Cambridge University Press,1996.
    [17]J.E.Hurtado. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory[J]. Structural Safety,2004,26 (3):271-293.
    [18]马超,吕震宙.结构可靠性分析的支持向量机分类迭代算法[J].中国机械工程,2007,18(7):816-819.
    [19]J.E.Hurtado. Filtered importance sampling with support vector margin:a powerful method for structural reliability analysis[J]. Structural safety,2007,29 (1):2-15.
    [20]A.Basudhar, S.Missoum. Adaptive explicit decision functions for probabilistic design and optimization using support vector machines[J]. Computers & Structures,2008,86 (19):1904-1917.
    [21]蒋友宝,杨伟军,冯健.模式识别技术在结构可靠度分析中的应用[J].工程力学,2008,25(8):53-57.
    [22]A.Basudhar, S.Missoum, A.H.Sanchez. Limit state function identification using support vector machines for discontinuous responses and disjoint failure domains[J]. Probabilistic Engineering Mechanics,2008,23 (1):1-11.
    [23]J.M.Bourinet, F.Deheeger, M.Lemaire. Assessing small failure probabilities by combined subset simulation and support vector machines[J]. Structural Safety,2011,33 (6):343-353.
    [24]J..Hurtado, D.A.Alvarez. An optimization method for learning statistical classifiersinstructuralreliability[J]. Probabilistic Engineering Mechanics,2010,25:26-34.
    [25]N.Wiener. Interpolation and Smoothing of Stationary Time Series [M]. Massachusetts: MIT Press,1949.
    [26]A.N.Kolmogorov. Interpolation und Extrapolation von stationaren zufaligen Folgen[J]. Izv. Akad. Nauk SSSR,1941,5:3-14.
    [27]C.E.R.A.Williams. Gaussian Processes for Machine Learning [M]. Massachusetts:MIT Press,2006.
    [28]G.S.Su, Y.L.Xiao, Z.N.Xia. Reliability analysis of underground cavern using Gaussian process classification[J]. Journal,2011(Issue):3389-3392.
    [29]曹鸿钧,朱玉强,张功.基于高斯过程分类的结构贝叶斯可靠性分析[J].计算力学学报,2012,29:825—829.
    [30]M.R.Rajashekhar, B.R.Ellingwood. A new look at the response surface approach for reliability analysis[J]. Structural safety,1993,12 (3):205-220.
    [31]I.Kaymaz, C.A.McMahon. A response surface method based on weighted regression for structural reliability analysis[J]. Probabilistic Engineering Mechanics,2005,20 (1):11-17.
    [32]H.P.Gavin, S.C.Yau. High-order limit state functions in the response surface method for structural reliability analysis[J]. Structural Safety,2008,30 (2):162-179.
    [33]李红双.概率不确定性分析即设计优化方法研究[博士学位论文][M].西安,西北工业大学,2008.
    [34]M.F.Anjum, I.Tasadduq, K.A.Sultan. Response surface methodology:A neural network approach[J]. European Journal of Operational Research,1997,101(1):65-73.
    [35]C.Cardaliaguet,P.Euvrand. Approximation of a function and its derivatives with a neural network[J]. Neural Networks,1992,5:207-220.
    [36]J.H.Garrett. Where and why artificial neural networks are applicable in civil engineering[J]. Journal of Computing in Civil Engineering,ASCE 8 (2),129-130.
    [37]A.T.C.Goh, F.H.Kulhawy. Neural network approach to model the limit state surface for reliability analysis[J]. Canadian geotechnical journal,2003,40 (6):1235-1244.
    [38]L.Schueremans, D.V.Gemert. Benefit of splines and neural networks in simulation based structural reliability analysis[J]. Structural safety,2005,27 (3):246-261.
    [39]J.Deng, D.S.Gu, X.B.Li. Structural reliability analysis for implicit performance functions using artificial neural network[J]. Structural Safety,2005,27 (1):25-48.
    [40]H.M.Gomes, A.M.Awruch. Comparison of response surface and neural network with other methods for structural reliability analysis[J]. Structural safety,2004,26 (1):49-67.
    [41]J.Chen. An artificial neural network based genetic algorithm for estimating the reliability of long span suspension bridges [J]. Finite Elements in Analysis and Design,2010, 46(8):658-667.
    [42]N.M.Duy, T.T.Cong. Approximation of function and its derivatives using radial basis function networks[J]. Applied Mathematical Modelling,2003,27 (3):197-220.
    [43]T.P.Chen, H.Chen. Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks[J]. Neural Networks, IEEE Transactions on,1995,6 (4):904-910.
    [44]J.Moody, C.J.Darken. Fast learning in networks of locally-tuned processing units[J]. Neural computation,1989,1 (2):281-294.
    [45]M.J.L.Orr. Recent advances in radial basis function networks[J]. Edinburgh University, Edinburgh,1999.
    [46]C.M Bishop. Neural networks for pattern recognition [M]. Oxford university press,1995.
    [47]J.Deng. Structural reliability analysis for implicit performance function using radial basis function network[J]. International Journal of Solids and Structures,2006,43 (11):3255-3291.
    [48]C.Bucher, T.Most. A comparison of approximate response functions in structural reliability analysis[J]. Probabilistic Engineering Mechanics,2008,23 (2):154-163.
    [49]S.J.Hua, Z.R.Sun. A novel method of protein secondary structure prediction with high segment overlap measure:support vector machine approach[J]. Journal of molecular biology,2001,308 (2):397-407.
    [50]V.Vapnik. The nature of statistical learning theory [M]. springer,2000.
    [51]C.M.Rocco, J.A.Moreno. Fast Monte Carlo reliability evaluation using support vector machine[J]. Reliability Engineering & System Safety,2002,76 (3):237-243.
    [52]J.E.Hurtado, D.A.Alvarez. Classification approach for reliability analysis with stochastic finite-element modeling[J]. Journal of Structural Engineering,2003,129 (8):1141-1149.
    [53]李洪双,吕震宙.结构可靠性分析的支持向量机响应面法[J].计算力学学报,2009,2:199-203.
    [54]刘志强.基于支持向量机的可靠度计算方法研究[D].大连理工大学,2008.
    [55]王书舟.支持向量机方法及其应用研究[D].哈尔滨工业大学,2009.
    [56]GMatheron. The intrinsic random functions and their applications[J]. Advances in applied probability,1973:439-468.
    [57]D.R.Jones, M.S.chonlau, W.J.Welch. Efficient global optimization of expensive black-box functions[J]. Journal of Global optimization,1998,13 (4):455-492.
    [58]V.J.Romero, L.P.Swiler, A.A.Giunta. Construction of response surfaces based on progressive-lattice-sampling experimental designs with application to uncertainty propagation[J]. Structural Safety,2004,26 (2):201-219.
    [59]I.Kaymaz. Application of kriging method to structural reliability problems[J]. Structural Safety,2005,27 (2):133-151.
    [60]S.N.Lophaven, H.B.Nielsen, J.Sondergaard. Aspects of the matlab toolbox DACE[R]. Informatics and Mathematical Modelling, Technical University of Denmark, DTU, 2002.
    [61]S.N.Lophaven, H.B.Nielsen, J.Sondergaard. DACE-A Matlab Kriging toolbox, version 2.0[R]. Informatics and Mathematical Modelling, Technical University of Denmark, DTU,2002.
    [62]A.A.Giunta, J.M.McFarland, L.P.Swiler, etcl. The promise and peril of uncertainty quantification using response surface approximations[J]. Structures and Infrastructure Engineering,2006,2 (3-4):175-189.
    [63]B..Bichon, M.S.Eldred, L.P.Swiler. Efficient global reliability analysis for nonlinear implicit performance functions[J]. AIAA journal,2008,46 (10):2459-2468.
    [64]P.Ranjan, D.Bingham, G.Michailidis. Sequential experiment design for contour estimation from complex computer codes[J]. Technometrics,2008,50 (4).
    [65]张崎,李兴斯.基于Kriging模型的结构可靠性分析[J][J].计算力学学报,2006,23(2):175-179.
    [66]N.Wiener. Extrapolation, interpolation, and smoothing of stationary time series:with engineering applications [M]. MIT press,1964.
    [67]A.Kolmogoroff. Interpolation und extrapolation von stationaren zufalligen folgen[J]. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya,1941,5 (1):3-14.
    [68]Q.G Tang, Y.B Lau, S.Q Hu, etcl. Response surface methodology using Gaussian processes:Towards optimizing catalysts[J]. Chemical Engineering Journal,2010,156 (2):423-431.
    [69]J.Hensman, R.Mills, S.G.Pierce. Locating acoustic emission sources in complex structures using Gaussian processes [J]. Mechanical Systems and Signal Processing,10,24 (1):211-223.
    [70]A.Marquand, M.Howard, M.Brammer. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes[J]. Neuroimage,2010,49 (3):2178-2189.
    [71]T.Chen, J.L.Morris, E.Martin. Gaussian process regression for multivariate spectroscopic calibration[J]. Chemometrics and Intelligent Laboratory Systems,2007,87 (1):59-71.
    [72]熊志化,张继承,邵惠鹤.基于高斯过程的软测量建模[J].系统仿真学报,2005,17(4):793-794.
    [73]熊志化,黄国宏,邵惠鹤.基于高斯过程和支持向量机的软测量建模比较及应用研究[J].信息与控制,2004,33(6):754-757.
    [74]G.S.Su, L.B.Yan, Y.C.Song. Gaussian process for non-linear displacement time series prediction of landslide[J], Journal of China University of Geosciences,2007,18:219-221.
    [75]苏国韶,燕柳斌,张小飞,etcl.基坑位移时间序列预测的高斯过程方法[J].广西大学学报(自然科学版),2007,32(2):223-226.
    [76]苏国韶,宋咏春,燕柳斌.岩体爆破效应预测的一种新方法[J]. Chinese Journal of Rock Mechanics and Engineering,2007,15 (2):22-26.
    [77]刘开云,刘保国,徐冲.基于遗传-组合核函数高斯过程回归算法的边坡非线性变形时序分析智能模型[J].岩石力学与工程学报,2009,28(10):2128-2134.
    [78]徐冲,刘保国,刘开云,etcl.基于组合核函数的高斯过程边坡角智能设计[J].岩土力学,2010,31(3).
    [79]刘信恩,肖世富,莫军.高斯过程响应面法研究[J].应用力学学报,2010(001):190-195.
    [80]苏国韶,肖义龙.边坡可靠度分析的高斯过程方法[J].岩土工程学报,2011,33(6):916-920.
    [81]吕霞宙,宋述芳,李洪双,etcl.结构机构可靠性及可靠性灵敏度分析[M].北京.科学出版社,2009.
    [82]邓乃扬,田英杰.支持向量机:理论、算法与拓展[M].北京:科学出版社,2009.
    [83]傅英定,成孝予,唐应辉.最优化理论与方法[M].北京:国防工业出版社,2008.
    [84]M.R.C.R.Fina. Function optimization by conjugate gradients[J]. The Computer Journal,1961,7:149-154.
    [85]田铮,秦超英.随机过程与应用[M].北京:科学出版社,2007.
    [86]马锐.人工神经网络原理[M].北京:机械工业出版社,2010.
    [87]邓万宇,郑庆华,陈琳.神经网络极速学习方法研究[J].计算机学报,2010,33(2):279-287.
    [88]白鹏,张喜斌,张斌.支持向量机理论及工程应用实例[M].西安.西安电子科技大学出版社,2008.
    [89]朱国强,刘士荣,俞金寿.支持向量机及其在函数逼近中的应用[J].华东理工大学学报,2002,28(5).
    [90]Vojt ech Franc, Vaclav Hlav a. Statistical Pattern Recognition [M]. Toolbox for Matlab, 2004.
    [91]C.E.Rasmussen. Gaussian processes for machine learning[M].the MIT Press.2006.
    [92]S.K.Au, J.L.Beck. A new adaptive importance sampling scheme for reliability calculations[J]. Structural Safety,1999,21 (2):135-158.
    [93]S.K.Au. Reliability-based design sensitivity by efficient simulation[J]. Computers & structures,2005,83 (14):1048-1061.
    [94]C.Proppe. Estimation of failure probabilities by local approximation of the limit state function[J]. Structural Safety,2008,30 (4):277-290.
    [95]袁修开,吕震宙,许鑫.基于马尔科夫链模拟的支持向量机可靠性分析方法[J].工程力学,2011,28(2):36-43.
    [96]吕霞宙,宋述芳,李洪双.结构机构可靠性及可靠性灵敏度分析[M].科学出版社,2009.
    [97]赵国藩.工程结构可靠性理论与应用[M].大连,大连理工大学出版社.1996.
    [98]J.Cheng. Hybrid genetic algorithms for structural reliability analysis[J]. Computers & Structures,2007,85 (19):1524-1533.
    [99]S.H.Kim, S.W.Na. Response surface method using vector projected sampling points[J]. Structural Safety,1997,19 (1):3-19.
    [100]吕震宙,杨子政.基于神经网络的可靠性分析新方法[J].机械强度,2006,28(5):699-702.
    [101]Mohsen Rashki, Mahmoud Miri, Mehdi Azhdary Moghaddam. A new efficient simulation method to approximate the probability of failure and most probable point[J]. Structural Safety,2012,39:22-29.
    [102]陆强华.基于径向基函数神经网络的结构可靠性分析[J].中国科技信息,2008,5:234-235.
    [103]李洪双,吕震宙,赵洁.基于加权线性响应面法的支持向量机可靠性分析方法[J].工程力学,2007,24(5):67-71.
    [104]肖义龙.基于高斯过程机器学习的结构可靠度分析方法研究[D].广西大学,2011.
    [105]张明.结构可靠度分析:方法与程序[M].科学出版社,北京,2009.
    [106]李洪双,吕震宙.支持向量回归机在结构可靠性分析中的应用[J].航空学报,2007,28(1):94-99.
    [107]N.A.Butler. Optimal and orthogonal Latin hypercube designs for computer experiments[J]. Biometrika,2001,88 (3):847-857.
    [108]J.P.C.Kleijnen. Kriging metamodeling in simulation:a review[J]. European Journal of Operational Research,2009,192 (3):707-716.
    [109]H.M.Gomes, A.M.Awruch, Paulo Andre Menezes Lopes. Reliability based optimization of laminated composite structures using genetic algorithms and Artificial Neural Networks[J]. Structural Safety,2011,33 (3):186-195.
    [110]S.Hackwood, G.Beni. Self-organization of Sensors for Swarm Intelligence[J]. In IEEE International conference on Robotics and Automation,; IEEE Press: Piscataway,1992:819-829.
    [111]J.Kennedy. Particle swarm optimization[J]. Journal,2010(Issue):760-766.
    [112]Y. Chen, B. Yang, A. Abraham J. Dong. Time series forecasting using flexible neural tree model[J]. Inform. Sci,2005,174 (3-4):219-235.
    [113]朱劲松,肖汝诚,何立志.大跨度斜拉桥智能可靠度评估方法研究[J][J].土木工程学报,2007,40(5):41-48.
    [114]Luciano Catallo. Genetic anti-optimization for reliability structural assessment of precast concrete structures [J]. Computers & structures,2004,82 (13):1053-1065.
    [115]李扬海,鲍卫刚,郭修武.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700