用户名: 密码: 验证码:
InAs/GaAs量子点生长及两段式半导体光放大器研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过近半个世纪的发展,半导体光放大器(SOA)在光电子器件和光通信领域内已经得到了广泛的研究和应用,体材料SOA和量子阱SOA都已经实现了商品化生产。但是由于体材料SOA自身性能的限制,没有在光通信系统中得到大规模使用。低维纳米材料特别是量子点材料是当前国际研究热点,受到了广泛的关注和重视。为了提高SOA的性能,增强其在光通信系统中使用的灵活性,本文研制了新型低维纳米结构两段式量子阱SOA,测试了SOA器件性能,并对基于交叉增益的两段式SOA波长转换器进行了模拟仿真;本文还对量子点和量子点分子的金属有机化合物气相沉积(MOCVD)生长及其光学性质进行了研究。具体研究内容如下:
     (1)成功研制了两段式量子阱SOA。在InP衬底上,采用MOCVD设备生长了混合应变InGaAsP量子阱有源区和SOA其他结构,并对生长材料进行了测试分析。成功制作了两段式量子阱SOA,对SOA器件性能进行了测试,测试结果表明,改变两段的注入电流能调整两段式量子阱SOA的中心波长、增益和饱和输出功率,从而适用不同的应用场合。
     (2)理论研究了两段式SOA在波长转换器上的应用。针对两段式SOA特点,在Connelly宽带模型基础上,建立了两段式SOA理论模型,模拟了两段式SOA交叉增益调制波长转换器性能,结果表明,调节两段的注入电流,能有效加速载流子恢复,抑制转换光的码型效应。
     (3)研究了InAs/GaAs量子点的生长。首先研究了量子点的生长机理,以及MOCVD生长参数对InAs/GaAs量子点的影响。然后系统地调查了盖层对量子点结构和光学性质的改善,实验结果表明,低温和高温的双盖层结构对量子点性能有较大提升;In组分渐变的InGaAs盖层有利于提高量子点发光效率,改善量子点均匀性。最后还生长了一种光致发光光谱宽度高达183nm的多模量子点,并研究了InGaAs应力减小层和InAs沉积厚度对多模量子点的影响。
     (4)研究了侧向耦合InAs/GaAs量子点分子的制备。提出了一种自组装生长方法,该方法采用MOCVD设备通过合适选择生长参数制作量子点分子,不需要采用特殊的模板或者特别的工艺流程,具有实现简单的优点。实验发现,量子点分子的形成和特性对生长温度和InAs沉积厚度非常敏感,且量子点分子的形成会导致发光波长红移。研究了InGaAs盖层对InAs量子点分子的影响,随着InGaAs盖层中In组分和厚度的增加,量子点分子的发光波长发生红移。获得了光致发光光谱宽为209m,发光效率较高的宽谱量子点分子,这种宽光谱量子点分子有望在宽光谱器件中得到应用。
Semiconductor optical amplifiers (SOAs) have achieved extensive research and wide applications in optoelectronic devices and optical networks after nearly half a century of development, and bulk SOAs and quantum well SOAs have already realized commercial production. However, bulk SOAs have not been widely used in practical optical communication systems due to the performance limitation. The low-dimensional nanostructure, especially the zero-dimensional quantum dot (QD) structure, is the present research focus all over the world, and it has attracted considerable interest and has been studied intensively in optoelectronic device applications. In this dissertation, in order to improve the performance of SOA and enhance the application flexibility in optical communication systems, a low-dimensional nanostructural SOA--two-section quantum well SOA is fabricated, and the performance of the SOA is analyzed. The wavelength converter using two-electrode SOA is simulated. In addition, we also investigate the structural and optical properties of the QDs and quantum dot molecules (QDMs) grown by metal-organic chemical vapor deposition (MOCVD). The research contents are summarized as follows:
     (1) Two-electrode quantum well SOAs are successfully fabricated. At first, strain compensated InGaAsP quantum well active region and other SOA's structures are grown by MOCVD on InP substrates, and characteristics of the wafers are measured and analyzed. Secondly, two-electrode quantum well SOAs are successfully fabricated and the performance of the SOA is measured. The results show that the peak wavelength, gain and saturated output power of the SOA can be tuned through the change of the injection current of the two segments. Therefore, the SOA with adjustable performances can adapt different applications.
     (2) Wavelength converter by using two-electrode SOA is theoretically investigated. According to features of two-electrode SOA, the simulation model, which takes into account carrier diffusion process, is set up on the basis of Connelly's broadband model, and the performance of wavelength converter is simulated by using this model. The results show that the carrier recovery time can be effectively reduced, and the pattern effect of converted light can be greatly suppressed.
     (3) The growth of InAs/GaAs QDs is studied. At first, the growth mechanism of QD growth is analyzed, and the effects of growth parameters on the QD properties are discussed. Secondly, the InAs QD characteristics with different cap layers are systematically investigated, the results show that the double cap layer structure with low-temperature and high-temperature layer can greatly improve the QDs'performance. In addition, the In graded InGaAs cap layer can increase photoluminescence intensity and improve the uniformity of the QD size. Finally, an InAs/GaAs QD structure with the full width at half maximum (FWHM) of 183nm is obtained. The influences of In composition of InGaAs strain-reducing layer and the InAs coverage on the optical properties of multi-modal QDs are studied.
     (4) The preparation of laterally aligned InAs/GaAs QDMs is studied. A self-assembled growth method is proposed, which does not require special template and process, and QDMs are fabricated by MOCVD through appropriately selecting growth parameters. So the method has the advantage of simple implementation. The experiment results show that the formation of QDMs is very sensitive to growth temperature and InAs coverage, and it causes the redshift of emission wavelength. The effects of InGaAs cap layer on the optical properties are also investigated, and the results show that redshift of PL wavelength is observed with increasing the In composition and thickness of InGaAs SRL. Finally, a QDM sample with high emission efficiency and FWHM of 209 nm is grown. It is very promising for the broad-spectrum QDMs to employ in broad-spectrum devices.
引文
[1]黄德修,刘雪峰.半导体激光器及其应用.北京:国防工业出版社,1999.149-159
    [2]F. P. Kapron, D. B. Keck, R. D. Maurer. Radiation Losses in Glass Optical Waveguides. Appl. Phys. Lett.,1970,17(10):423-425
    [3]H. Ghaforui-Shiraz. The Principles of Semiconductor Laser Diodes and Amplifiers. London: Imperial College Press,2004.15-39
    [4]Niloy. K. Dutta, Qiang Wang. Semiconductor optical amplifiers. Singapore:World Scientific Publishing,2006.1-32
    [5]H. Kroemer. A proposed class of heterojunction injection lasers. IEEE, Proceedings,1963.51:1782-1783
    [6]M. B. Panish, I. Hayashi, S. Sumski. Double- Heterostructure Injection Lasers With Room- temperature Thresholds as Low as 2300A/cm2. Appl. Phys. Lett., 1970,16(8):326-327
    [7]I. Hayashi, M. B. Panish, P. W. Foy, et al.. Junction Lasers Which Operate Continuously at Room Temperature. Appl. Phys. Lett.,1970,17(3):109-111
    [8]S. D. Personick. Applications for quantum amplifiers in simple digital optical communication systems Bell System Technical Journal,1973,52(1):117-133
    [9]Y. Yamamoto. Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers. IEEE J. Quantum Electron.,1980,16(10):1047-1052
    [10]C. Simon. Polarisation characteristics of a travelling-wave-type semiconductor laser amplifier. Electron. Lett.,1982,18(11):438-439
    [11]H. J. Westlake, M. J. O'Mahony. Gain characteristics of a 1.5 μm DCPBH InGaAsP resonant optical amplifier. Electron. Lett.,1985,21(1):33-35
    [12]T. Saitoh, T. Mukai.1.5 μm GaInAsP traveling-wave semiconductor laser amplifier. IEEE J. Quantum Electron.,1987,23(6):1010-1020
    [13]T. Saitoh, T. Mukai. Broadband 1.5 μm GaInAsP travelling-wave laser amplifier with high-saturation output power. Electron. Lett.,1987,23(5):218-219
    [14]L. Esaki, R. Tsu. Superlattice and Negative Differential Conductivity in Semiconductors. IBM Journal of Research and Development,1970,14(1):61-65
    [15]L. Esaki, L. L. Chang. New Transport Phenomenon in a Semiconductor "Superlattice". Phys. Rev. Lett.,1974,33(8):495-498
    [16]R. D. Dupuis, P. D. Dapkus, J. N. Holonyak, et al.. Room-temperature laser operation of quantum-well Ga1-xAlxAs-GaAs laser diodes grown by metalorganic chemical vapor deposition. Appl. Phys. Lett.,1978,32(5):295-297
    [17]R. D. Dupuis, P. D. Dapkus. Room-temperature operation of Ga1-xAlxAs/GaAs double-heterostructure lasers grown by metalorganic chemical vapor deposition. Appl. Phys. Lett.,1977,31(7):466-468
    [18]R. D. Dupuis, P. D. Dapkus. Ga1-xAlxAs/Ga1-yAlyAs double-heterostructure room-temperature lasers grown by metalorganic chemical vapor deposition. Appl. Phys. Lett.,1977,31(12):839-841
    [19]W. D. Laidig, P. J. Caldwell, Y. F. Lin, et al.. Strained-layer quantum-well injection laser. Appl. Phys. Lett.,1984,44(7):653-655
    [20]M. Bagley, G. Sherlock, D. M. Cooper, et al.. Broadband operation of InGaAsP-InGaAs GRIN-SC-MQW BH amplifiers with 115 mW output power. Electron. Lett.,1990,26(8):512-513
    [21]G. Eisenstein, U. Koren, G. Raybon, et al.. Large and small-signal gain characteristics of 1.5 μm multiple quantum well optical amplifiers. Appl. Phys. Lett.,1990,56(13):1201-1203
    [22]L. F. Tiemeijer, P. J. A. Thijs, T. van Dongen, et al.. Polarization insensitive multiple quantum well laser amplifiers for the 1300 nm window. Appl. Phys. Lett., 1993,62(8):826-828
    [23]P. J. A. Thiis, L. F. Tiemeijer, J. J. M. Binsma, et al.. Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers. IEEE J. Quantum Electron.,1994,30(2):477-499
    [24]H. Taga, N. Edagawa, S. Yamamoto, et al.. Recent progress in amplified undersea systems. J. Lightwave Technol.,1995,13(5):829-840
    [25]J. H. Franz, V. K. Jain.光通信器件与系统.北京:电子工业出版社,2002. 179-187
    [26]Y. M. Zhang, P. P. Ruden.1.3μm polarization-insensitive optical amplifier structure based on coupled quantum wells. IEEE J. Quantum Electron.,1999, 35(10):1509-1514
    [27]J. E. M. Haverkort, B. H. P. Dorren, M. Kemerink, et al.. Design of composite InAsP/InGaAs quantum wells for a 1.55μm polarization independent semiconductor optical amplifier. Appl. Phys. Lett.,1999,75(18):2782-2784
    [28]A. Hurtado, A. Gonzalez-Marcos, I. D. Henning, et al.. Optical bistability and nonlinear gain in 1.55 μm VCSOA. Electron. Lett.,2006,42(8):483-484
    [29]W. Lee, S. H. Cho, M. Y. Park, et al.. Frequency detuning effects in a loop-back WDM-PON employing gain-saturated RSOAs. IEEE Photonics Technol. Lett., 2006,18(13-16):1436-1438
    [30]A. Sharaiha, M. Guegan. Equivalent circuit model for multi-electrode semiconductor optical amplifiers and analysis of inline photodetection in bidirectional transmissions. J. Lightwave Technol.,2000,18(5):700-707
    [31]T. Akiyama, N. Hatori, Y. Nakata, et al.. Pattern-effect-free semiconductor optical amplifier achieved using quantum dots. Electron. Lett,2002,38(19):1139-1140
    [32]B. Mikkelsen, M. Vaa, H. N. Poulsen, et al..40Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer. Electron. Lett.,1997,33(2):133-134
    [33]Tomkos, I. Zacharopoulos, D. Syvridis, et al.. Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier. Appl. Phys. Lett.,1998,72(20):2499-2501
    [34]H. Liu, P. Shum, M. S. Kao. Design and analysis of VCSEL based two-dimension wavelength converter. Opt. Express,2003,11(14):1659-1668
    [35]M. Matsuura, N. Kishi, T. Miki. Broadband regenerative wavelength conversion and multicasting using triple-stage semiconductor-based wavelength converters. Opt. Lett.,2007,32(9):1026-1028
    [36]Y. Liu, L. G. Chen, S. J. Zhang, et al.. High-Speed Wavelength Converter Capable of Converting the Same Wavelength Using a Single SOA in a Counter-propagation Scheme. IEEE Photonics Technol. Lett.,2009,21(9-12):697-699
    [37]A. Sharaiha, H. W. Li, F. Marchese, et al.. All-optical logic NOR gate using a semiconductor laser amplifier. Electron. Lett.,1997,33(4):323-325
    [38]H. Soto, J. D. Topomondzo, D. Erasme, et al.. All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier. Optics Communications,2003,218(4-6):243-247
    [39]D. M. F. Lai, C. H. Kwok, K. K. Y. Wong. All-optical picoseconds logic gates based on a fiber optical parametric amplifier. Opt. Express,2008,16(22): 18362-18370
    [40]P. K. Kondratko, S. L. Chuang. Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier. Opt. Express,2007, 15(16):9963-9969
    [41]S. Sales, W. Q. Xue, J. Mork, et al.. Slow and Fast Light Effects and Their Applications to Microwave Photonics Using Semiconductor Optical Amplifiers. IEEE Trans. Microwave Theory Tech.,2010,58(11):3022-3038
    [42]P. Berger, J. Bourderionnet, F. Bretenaker, et al.. Intermodulation distortion in microwave phase shifters based on slow and fast light propagation in semiconductor optical amplifiers. Opt. Lett.,2010,35(16):2762-2764
    [43]J. Leuthold, B. Mikkelsen, R. E. Behringer, et al.. Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration. IEEE Photonics Technol. Lett.,2001,13(8):860-862
    [44]L. Gao, K. H. Wagner, R. R. McLeod. All-optical Tb/S 3R wavelength conversion using dispersion-managed light bullets. IEEE J. Sel. Top. Quantum Electron.,2008, 14(3):625-634
    [45]J. Leuthold, J. Eckner, C. Holtmann, et al.. All-optical 2x2 switches with 20dB extinction ratios. Electron. Lett.,1996,32(24):2235-2236
    [46]Michael J. Connelly. Semiconductor optical amplfiers. New York:Kluwer Academic Publishers,2004.4-5
    [47]M. A. Ali, A. F. Elrefaie, S. A. Ahmed. Simulation of 12.5 Gb/s lightwave optical time-division multiplexer using semiconductor optical amplifiers as external modulators. IEEE Photonics Technol. Lett.,1992,4(3):280-283
    [48]T. Rampone, H. W. Li, A. Sharaiha. Semiconductor optical amplifier used as an in-line detector with the signal dc-component conservation. J. Lightwave Technol., 1998,16(7):1295-1301
    [49]T. Rampone, A. Sharaiha, H. W. Li, Two-section semiconductor laser amplifier used as a photodetector with DC component consideration. Electron. Lett.,1997, 33(8):701-702
    [50]M. W. K. Mak, H. K. Tsang, H. F. Liu. Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier. Electron. Lett.,2000,36(18):1580-1581
    [51]吴重庆.半导体光放大器的光-光互作用及在全光信号处理中的应用(Ⅱ).激光与光电子学进展,2007,44(11):12-17
    [52]K. Morito, M. Ekawa, T. Watanabe, et al.. High-output-power polarization-insensitive semiconductor optical amplifier. J. Lightwave Technol.,2003,21(1): 176-181
    [53]M. T. Hill, E. Tangdiongga, H. de Waardt, et al.. Carrier recovery time in semiconductor optical amplifiers that employ holding beams. Opt. Lett.,2002, 27(18):1625-1627
    [54]黄黎蓉,李含辉, 陈俊,黄德修.多电极半导体光放大器对增益特性的改善.光子学报,2003,32(1):68~70
    [55]Y. Yi, H. Lirong, X. Meng, et al.. Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier. J. Opt. Soc. Am. B,2010,27(11):2211-2217
    [56]Wang Hanchao, Huang Lirong, Shi Zhongwei. Experimental study of amplified spontaneous emission spectrum and gain characteristic of two-electrode semiconductor optical amplifier. Journal of semiconductors (accepted)
    [57]K. Djordjev, S. J. Choi, W. J. Choi, et al.. Two-segment spectrally inhomogeneous traveling wave semiconductor optical amplifiers applied to spectral equalization. IEEE Photonics Technol. Lett.,2002,14(5):603-605
    [58]R. M. Fortenberry, A. J. Lowery, R. S. Tucker. Up to 16 dB improvement in detected voltage using two-section semiconductor optical amplifier detector. Electron. Lett.,1992,28(5):474-476
    [59]H. W. Li, T. Rampone, M. Guegan. Improvement of modulation/switching performances by using a two-section semiconductor optical amplifier. Microwave and Optical Technology Letters,2001,31(2):126-129
    [60]N. Basov.O-1-Dynamics of injection lasers. IEEE J. Quantum Electron.,1968,4(5): 364-364
    [61]T. Durhuus, C. Joergensen, B. Fernier, et al.. Fast Optical Gating by Two-Section Semiconductor Optical AmpMers. CLEO,1992,48:WD2-1/48-51
    [62]T. Durhuus, B. Mikkelsen, K. E. Stubkjaer. Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion. J. Lightwave Technol.,1992,10(8):1056-1065
    [63]T. N. Nielsen, N. Storkfelt, U. Gliese, et al.. Cancellation of inherent AM in semiconductor optical amplifier phase modulators. Electron. Lett.,1992,28(3): 235-236
    [64]G. Giuliani, P. Cinguino, V. I. Seano. Receiver Characteristics of Two-section Semiconductor Optical Amplifier Transparent Detectors for Lans Applications. Conference of OSA,1995,18:ThD9
    [65]A. Sharaiha, M. Guegan. Equivalent circuit model for multi-electrode semiconductor optical amplifiers and analysis of inline photodetection in bidirectional transmissions. J. Lightwave Technol.,2000,18(5):700-707
    [66]A. Sharaiha, M. Guegan, B. Pucel, et al.. Analysis of high frequency pass-band photodetection response at the rear contact in a multi-electrode SOA.8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications Conference,2000:158-162
    [67]A. Sharaiha, M. Guegan. Analysis of the sign reversal of the photodetected signal response in a multielectrode semiconductor optical amplifier. J. Lightwave Technol.,2001,19(8):1185-1193
    [68]C. Chih-Hsiao, K. Uziel, E. B. Robert, et al.. Two section semiconductor optical amplifier as optical power equalizer with high output power. OSA Technical Digest Series in Optics and Photonics Series in Optics and Photonics Series conference, 2006,25:138-141
    [69]J. Y. Emery, B. Lavigne, C. Porcheron, et al. Two-section semiconductor optical amplifier power equaliser with 8dBm output saturation power for lOGbit/s applications. OSA Technical Digest Series in Optical Amplifiers and their Applications conference,1999,30:179-182
    [70]C. Crognale, A. Di Giansante. All-optical picosecond signal processing in a M-Z interferometer based on a multi-section semiconductor optical amplifier. IEEE GLOBECOM Conference,2008,3488-3492
    [71]H. S. Kim, B. S. Choi, K. S. Kim, et al.. Improvement of modulation bandwidth in multisection RSOA for colorless WDM-PON. Opt. Express,2009,17(19): 16372-16378
    [72]T. Mano, T. Kuroda, K. Mitsuishi, et al.. High-density GaAs/AlGaAs quantum dots formed on GaAs (311)A substrates by droplet epitaxy. J. Cryst. Growth,2009, 311(7):1828-1831
    [73]J. H. Lee, Z. M. Wang, E. S. Kim, et al.. Various Quantum- and Nano-Structures by III-V Droplet Epitaxy on GaAs Substrates. Nanoscale Res. Lett.,2010,5(2): 308-314
    [74]K. A. Sablon, J. H. Lee, Z. M. Wang, et al.. Configuration control of quantum dot molecules by droplet epitaxy. Appl. Phys. Lett.,2008,92(20):203106
    [75]Z. M. Wang. Self-assembled quantum dots. New York: Springer,2008,359-405
    [76]T. Passow, S. Li, P. Feinaugle, et al.. Systematic investigation into the influence of growth conditions on InAs/GaAs quantum dot properties. J. Appl. Phys.,2007, 102(7):073511
    [77]A. A. El-Emawy, S. Birudavolu, P. S. Wong, et al.. Formation trends in quantum dot growth using metalorganic chemical vapor deposition. J. Appl. Phys.,2003, 93(6):3529-3534
    [78]J. S. Kim, N. Koguchi. Near room temperature droplet epitaxy for fabrication of InAs quantum dots. Appl. Phys. Lett.,2004,85(24):5893-5895
    [79]B. L. Liang, Z. M. Wang, J. H. Lee, et al.. Annealing effect on GaAs droplet templates in formation of self-assembled InAs quantum dots. Appl. Phys. Lett., 2006,89(21):213103
    [80]P. Borri, W. Langbein, J. Mork, et al.. Ultrafast gain and index dynamics in quantum dot amplifiers. Proceedings of ECOC,1999,2:74-75
    [81]T. Akiyama, T. Shimoyama, H. Kuwatsuka, et al.. Gain nonlinearity and ultrafast carrier dynamics in quantum dot optical amplifiers. Proceedings of ECOC,1999,2: 76-77
    [82]T. Akiyama, M. Sugawara, M. Ekawa, et al.. Recent progress of quantum-dot semiconductor optical amplifiers. Proceedings of SPIE,2004,5594:1-11
    [83]D. Bimberg, N. Ledentsov. Quantum dots:lasers and amplifiers. J Phys-Condens Mat,2003,15(24):R1063-R1076
    [84]D. Bimberg, C. Meuer, G. Fiol, et al.. Influence of P-doping in quantum dot semiconductor optical amplifiers at 1.3 μm. ICTON,2009,1-4
    [85]O. Qasaimeh. Effect of Doping on the Optical Characteristics of Quantum-Dot Semiconductor Optical Amplifiers. J. Lightwave Technol.,2009,27(12): 1978-1984
    [86]T. Kita, O. Wada, H. Ebe, et al.. Polarization-independent photoluminescence from columnar InAs/GaAs self-assembled quantum dots. Jpn J Appl Phys,2002, 41(10B):L1143-L1145
    [87]K. Kawaguchi, M. Ekawa, N. Yasuoka, et al..1.3-1.6μm broadband polarization-independent luminescence by columnar InAs quantum dots on InP(001). Physica Status Solidi (C),2006,3(3646-3651
    [88]T. Inoue, M. Asada, N. Yasuoka, et al.. Polarization control of electroluminescence from vertically stacked InAs/GaAs quantum dots. Appl. Phys. Lett.,2010,96(21): 211906
    [89]K. Kawaguchi, N. Yasuoka, M. Ekawa, et al.. Controlling polarization of 1.55μm columnar InAs quantum dots with highly tensile-strained InGaAsP barriers on InP(001). Jpn J Appl Phys 2,2006,45(46-50):L1244-L1246
    [90]N. Yasuoka, K. Kawaguchi, H. Ebe, et al..1.55 μm polarization-insensitive quantum dot semiconductor optical amplifier. ECOC,2008,4:17-18
    [91]L. R. Huang, Y. Yu, P. Tian, et al. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier. Semicond Sci Tech,2009,24(1): 015009
    [92]黄黎蓉.半导体光放大器偏振相关性及其宽谱特性研究[博士学位论文].保存地点:华中科技大学图书馆
    [93]H. E. Li. Material parameters of InGaAsP and InAlGaAS systems for use in quantum well structures at low and room temperatures. Physica E-Low-Dimensional Systems & Nanostructures,2000,5(4):215-273
    [94]C. Chih-Sheng, C. Shun Lien. Modeling of strained quantum-well lasers with spin-orbit coupling. IEEE J. Sel. Top. Quantum Electron.,1995,1(2):218-229
    [95]M. Ogasawara, H. Sugiura, M. Mitsuhara, et al.. Influence of net strain, strain type, and temperature on the critical thickness of In(Ga)AsP-strained multi quantum wells. J. Appl. Phys.,1998,84(9):4775-4780
    [96]D. C. Houghton, M. Davies, M. Dion. Design criteria for structurally stable, highly strained multiple quantum well devices. Appl. Phys. Lett.,1994,64(4):505-507
    [97]C. Chih-Sheng, C. Shun Lien. Modeling of strained quantum-well lasers with spin-orbit coupling. IEEE J. Sel. Top. Quantum Electron.,1995,1(2):218-229.
    [98]M. Razeghi. The MOCVD Challenge Volume 1:A Survey of GaInAsP-InP for Photonic and Electronic Applications. Bristol:CRC press,1989,165-259
    [99]M. Guden, J. Piprek. Material parameters of quaternary III-V semiconductors for multilayer mirrors at 1.55 μm wavelength. Modell. Simul. Mater. Sci. Eng.,1996, 4(4):349-357
    [100]T. Aizawa, K. G. Ravikumar, S. Suzaki, et al.. Polarization-independent quantum-confined Stark effect in an InGaAs/InP tensile-strained quantum well. IEEE J. Quantum Electron.,1994,30(2):585-592
    [101]P. Agrawal, N. A. Olsson. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron.,1989,25(11): 2297-2306
    [102]J. Mφrk, A. Mecozzi. Theory of the ultrafast optical response of active semiconductor waveguides. J. Opt. Soc. Am. B,1996,13(8):1803-1816
    [103]A. Uskov, J. Mφrk, J. Mark. Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning. IEEE J. Quantum Electron.,1994,30(8): 1769-1781
    [104]M. J. Connelly. Wideband semiconductor optical amplifier steady-state numerical model. IEEE J. Quantum Electron.,2001,37(3):439-447
    [105]P. Harrison. Quantum Wells, Wires and Dots:Theoretical and Computational Physics of Semiconductor Nanostructures, New York: Wiley,2005,119-136
    [106]M. L. Nielsen, J. Mork, R. Suzuki, et al.. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Opt. Express,2006,14(1):331-347
    [107]M. J. Connelly. "Corrections to "Wideband Semiconductor Optical Amplifier Steady-State Numerical Model"," IEEE J. Quantum Electron.,2001,37(3): 1103-1103
    [108]S. J. B. Yoo. Wavelength conversion technologies for WDM network applications. J. Lightwave Technol.,1996,14(6):955-966
    [109]M. Tsurusawa, K. Nishimura, M. Usami. First demonstration of pattern effect reduction in 40 Gb/s semiconductor optical amplifier based all-optical switch utilizing transparent cw assist light. Jpn. J. Appl. Phys,2002,41(2B):1199-1202
    [110]M. T. Hill, E. Tangdiongga, H. de Waardt, et al.. Carrier recovery time in semiconductor optical amplifiers that employ holding beams. Opt. Lett.,2002, 27(18):1625-1627
    [111]K. E. Zoiros, T. Siarkos, C. S. Koukourlis. Theoretical analysis of pattern effect suppression in semiconductor optical amplifier utilizing optical delay interferometer. Optics Communications,2008,281(14):3648-3657
    [112]J. Wang, A. Marculescu, J. S. Li, et al.. Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion. IEEE Photonics Technol. Lett.,2007,19(21-24):1955-1957
    [113]Z. H. Li, Y. Dong, C. Lu, et al.. Comparison of cross-gain modulation effect of Manchester-duobinary, RZ-DPSK, NRZ-DPSK, RZ, and NRZ modulation formats in SOAs. IEEE Photonics Technol. Lett.,2006,18(21-24):2680-2682
    [114]S. Ma, H. Sun, Z. Chen, et al.. High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers. Opt. Express,2009,17(21): 18469-18477
    [115]R. J. Manning, X. Yang, R. P. Webb, et al.. The 'turbo-switch' -a novel technique to increase the high-speed response of SOAs for wavelength conversion. OFC,2006, OWS8
    [116]E. B. Zhou, F. Oehman, C. Cheng, et al.. Reduction of patterning effects in SOA-based wavelength converters by combining cross-gain and cross-absorption modulation. Opt. Express,2008,16(26):21522-21528
    [117]K. Inoue. Technique to compensate waveform distortion in a gain-saturated semiconductor optical amplifier using a semiconductor saturable absorber. Electron. Lett.,1998,34(4):376-378
    [118]K. E. Zoiros, T. Siarkos, C. S. Koukourlis. Theoretical analysis of pattern effect suppression in semiconductor optical amplifier utilizing optical delay interferometer. Optics Communications,2008,281(14):3648-3657
    [119]J. J. Dong, X. L. Zhang, J. Xu, et al.. All-optical ultrawideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier. Opt. Lett.,2007,32(15):2158-2160
    [120]G. P. Agrawal. Fiber-optic Communication Systems. New York:Wiley,2002, 133-175
    [121]D. Bimberg, N. Kirstaedter, N. N. Ledentsov, et al.. InGaAs-GaAs quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron.,1997,3(2):196-205
    [122]N. Kirstaedter, N. N. Ledentsov, M. Grundmann, et al.. Low threshold, large To injection laser emission from (InGa)As quantum dots. Electron. Lett,1994,30(17): 1416-1417
    [123]王占国.半导体量子点激光器研究进展.物理,2000,29(11):643-648
    [124]Z. Mi, Y. L. Chang. III-V compound semiconductor nanostructures on silicon: epitaxial growth, properties, and applications in light emitting diodes and lasers. J. Nanophotonics,2009,3(1):031602-031619
    [125]田艽芃,黄黎蓉,费淑萍,et al.不同盖层对InAs/GaAs量子点结构和光学性质的 影响.物理学报,2010,59(8):559-563
    [126]J. S. Kim, J. H. Lee, S. U. Hong, et al.. Manipulation of the structural and optical properties of InAs quantum dots by using various InGaAs structures. J. Appl. Phys., 2003,94(10):6603-6606
    [127]A. Stintz, G T. Liu, A. L. Gray, et al.. Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells. J Vac Sci Technol B,2000,18(3):1496-1501
    [128]P. Lever, H. H. Tan, C. Jagadish. InGaAs quantum dots grown with GaP strain compensation layers. J. Appl. Phys.,2004,95(10):5710-5714
    [129]H. Y. Liu, M. J. Steer, T. J. Badcock, et al.. Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer. Appl. Phys. Lett.,2005,86(14):143108
    [130]K. Fu, Y. Fu. Strain-induced Stranski-Krastanov three-dimensional growth mode of GaSb quantum dot on GaAs substrate. Appl. Phys. Lett.,2009,94(18):181913
    [131]王占国,陈涌海,叶小玲等.纳米半导体技术.北京:化学工业出版社,2006.308-380
    [132]L. Chu, M. Arzberger, G. Bohm, et al.. Influence of growth conditions on the photoluminescence of self-assembled InAs/GaAs quantum dots. J. Appl. Phys., 1999,85(4):2355-2362
    [133]P. B. Joyce, T. J. Krzyzewski, P. H. Steans, et al.. Variations in critical coverage for InAs/GaAs quantum dot formation in bilayer structures. J. Cryst. Growth,2002, 244(1):39-48
    [134]C. Heyn. Critical coverage for strain-induced formation of InAs quantum dots. Phys Rev B,2001,64(16):165306
    [135]P. Caroff, N. Bertru, W. Lu, et al.. Critical thickness for InAs quantum dot formation on (311)B InP substrates. J. Cryst. Growth,2009,311(9):2626-2629
    [136]C. Ratsch, J. A. Venables. Nucleation theory and the early stages of thin film growth. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2003,21(5):S96-S109
    [137]H. T. Dobbs, D. D. Vvedensky, A. Zangwill. Theory of quantum dot formation in Stranski-Krastanov systems. Appl. Surf. Sci.,1998,123-124(646-652
    [138]H. T. Dobbs, D. D. Vvedensky, A. Zangwill, et al.. Mean-field theory of quantum dot formation. Phys. Rev. Lett.,1997,79(5):897-900
    [139]D. Walton. Nucleation of Vapor Deposits. J. Che. Phys.1962,37(10):2182-2188
    [140]P. Tian, L. Huang, B. Jiang, et al..1.3 μm InAs/GaAs quantum dots with broad emission spectra. physica status solidi (a),2010,207(8):1930-1933
    [141]C. Heyn, C. Dumat. Formation and size evolution of self-assembled quantum dots. J. Cryst. Growth,2001,227(990-994
    [142]Z. Z. Sun, D. Ding, Q. Gong, et al.. Quantum-dot superluminescent diode:A proposal for an ultra-wide output spectrum. Opt. Quantum Electron.,1999,31(12): 1235-1246
    [143]M. Krakowski, P. Resneau, M. Calligaro, et al.. High power, broad spectral width, 1300nm Quantum-Dot Superluminescent Diodes. IEEE International Semiconductor Laser Conference,2008:23-24
    [144]S. K. Ray, T. L. Choi, K. A. Groom, et al.. High-power 1.3μm quantum-dot superluminescent light-emitting diode grown by molecular beam epitaxy. IEEE Photonics Technol. Lett.,2007,19(2-4):109-111
    [145]I. K. Han, H. C. Bae, W. J. Cho, et al.. Study of chirped quantum dot superluminescent diodes. Jpn J Appl Phys 1,2005,44(7B):5692-5695
    [146]L. H. Li, M. Rossetti, A. Fiore, et al.. Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers. Electron. Lett, 2005,41(1):41-43
    [147]Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, et al.. A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap. Nanotechnology,2009, 20(5):055204
    [148]C. K. Chia, S. J. Chua, J. R. Dong, et al.. Ultrawide band quantum dot light emitting device by postfabrication laser annealing. Appl. Phys. Lett.,2007,90(6): 061101
    [149]C. Y. Ngo, S. F. Yoon, W. J. Fan, et al.. Tuning InAs quantum dots for high areal density and wideband emission. Appl. Phys. Lett.,2007,90(11):113103
    [150]Y. Yamauchi, S. Okamoto, T. Okawa, et al.. Controlling emission wavelength of double-capped InAs quantum dots by selective MOVPE employing stripe mask array. J. Cryst. Growth,2007,298:578-581
    [151]U. W. Pohl, K. Potschke, A. Schliwa, et al.. Formation and evolution of multimodal size distributions of InAs/GaAs quantum dots. Physica E,2006,32(1-2):9-13
    [152]U. W. Pohl, K. Potschke, A. Schliwa, et al.. Evolution of a multimodal distribution of self-organized InAs/GaAs quantum dots. Phys. Rev. B,2005,72(24):245332
    [153]M. Fanfoni, E. placidi, F. Arciprete, et al.. Sudden nucleation versus scale invariance of InAs quantum dots on GaAs. Phys Rev B,2007,75(24):245312
    [154]S. K. Ray, K. M. Groom, M. D. Beattie, et al.. Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells. IEEE Photonics Technol. Lett.,2006,18(1-4):58-60
    [155]L. J. Wang, A. Rastelli, S. Kiravittaya, et al.. Self-Assembled Quantum Dot Molecules. Adv. Mater.,2009,21(25-26):2601-2618
    [156]S. Kiravittaya, A. Rastelli, O. G. Schmidt. Advanced quantum dot configurations. Rep. Prog. Phys.,2009,72(4):1-34
    [157]T. H. Oosterkamp, T. Fujisawa, W. G van der Wiel, et al.. Microwave spectroscopy of a quantum-dot molecule. Nature,1998,395(6705):873-876
    [158]S. Tarucha, T. Honda, D. G. Austing, et al.. Electronic states in quantum dot atoms and molecules. Physica E,1998,3(1-3):112-120
    [159]J. E. Rolon, S. E. Ulloa. Coherent control of indirect excitonic qubits in optically driven quantum dot molecules. Phys Rev B,2010,82(11):115307
    [160]H. S. Borges, L. Sanz, J. M. Villas-Boas, et al.. Robust states in semiconductor quantum dot molecules. Phys Rev B,2010,81(7):075322
    [161]M. Bayer, P. Hawrylak, K. Hinzer, et al.. Coupling and entangling of quantum states in quantum dot molecules. Science,2001,291(5503):451-453
    [162]M. T. Borgstrom, V. Zwiller, E. Muller, et al.. Optically bright quantum dots in single nanowires. Nano Lett.,2005,5(7):1439-1443
    [163]T. van Lippen, R. Notzel, G. J. Hamhuis, et al.. Ordered quantum dot molecules and single quantum dots formed by self-organized anisotropic strain engineering. J. Appl. Phys.,2005,97(4):044301
    [164]R. Songmuang, S. Kiravittaya,O. G Schmidt. Formation of lateral quantum dot molecules around self-assembled nanoholes. Appl. Phys. Lett.,2003,82(17): 2892-2894
    [165]K. A. Sablon, J. H. Lee, Z. M. Wang, et al.. Configuration control of quantum dot molecules by droplet epitaxy. Appl. Phys. Lett.,2008,92(20):203106
    [166]H. B. Yang, X. J. Zhang, Z. M. Jiang, et al.. SiGe quantum dot molecules grown on patterned Si (001) substrates. J. Appl. Phys.,2008,104(4):044303
    [167]G. Balakrishnan, S. Huang, T. J. Rotter, et al..2.0μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer. Appl. Phys. Lett.,2004,84(12):2058-2060
    [168]L. Huang, P. Tian, Y. Yu, et al.. Performance study of InAs/GaAs quantum dot covered by graded InxGa1-xAs layer. Thin Solid Films,2010,518(18):5278-5281
    [169]T. van Lippen, A. Y. Silov, R. Notzel. Extended electron states in lateral quantum dot molecules investigated with photoluminescence. Phys. Rev. B,2007,75(11): 115414

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700