用户名: 密码: 验证码:
SiGe/Si外延与SiGe HBT微波单片放大电路研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiGe HBT器件具有优异的性能,在许多领域特别是高速和微波领域具有广泛应用,市场迅速发展。SiGe HBT微波单片放大电路作为一种通用器件,具有结构简单、互换性强以及可以单片集成等优点而发展迅速。本论文在国内首先进行了SiGe HBT微波单片放大电路的研究,开展了从外延设备、材料特性、工艺改进到电路设计和制作的一系列研究工作。
    在对SiGe外延设备进行大量研究的基础上,对UHV/CVD设备的结构和石墨加热器进行了改进,改善了SiGe/Si薄膜的组分和厚度的均匀性:Ge组分均匀性达到了±5%,SiGe薄膜的厚度均匀性达到了±8%。研究了SiGe薄膜的外延方法,得到了高质量的SiGe薄膜。
    对SiGe/Si薄膜的应变弛豫进行了研究,结果表明:与退火时间相比,炉温退火的温度对组分渐变和均匀组分的SiGe薄膜的应变弛豫起主要作用,温度越高,越容易弛豫;在910oC以下的快速热退火处理对SiGe薄膜的应变弛豫影响不大。在此基础上改进了SiGe HBT制作工艺,并开发了新的电路制作工艺。
    在国内首先研制成SiGe HBT微波单片放大电路。电路的S参数分析表明:电路的功率增益在850 MHz处为11.6 dB,在1950 MHz处为8.0 dB,在3000 MHz处为4.7 dB;在3000 MHz处输入端的驻波比为3.01:1,输出端的驻波比为2.66:1。
    在器件制作工艺中引入钛硅化合物,改善了SiGe HBT器件的欧姆接触;通过研究Ge组分梯度的SiGe HBT器件,表明在SiGe基区中引入Ge组分梯度可以提高SiGe HBT的特征频率fT。
    对UHV/CVD低温Si外延时的As外扩进行了深入研究,结果表明:在700oC下生长的Si外延层的As外扩0.16 μm,而在500oC下As外扩仅有0.06 μm,只需要较少的厚度就可以达到较高的击穿电压。
    在国内首先研究了SiGe HBT器件的电子辐照特性,并与Si BJT的电子辐照特性做了对比,结果表明SiGe HBT器件具有优异的抗辐照性能。
Silicon-Germanium (SiGe) heterojunction bipolar transistors (HBTs) have shown marvelous performance in many areas for high-speed and microwave applications. SiGe HBTs can also be integrated with other devices on a monolithic silicon wafer. As an all-purpose circuit, Darlington-structure SiGe HBT microwave monolithic integrated circuits (SiGe HBT MMICs) has a good many advantages. They have simple structures and they not only can be replaced easily but also can be monolithically integrated in a Si wafer with other active devices and passive components. In this study, SiGe HBT MMIC research was done for the first time in China. A series of efforts was made on SiGe HBT MMIC including UHV/CVD SiGe epitaxial machine, SiGe film characteristics, process improvements, circuit design and fabrication.
    The structure of the self-made UHV/CVD and the design of the rapid-thermal graphite heater were improved based on the investigation of many SiGe epitaxial machines. The Ge mol fraction and thickness uniformity of SiGe film were obviously improved: the Ge fraction uniformity achieved ±5%, and the thickness uniformity achieved ±8%.
    High quality SiGe epitaxial layers with uniform or graded Ge profiles were successfully achieved based on the study of the SiGe epitaxial process on the SGE500-type UHV/CVD.
    The strain relaxation of SiGe films under different thermal processes was thoroughly studied. Compared with annealing time, furnace annealing temperature is much more important to the relaxation of SiGe film with uniform or graded Ge profile. The higher the temperature was, the easier was the strain of the SiGe film to relax. Rapid thermal annealing showed less effect on the strain relaxation of the SiGe film when the temperature was less than 910oC.
    
    Innovative study in China was done on the design and fabrication of SiGe HBT MMIC. A new fabrication process for this circuit was developed based on the study of SiGe uniformity, growth process, strain-relaxation and the SiGe HBT fabrication process. The analysis of scattering parameters showed that the SiGe HBT MMIC had good electrical performance: The power gain was 11.6 dB@850 MHz, 8.0 dB@1950 MHz and 4.7 dB@3000 MHz; the input voltage static wave ratio (VSWR) was 3.01:1@3000 MHz and the output VSWR was 2.66:1.
    Three methods were developed to improve the frequency performance of the SiGe HBT. TiSi2 was introduced to the fabrication process of SiGe HBT. SiGe HBTs with different Ge graded profile were thoroughly studied, and the transition frequency fT of the SiGe HBT was improved by this means. Selective growth of SiGe film on patterned Si wafers was also studied.
    The anti-radiation performance of SiGe HBT devices was studied for the first time in China. Analysis showed that the anti-radiation performance of SiGe HBTs is remarkably better compared with that of Si BJTs.
    The transition region thickness was 0.16 μm for the Si epitaxial layer grown at 700oC on the highly arsenic-doped Si substrates, and was only 0.06 μm under 500oC, which was much less than high-temperature Si epitaxy by APCVD. Thus the low-temperature epitaxial Si layer needs less film thickness to achieve the same breakdown voltage.
引文
刘志农. 高电压微波功率SiGe HBT研究(博士学位论文). 北京,清华大学微电子所,2003
    Herman M A. Silicon-based heterostructures: strained-layer growth by molecular beam epitaxy. Cryst. Res. Technol. 1999, 34(5-6): 583–595
    Kroemer H. Heterostructure bipolar transistors and integrated circuits. Proc. IEEE. 1982, 70(1): 13~25
    http://www.chinabyte.com.cn/
    曲维枝, 集成电路产业该怎样发展, http://218.31.132.251/wmfw/zcxx/2000/05/ 051506.html
    Cormac O’Connell. SiGe/BiCMOS optimal cost for high-performance.
    http://www.insytecorp.com
    Richard Sfeir. SiGe Technology is Shifting the Boundaries in Wireless System Designs. http://www.chips.ibm.com/news/
    SiGe lecture. http://www.sige.com. 2001
    http://www.ibm.com
    CHO D H, Ryum B R, et al. A 42 GHz fmax SiGe-base HBT using reduced pressure CVD. Solid State Electron. 1998, 42(9): 1641-1649
    Gruhle A, Shuppen A, Konig U, et al. 91 GHz SiGe HBT grown by MBE. Electron.Lett. 1993, 29(4): 415-417
    Washio K. Kondo M. A 0.2-um self-aligned SiGe HBT featuring 107-GHz fmax and 6.7-ps ECL. IEDM Tech. Dig. 1999: 557-560
    Patton G L, Comfort J H, Meyerson B S, et al. 75 GHz fT SiGe-base heterojunction bipolar transistors. IEEE Electron Device Lett. 1990, 11(4): 171-173
    Katsuyoshi Washio, Eiji Ohue, Hiromi Shimamoto, et al. A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications. IEEE Transactions on Electron Devices. 2002, 49(2): 271-278
    Shumacher H, Erben U, Gruhle A. Low-noise performance of SiGe heterojunction bipolar transistors. Tech. Dig. IEEE MTT-S Int. Microwave Symp. 1994, 1167-1170
    Gruhle A, Shuppen A, Konig U, et al. Monolithic 26 GHz and 40 GHz VCO’s with SiGe heterojunction bipolar transistors. IEDM Tech. Dig. 1995, 725-728
    
    Glenn J, Case M, Harame D, et al. 12-GHz Gilbert mixers using a manufacturable Si/SiGe epitaxial-base bipolar technology. BCTM’95, 1995, 186-189
    Hachl S, Meister T F, et al. Low-noise low-power monolithically integrated active 20 GHz mixer in SiGe technology. Electron. Lett. 2001, 37(1): 36-37
    Meyerson B S. Silicon:germanium-based mixed-signal technology for optimization of wired and wireless telecommunications, http://www.ibm.com
    Hermann Schumacher, Peter Abele, Ertugrul Sonmez, et al. Low-cost circuit solutions for micro- and millimeter-wave systems using commercially available SiGe technologies. Applied Surface Science. 2004, 224, 410-418
    Erben U, Wahl M, Schuppen A, et al. Class-A SiGe HBT power amplifier at C-band frequencies. IEEE Microwave and Guided Wave Lett. 1995, 5(12): 435-436
    Schuppen A, Dletrich H, Gerlach S, et al. SiGe-technology and components for mobile communication systems. BCTM. 1996, 130-133
    G. N. Henderson, M. F. O’keefe, et al. SiGe bipolar unction transistors for microwave power applications. IEEE MTT-S Digest, 1997, pp.1299-1302.
    R. Gotzfried et al. Design of RF integrated circuits using SiGe bipolar technology. J. Solid-State Circuits. 1998, 33(9): 1417-1422
    Ralner Gotzfried, Frank Beibwanger, Stephan Gerlach, et al. RFICs for mobile com- munication systems using SiGe bipolar technology. IEEE MTT. 1998, 46(5): 661-668
    Andreas Schuppen. SiGe HBTs for mobile communication. Solid-State Electron. 1999, 43: 1373-1381
    Zhang Xiangdong, Chone Saycocie, Scott Munro, et al. A SiGe HBT power amplifier with 40% PAE for PCS CDMA applications. IEEE MTT-S Digest. 2000, 857-860
    Tseng Pei-Der, Zhang Liyang, Gao Guangbo, et al. A 3-V monolithic SiGe HBT power amplifier for dual-mode (CDMA/AMPS) celluar handset applications. IEEE J. Solid-State Circuits, 2000, 35(9): 1338-1344
    Jia Hongyong, Chen Peiyi, Tsien Pei-Hisn, et al. Low voltage class C SiGe microwave power HBTs. Chinese Journal of Semiconductors. 2001, 22 (9): 1188-1190
    贾宏勇. SiGe外延和低电压SiGe微波功率异质结双极晶体管的研究(博士学位论文).北京,清华大学微电子所,2001
    Potyraj P A, Petrosky K J, Hobart K D. A 230-Watt S-band SiGe heterojunction bipolar transistor. IEEE Transactions on Microwave Theory and Techniques. 1995, 44(12): 2392-2395
    2.4 GHz bluetooth class 1 power amplifier IC. http://www.sige.com
    
    Narozny P, Dambkes H, Kibbel H, et al. Si/SiGe heterojunction bipolar transistor made by molecular beam epitaxy. IEEE Transactions on Electron Devices. 1989, 36(10): 2363-2366
    叶志镇,曹青,张侃等. UHV/CVD低温生长硅外延层的性能研究. 半导体学报,1998, 19(8):565-567
    Meyerson B. S, et al. Appl. Phys. Lett. 1990, 57 (10): 1033.
    http://www.uniaxis.com
    http://www.epigress.com
    http://www.asm.com
    http://www.appliedmaterials.com
    http://www.hitachi.com
    Roy Szweda. SiGe microsystems: world's first merchant SiGe epiwafer supplier. III-Vs
    Review, 2000, Vol. 10(3): 29-33.
    Semiconductor strategies. http://www.semiconductorstrategies.com/links/
    邹德恕,徐晨,陈建新等. GSMBE生长的用于研制 HBT的SiGe/Si异质结材料. 半导体学报,2001, 22(8): 1035-1037
    Hiroyuki Wado, Tadami Shimizu, Seiji Ogura, et al. Selective epitaxial growth of Ge and SiGe using Si2H6 gas. Journal of Crystal Growth. 1995, 150: 969-973
    Meyerson B S. UHV/CVD growth of Si and Si:Ge alloys: chemistry, physics, and device applications. Proc. of IEEE. October 1992
    雷震霖,赵科新,余金中等. UHV/ CVD设备及其特性. 真空. 1997,6: 14-17
    Meyerson B S. Low temperature silicon epitaxy by UHV/CVD. Appl, Phys. Lett. 1986, 48: 797-799
    Harame D L, Cpmofrt J H, Cressler J D, et al. Si/SiGe epitaxial-base transistors-part I: materials, physics, and circuits. IEEE Trans. on Electron Devices. 1995, 42 (3): 455-468
    红外快速加热退火专利 (美国专利号:4794217; 中国专利号:85100131.9、87202679.5、91219291.7).
    罗广礼,陈培毅,林惠旺等. 一种新型的SiGe超高真空化学气相沉积系统. 真空科学与技术,2000,20(5): 355-357
    King C A, Hoyt J L, et al. Electrical and materials quality of SiGe/Si p-n heterojunction produced by Limited Reaction Processing. IEEE Elec. Dev. Lett. 1989, 12: 177-179
    Sturm J C, Schwartz P V, et al. Growth of Si1-XGeX by rapid thermal chemical vapor deposition and application to heterojunction bipolar transistors. J. Vacuum Sci. & Tech. B. 1991, 9: 2011-2016
    
    http://www.axic.com/products/jetclip.html
    Burgharta J N, Sedgwick T O, Grutzmacher D A, et al. APCVD-grown self-aligned SiGe-base HBTs. IEEE bipolar circuits and technology meeting. 1993, 55-62
    Katsuya Oda, Eiji Ohuea, Masamichi Tanabeb, et al. Si1-xGex selective epitaxial growth for ultra-high-speed self-aligned HBTs. Thin Solid Films. 2000, 369: 358-361
    Grahn J V, Fosshaug H, Jargelius M, et al. A low-complexity 62-GHz fT SiGe hetero- junction bipolar transistor process using differential epitaxy and in situ phosphorus-doped poly-Si emitter at very low thermal budget. Solid-State Electronics. 2000, 44: 549-554
    Racanelli M, Grevw D W, Low-temperature selective epitaxy by ultrahigh-vacuum chemical vapor deposition from SiH4 and GeH4/H2. Appl. Phys. Lett. 1991, 58 (9): 2096 -2098
    Katsuya Odaa, Eiji Ohuea, Masamichi Tanabe, et al. Si1-xGex selective epitaxial growth for ultra-high-speed self-aligned HBTs. Thin Solid Films, 2000, 369: 358-361
    孙再吉. GaAs高频器件及MMIC应用与市场探讨. 微电子技术,2000,28 (1): 13-18
    David M. Osika, Harjit Sanghera. High power GaAs MMIC amplifiers for base station applications. http://www.anadigics.com/GaAsline/power.html
    吴群. 微波集成电路及其CAD概念综述. 哈尔滨工业大学,2003,1-5
    Kukeilka J F, Snapp C P, Wideband monolithic cascadable feedback amplifiers using silicon bipolar technology. IEEE Microwave Milimeter-wave Circuits Symposium Digest. June 1982, 330-331
    Tektronics Inc. Monolithic wideband amplifier. U. S. patent 4236119, Nov. 25, 1980
    http://www.elexp.com/a_cat_37/z181-190_37.pdf
    http://www.nteinc.com/surface/bipolar.html
    Armijo C T, Meyer R G. A new wide-band Darlington amplifier. IEEE Journal of Solid- State Circuits. 1989, 24 (4): 1105-1109
    Voinigescu S P, Maliepaard M C. 5.8 GHz and 12.6 GHz Si bipolar MMICs. IEEE Inter- national Solid-State Circuits Conference Digest of Technical Papers. 1997, 44th ISSCC. 372-373
    Kobayashi K, Esfandian W R, Oki A K, et al. GaAs heterojunction bipolar transistor MMIC DC to 10 GHz direct-coupled feedback amplifier. IEEE GaAs IC Symp. Dig. San Diego, CA, 1989
    B. Nelson, Umemoto D K, Perry C B, et al. High linearity low DC power monolithic GaAs HBT broadband amplifiers to 11 GHz. IEEE Microwave and Milimeter-wave Monolithic Circuits Symposium. 1990, 15-18
    
    Kobayashi K W, Umemoto D K, Esfandiari R, et al. GaAs HBT broadband amplifiers from DC to 20 GHz. IEEE Microwave and Milimeter-wave Monolithic Circuits Symposium Digest. 1990, 19-22
    Kobayashi K W, Esfandlarl R, Hafizi M E, et al. GaAs HBT wideband matrix distributed and Darlington feedback amplifiers to 24 GHz. IEEE Transaction on Microwave Theory and Techniques. 1991, 39 (12): 2001-2009
    Kobayashi K W, Umemoto D K, Block T R, et al. A novel monolithic LNA integrating a common-source HEMT with an HBT Darlington amplifier. IEEE Microwave and Guided Wave Letters. 1995, 5(12): 442-444
    Suzuk Y, Shimawak H, Amamiya Y. 50-GHz bandwidth base-band amplifiers using GaAs- based HBTs. Gallium Arsenide Integrated Circuit (GaAs IC) Symposium Technical Digest. 1997, 143-146
    Tsai H S, Kopf R, Melendes R. 90 GHz baseband lumped amplifier. Electronics Lett. 2000, 36 (22): 1833-1834
    http://www.sirenza.com/pdfs/
    http://www.hittite.com/product_info/product_specs/amplifiers/hmc479mp86.pdf
    陈金松. 模拟集成电路(原理、设计、应用). 中国科学技术大学出版社,1997年8月第1版,120-127
    http://www.temic.com/
    Herman M A, Silicon-based heterostructures: strained-layer growth by molecular beam epitaxy. Cryst. Res. Technol. 1999, 34(5-6): 583–595
    People R, Bean J. C. Calculation of critical layer thickness versus lattice mismatch for GeSi/Si strained-layer heterostructures. Appl. Phys. Lett. 1985, 47(3): 322-324
    顾书林,王荣华,张荣等. SiH4和GeH4生长SiGe合金的CVD反应研究. 半导体学报,1995, 16(7): 528-532
    Meyerson B S, Morar J F, Karlsson U O et al. Cooperative growth phenomena in silicon/ germanium low-temperature epitaxy. Appl. Phys. Lett. 1988, 53, 2555-2557
    Deboer W B, Meyer D J. Low-temperature chemical vapor deposition of epitaxial Si and SiGe layers at atmosphere pressure. Appl. Phys.Lett. 1991, 58: 1286-1288
    Jang Syun-Ming, Reif Ratael. Effects of hydrogen and deposition pressure on SiGe growth rate. Appl. Phys. Lett. 1992, 60 (6): 707-709
    刘志农, 贾宏勇, 罗广礼等. HV/CVD系统Si、SiGe低温掺杂外延. 半导体学报,2001, 22(3): 317-321
    
    Huang Wentao, Luo Guangli, Shi Jin, et al. HV/CVD grown relaxed SiGe buffer layers for SiGe HMOSFETs. Tsinghua Science and Technology. 2003, 8(2): 130-134
    于卓,李代宗,成步文等. UHV/CVD外延生长SiGe/Si表面反应动力学. 半导体学报,21(6): 564-569
    金晓军,贾宏勇,张进书等. Si1-xGex/Si超高真空化学气相外延工艺的研究. 清华大学学报(自然科学版),1999,39(51): 81-83
    罗广礼, 林小峰,刘志农等. 弛豫SiGe外延层的UHV/CVD生长. 半导体学报,2000, 21(7): 682-685
    Satoh S, Denda M, Takano S, et al. Jpn. J. Appl. Phys. 1980, 20: 143-146
    Rajan K, Denhoff M. J. Appl. Phys. 1987, 62: 1710-1714
    Rcanelli M, Greve D W. J.Vac. Sci. Technol. (B). 1991, 9(4): 2017~2031
    曹培栋. 微电子技术基础―双极、场效应晶体管原理. 电子工业出版社,2001年4月第1版, 47-49
    Sayed Elahl A M H, Fahmi M H E, Mohammad S N. Quantitative analysis of high frequency performance of modified Darlington pair. Solid-State Electronics. 2002, 46: 593-595
    Kirk C T. IRE Trans. ED-9. 1962, 164
    王广发. 晶体管原理与设计. 上海科学技术出版社,1984年11月第1版, 108-118
    Washio Katsuyoshi, Ohue Eiji, Shimamoto Hiromi, et al. A 0.2-μm 180-GHz-fmax 6.7-ps -ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high- speed digital applications. IEEE Transactions on Electron Devices. 2002, 49(2): 271-278
    http://www.sirenza.com/pdfs/qualification%20reports/ SGA-4563_QUAL.pdf
    Prinz E J, Garone P M, Schwartz P V, et al. The effect of base-emitter spacers and strain- dependent densities of states in Si/SiGe/Si heterojunction bipolar transistors. IEDM Tech. Dig. 1989, 639~642
    黄维柱. 自对准钛硅化物工艺及其在低压CMOS中的应用研究(硕士学位论文).
    北京,清华大学微电子所,2001年, pp. 8-35
    Morar J F, Meyerson B S, Karlsson U O, et al. ibid. 1994, 64: 763
    Ohyama H, Vanhellemont J, Takami Y, et al. Materials Science and Technology. 1995, 11:
    429-435
    Rodan J M, Ansley W E, Cressler J D, et al. IEEE Transactions on Nuclear Science. 1997,
    44(6): 1965-1973
    
    Cressler J D, Hamilton M C, Mullinax G S, et al. IEEE Transactions on Nuclear Science.
    2000, 47(6): 2515-2520
    Meng Xiangti, Wang Ruipian, Kang Aiguo, et al. Rare Metals. 2003, 22(1): 69-72
    Evwaraye A O, J Appl. Phys. 1977, 48: 734
    Roldan J M, Niu G F, Ansley W E, et al. IEEE Trans on Nucl. Sci. 1998, 45(6): 2424
    Bandyopadhyay A, Subramanian S, Chandrasekhar S, et al. Degradation of DC
    characteristics of InGaAs/InP single heterojunction bipolar transistors under electron irradiation. IEEE Transactions on Electron Devices. 1999, 46(5): 840-849

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700