用户名: 密码: 验证码:
变截面涡旋压缩机数学模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡旋压缩机是一种新型高效的流体机械,具有节能、高效、可靠的特点。目前已在制冷、空调、各种气体压缩、发动机增压以及增压泵等领域得到广泛应用,有着广阔的应用前景和市场。目前国内外的研究主要集中于圆渐开线的等截面涡旋压缩机,压缩比通常较小,如果增大压缩比则需要增加渐开线的圈数,圈数增加会引起型线加工困难、气体在腔体内停留时间过长而导致涡旋盘整体温度过高、整机尺寸过大等诸多问题。而采用新型等距组合型线的变截面涡旋压缩机则可以采用很少的圈数就实现高压比。
     本文构建了一种以渐开线和高次曲线为基线的新型组合型线,以较少的圈数实现了涡旋压缩机的高压比。提出了变截面涡旋压缩机的数学模型,通过对数学模型的详细研究得到了整机的性能特点。
     论文基于微分几何学的共轭曲线啮合原理,建立了变截面涡旋齿基线,进而生成了变截面内外壁型线,再进行了双圆弧修正,然后根据基线法原理进行了相应的容积计算;通过对变截面涡旋压缩机气体力(轴向力、径向力和切向力)、力矩、动盘受力、曲轴受力和十字环受力的分析,建立了动力学模型的迭代方程组,采用Newton-Raphson数值方法进行了求解;在机械摩擦损失部分,主要研究了主轴承、曲柄销、止推轴承和十字环的损失模型,对机械效率和输入轴功进行了详细分析,通过与动力学模型的联立求解,获得了变截面涡旋压缩机的功率损失、机械效率和轴功的变化规律,这些规律经归纳总结,主要表现在:
     1)主轴承的摩擦损失是影响机械效率的主要因素,在优化和实际生产中应予以重视;
     2)机械效率因摩擦损失功的影响,随转速的升高而有一定的降低,但下降幅度平缓,说明此变截面涡旋压缩机运转具有可靠性。
     通过对实验数据和数值计算结果的详细对比分析,验证了本文提出的变截面涡旋压缩机数学模型的正确性。
Scroll compressor is new and efficient fluid machinery with its advantages ofenergy-saving, efficiency, and reliability. At present, Scroll compressor has alreadybeen extending application in many kinds of fields, such as refrigeration,air-condition fields, gas compression, engine booster, and booster pumps, etc, anddestined for a broad application prospects and good future. Nowadays, the research onthe conventional same thickness scroll compressor has been the main aspects of study,both domestic and abroad, which has a relatively lower pressure ratio. The number ofturns must be added if the higher pressure ratio is to be wanted from the conventionalsame thickness scroll compressor, and problems must be followed with the addednumber of turns, such as, the added difficulty of vane production, the risingtemperature of the whole machine because of the long time stay of the compressedmass of gas, the bigger size and the heaver weight of the whole machine. However, allproblems will be solved if variable thickness scroll compressor with combinationprofile is been used instead of the conventional same thickness one.
     A new type combination profile has been established in this thesis which is madeup of circle involute and high times curve. The high pressure ratio has been achievedwith the fewer number of turns. Mathematical model has been built with this kind ofscroll compressor and the performance of the whole plate has been analyzed anddiscussed.
     The process of research in this thesis has been showed as follow. First, thebaseline of combination profile of variable thickness scroll compressor has beenfounded depend on conjugation theory of conjugacy curve in infinitesimal geometry,and combination profile has been created with twin-circular arc profile modification.Second, volume has been calculated depend on baseline principle. Third, equations ofdynamics has been built including gas forces, moment, force on the orbiting scroll,force on crank journal and force on Oldham ring, and been solved with the method ofNewton-Rophson. Fourth, mechanical frictional losses model has been createdincluding crank journal, crank pin, thrust bearing and Oldham ring. Mechanicalefficiency and available shaft work rate has been detailedly analyzed, too. The law ofchange in power consumptions, mechanical efficiency and available shaft work ratehas been get with the solving of the model. The law to sum-up mainly displays in:
     1) The main bearing friction loss is the main factors of influencing mechanical efficiency and should attach importance in the optimization and actual production.
     2) Mechanical efficiency has some fall with the rising speed because of frictionloss. But the fall is slow and shows that the variable thickness scroll compressor has areliable running.
     Mathematical modeling of variable thickness scroll compressor has been provedcorrect in this thesis with the comparison and analysis about the result fromexperiment study and numerical analysis.
引文
[1] L. Creux. Rotary Engine[P]. U. S. Patent,801182,1905.
    [2]荒田哲者.制冷压缩机的现状和发展方向[J].流体工程,1989,3:54-61.
    [3]刘志经.制冷涡旋压缩机及其应用[J].制冷,1998,4:25-28.
    [4] Winandy, Eric, O., Claudio Saavedra, Lebrun, Jean. Experimental analysis andsimplified modeling of a hermetic scroll refrigeration compressor[J]. AppliedThermal Engineering.2002,22(2):107-120.
    [5]卜啸华.涡旋式制冷压缩机.动力机械通讯[J].1989(49):30-62.
    [6][日]森下悦生,杉原正浩.涡旋压缩机的设计问题[J].压缩机技术,1988,4:11-20.
    [7]李连生,束鹏程,郁永章,等.涡旋型线对涡旋压缩机性能的影响[J].西安交通大学学报,1997,31(2):45-50.
    [8]李连生.线段渐开线涡旋压缩机的几何理论[J].流体机械,1994,22(12):22-28.
    [9]黄允东,郁永章.半圆偏心涡旋压缩机的几何理论[J].压缩机技术,1997,1:3-6.
    [10]王君,刘振全,李超.涡旋压缩机渐开线和圆弧组合型线的设计计算[J].流体机械,2004,32(10):10-13.
    [11]王国梁,李连生,张薇,等.一种新型涡旋型线的几何理论研究[J].西安交通大学学报,2003,37(5):499-503.
    [12] T. Hirano. Scroll profiles for scroll fluid machines[J]. MHI Tech ReV(1990),27(1):35-41.
    [13] T. Hirano. Scroll-type fluid machine with specific inner Curve segments[P].Patent: US4856973,1989.
    [14] Y. R. Lee, et a1. On the Profile Design of a Scroll Compressor[J]. InternationalJournal of Refrigeration,1995,18(5):308-317.
    [15]王君,刘振全.涡旋压缩机双圆弧修正的解析法设计及误差分析[J].上海交通大学学报,2005,39(09):1418-1421,1426.
    [16] ZH. Q. Liu, et a1. The Graphic Method of Modified Wrap of ScrollCompressor[C]. In: Proc. of International Compressor Engineering Conference.Purdue,1992,1099-1106.
    [17]刘振全,於时才,杜桂荣.涡旋压缩机涡旋齿修正的图解法和修正角的研究[J].制冷学报,1992,52(2):6-10.
    [18]冯诗愚,顾兆林,李云.涡旋机械的涡旋体始端型线研究[J].西安交通大学学报,1998,32(1):88-92.
    [19]高秀峰.涡旋压缩机齿形修正及排气孔研究[D].西安交通大学,2000.
    [20]王君,刘振全.涡旋压缩机渐开线型线的多对圆弧修正[J].北京理工大学学报,2005,25(9):757-760.
    [21]王君,刘振全.涡旋压缩机双圆弧修正解析法设计及误差分析[J].上海交通大学学报,2005,39(9):1418-1421.
    [22]王君,刘振全.双涡圈涡旋压缩机完全啮合型线修正理论研究[J].机械工程学报,2005,41(3):234-238.
    [23]宋立权,陈进,王伟.基于三基圆的涡旋压缩机型线研究[J].中国机械工程,2005,16(16):1458-1461.
    [24]樊灵,靳春梅,屈宗长,等.涡旋压缩机型线的误差灵敏度与径向啮合间隙的相关分析[J].机械工程学报,2003,39(4):151-154.
    [25]樊灵,靳春梅,屈宗长,等.通用型线涡旋压缩机的误差及运动分析[J].机械工程学报,2002,38(6):139-143.
    [26] E. Morishita et a1. Scroll Compressor Analytical Model[C]. In: Proc. OfInternational Compressor Engineering Conference. Purdue,1984,487-495
    [27] E. Morishita et a1. Scroll Compressor Dynamics[J]. Bulletin of JSME,1986,29(248):476-488.
    [28] N.Ishi, et al. A Study on Dynamic Behavior of A Scroll Compressor[C]. In: Proc.of International Compressor Engineering Conference. Purdue,1986,901-916.
    [29]吴建华,束鹏程.涡旋压缩机的动力分析[J].制冷学报,1995,4:1-8.
    [30]柏杰,李连生,郁永章.涡旋压缩机动力特性分析[J].西安交通大学学报,1994,28(8):83-88.
    [31]司玉宝,屈宗长,王迪生.涡旋压缩机型线动力特性的研究[J].西安交通大学学报,2000,34(11):53-56.
    [32]李超,赵荣珍,刘振全.驱动轴承内嵌式涡旋压缩机动力特性分析[J].兰州理工大学学报,2007,33(5):55-59.
    [33]刘振全,高艳,王君.双头涡旋齿涡旋压缩机气体力分析[J].制冷学报,2005,26(3):42-46.
    [34]王君,李超,马小礼,等.涡旋压缩机工作腔润滑油密封的实验研究[J].润滑与密封,2006(3):100-102,104.
    [35]曹霞,陈芝久,刘振全.立式高压型涡旋压缩机摩擦副分析[J].上海交通大学学报,2000,34(9):1228-1231.
    [36]刘兴旺,刘振全,李超,等.涡旋压缩机摩擦损耗和泄露损耗研究[J].压缩机技术,2006,197(3):1-4,12.
    [37]樊灵,屈宗长,司玉宝,等.喷油式涡旋空压机的常见故障与维修[J].流体机械,1999,10(27):33-36.
    [38] Noriaki ISHII,Tatsuya OKU,Keiko ANAMI et a1.Effects of Surface Roughnessupon Gas Leakage Flow through Small Clearances in CO2ScrollCompressors[C].In:Proc.of International Compressor Engineering Conference.Purdue,2008,1429.
    [39]刘兴旺,余建平,齐学义,等.迷宫式涡旋齿和无迷宫式涡旋齿切向密封性能对比[J].机械工程学报,2010,46(18):183-188.
    [40]杜桂荣,刘振全.涡旋压缩机机构模型及径向随变调节原理[J].制冷学报,1997,2:1-7.
    [41] Liu Zhenquan, Tadashi, Yanagisawa. A Mechanical Model For The ScrollMechanism And Its Kinematical Analysis[C]. In:ICECP. Purdue, USA,1998:507-512.
    [42]刘振全,柳泽正.涡旋机械的机构模型及理论分析[J].甘肃工业大学学报,1996,22(2):36-42.
    [43]刘振全,杜桂荣.涡旋压缩机理论机构模型[J].机械工程学报,1999,35(2):38-41.
    [44]樊灵,靳春梅,屈宗长,等.基于四杆机构的涡旋压缩机的平衡分析[J].机械设计,2000,2:42-44.
    [45]杜桂荣,刘振全,秦子荣.涡旋式压缩机的防自转机构[J].甘肃工业大学学报,1991,17(3):1-6.
    [46] J.Niete. Dynamics of Compliance Mechanisms in Scroll Compressors Part2:RadialCompliance[C]. In: ICECP. Purdue, USA,1992:317-326.
    [47] J.Kim, et al. Design of Phase-angled Balance Weights for an Inverter DrivenScroll Compressor[C]. In: ICECP. Purdue, USA,1996:445-450.
    [48]杜桂荣,仇博先,刘振全.涡旋压缩机零齿差防自转机构分析[J].甘肃工业大学学报,2001,27(3):27-30.
    [49]刘振全,任俊士.动涡旋盘与轴向随变机构机械振动模拟[J].甘肃工业大学学报,1999,25(4):39-43.
    [50]刘振全,吴伟东.全封闭涡旋压缩动态模型[J].甘肃工业大学学报,2000,26(3):59-64.
    [51]王焕然,周雷,金光熹.涡旋压缩机密封间隙的定量化研究[J].压缩机技术,1997,5:17-20.
    [52] Kazutaka Suefuji, Masso Shiibayyashi, Kenji Yojo. Performance analysis ofhermetic scroll compressor. In: ICECP. Pudue, USA,1992:75-84.
    [53] Noriaki Ishii, Kenichi Bird, Kiyoshi Sano, et al. Refrigerant Leakage FlowEvaluation for Scroll Compressors. In: ICECP. Pudue, USA,1996:633-638.
    [54] Costa Cmnf, et al. Consideration About the Leakage Through the MinimalClearance in the Rolling Piston Compressor. In: ICECP. Pudue, USA,1990:853-862.
    [55]江波,畅云峰,朱杰,等.涡旋式压缩机内部泄漏的流态分析[J].压缩机技术,1998,2:21-23.
    [56]朱圣东,邓建,吴家声.无油润滑压缩机[M].第1版.北京:机械工业出版社,2001:1-3.
    [57]李超,刘振全,王君.燃料电池用无油润滑涡旋压缩机研究[J].润滑与密封,2008,33(6):74-76,92.
    [58]顾兆林.涡旋压缩机工作过程的分析和模拟[J].低温工程,1992(3):37-43.
    [59]黄父东,郁永章.涡旋压缩机渐开线涡线的理论研究[J].压缩机技术,1997(3):3-6,48.
    [60]张贤明,陈国强,王立存,等.基于泛函的通用涡旋型线几何理论研究[J].流体机械,2010,38(8):18-21.
    [61] Yangguang Liu, Chinghua Hung, Yuchoung Chang. Mathematical model ofbypass behaviors used in scroll compressor[J]. Applied Thermal Engineering,2009(29):1058-1066.
    [62] Howell P. Fluid. Mechanical Modeling of the Scroll Compressor[M]. CambridgeUK: Cambridge University Press,1999.
    [63] Yu Chen. Mathematical modeling of scroll compressor[D]. Doctor of philosophydegree. Purdue University.2000.
    [64]王宝龙,石文星,李先庭.制冷空调用涡旋压缩机数学模型[J].清华大学学报(自然科学版).2005,45(6):726-729.
    [65] James W.Bush, Wayne P. Beagle, Mark E.Housman. Maximizing scrollcompressor displacement using generalized wrap geometry[C]. Proceedings ofInternational Compressor Engineering Conference at Purdue,1994:205-210.
    [66] Charlec J.Murray. Variable wall thickness boosts scroll compressor’sperformanceroQu[J]. Pest Science Journals,1997,52(5):116-117.
    [67]李连生.涡旋压缩机[M].北京:机械工业出版社,1998.
    [68]刘振全.涡旋式流体机械与涡旋压缩机[M].北京:机械工业出版社,2009.1.
    [69]张川.变截面涡旋压缩机的设计研究及数控加工技术[D].兰州:兰州理工大学硕士论文,2002.
    [70]刘涛,任冠林,孟鹏飞,等.组合型线的涡旋压缩机几何参数设计[J].压缩机技术,2007(01):1-3,7.
    [71]刘涛,任冠林,柳会敏,等.组合型线涡旋压缩机的动力学模型[J].科学技术与工程,2007,7(19):5055-5057.
    [72]刘兴旺,马小礼,刘振全.涡旋压缩机型线几何参数对其摩擦损失功率的影响研究[J].化工机械,2005,32(6):367-370,380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700