用户名: 密码: 验证码:
GaN异质结双极晶体管及相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽禁带GaN材料由于其优良的电特性和材料特性在大功率微波和毫米波器件应用领域引起了广泛关注。本文主要关注氮化物基异质结双极晶体管(HBT)及其相关技术。由于Ⅲ-V族氮化物HBT优良的器件线性度和高温高功率特性,它被认为是未来的一种理想器件。虽然GaN材料在高频高功率应用领域很有优势,但是无论从理论上还是实验上,都还需要克服一系列难题。目前对GaN基电子器件特别是GaN HBT的研究还处于初级阶段,器件工作的很多机理还没有定论。本文正是在这种背景下,针对目前GaN HBT研究中存在的问题从理论和实验两个方面进行了探索。
     论文首先介绍了异质结双极晶体管的基本理论。详细描述了半导体异质结的能带图、空间电荷区的电势电场分布及其载流子的输运,采用热电子发射和扩散模型相结合的思想推导了非平衡突变异质结界面处准费米能级的断续,以及适用于异质结的Shockley边界条件。并在此基础上给出了理想突变异质结及异质结双极晶体管的伏安特性。
     器件模拟为器件设计指明了方向,对器件的研制具有非常重要的指导作用。因此,论文在模拟器Atlas上搭建了GaN HBT器件模拟平台,对GaN HBT器件进行了数值模拟。研究了极化效应和发射区渐变对GaN HBT器件特性的影响。结果显示:对于Ga面向上的材料,极化效应对器件特性影响不大,而发射区组分渐变可以消除导带尖峰,提高电子的注入效率。详细讨论了GaN HBT纵向设计(发射区、基区和集电区设计)中要注意的问题。
     GaN器件不同于硅半导体器件,它的材料层的掺杂都是原位的,因此对于GaN器件来说,材料生长是关键环节。本文详细介绍了GaN HBT材料生长的工艺流程,对所生长出的材料特别是p型GaN材料进行了微分析。结果表明:我们生长的p型GaN材料有较好的结晶质量和电特性,Ga(Mg)/N比为1.106,缺陷密度约为3×1018cm-2。
     GaN HBT制作中,已刻蚀p型GaN表面金属接触的非欧姆特性是严重影响器件特性的因素。论文针对此问题重点对刻蚀表面的p型欧姆接触进行了研究。方面优化刻蚀条件获取低刻蚀损伤的p型基区刻蚀表面;另一方面还摸索了修复并降低刻蚀损伤的方法。
     论文对研制GaN HBT的核心问题进行研究。给出了GaN HBT的器件版图,进行了CB结二极管的制作和特性分析,二极管的导通电压约为4V,反向击穿电压大于50V;给出了GaN HBT器件的详细工艺流程,对GaN HBT器件进行了试制,并对其进行了测试分析。分析表明,p型基区未能很好的掺杂、基区太薄以及工艺中的过刻蚀、Mg的记忆效应及高温下的扩散会造成器件IC-VCE曲线呈现电阻特性。
     此外,利用本文建立的器件仿真平台,论文还对SiCOI (SiC On Insulator) MESFET器件进行了研究,提出了一种可以大大提高器件击穿电压的新型器件结构——介质槽隔离结构,并对其进行了优化,发现多台阶介质槽阻断结构是一种更好的器件结构,可以在不影响器件其他特性如频率特性的基础上,大大提高器件的击穿电压。
The wide-bandgap GaN material system has attracted much attention for high power microwave and millimeter wave device applications due to superior electronic and material properties. In this paper, nitride-based heterojunction bipolar transistor (HBT) and related techniques are discussed. BecauseⅢ-Ⅴnitride HBT has better device linearity, high temperature and high power properties, it has been considered as an ideal device in the future. Although GaN material is an excellent candidate for high frequency and high power applications, there are a series of difficulties to be conquered in both aspects of theory and experiment. At present the study of GaN-based devices is in the primary phase, especially for GaN HBTs, many mechanisms of device operating haven't last word. Under the condition, these problems, which exists in the research of GaN HBT are discussed from the view of theory and experiment.
     First, the paper introduces the basic theories of heterojunction bipolar transistor. The bandgap structures, the distribution of potential and electric field of space-charge area and the transportation of currents are described in detail.
     Using the combination of Thermionic Emission Theory and Diffusion Theory, we calculate the discontinuity in quasi-fermi levels at the interface of the heterojunction and the Shockley Boundary Conditions which are for heterojunction. Then theⅠ-Ⅴcharacteristics of ideal abrupt heterojunctions and heterojunction bipolar transistors is given.
     The device simulation offers the direction for the device design, which is very important in the process of device development. So the GaN HBT is numerical simulated. The influences brought by the polarization effect and graded emitter are studied. The results show that polarization effect has a little affection to the characteristics of Ga-face terminated device, while the graded emitter can eliminate the peak of conduction band and improve the inject efficiency. Then we discuss the problems to which attention should be paid in the vertical design (emitter, base and collector design).
     GaN-based devices are different from Si'. To the former, the growth of material is a very important process since they are in-situ doped. The paper introduces the growth process flow of GaN HBT material in detail, and analyzes these materials, especially the p type GaN material. It has been resulted that the p-GaN has good crystal quality and electrical characteristic. The ratio of Ga(Mg) to N is 1.106. The defect density is about 3×1018cm-2.
     In the fabrication of GaN HBT, the non-ohmic contact to etched p-GaN is a big hurdle. To this point, the contact to etched p-GaN is discussed. Firstly, we optimize the etching conditions to reduce the etch damage as low as possible; and secondly, we also discuss the methods of repairing and reducing the etching damage.
     The paper discusses the kernel problems in the fabrication of GaN HBT. The device layouts, the fabrication and characteristic analysis of CB junction are also shown. The turn-on voltage is about 4V, and the breakdown voltage is above 50V. Besides, this paper gives the pprocess flow of GaN HBT. We trial-produce the GaN HBT device and test the characteristics. It is shown that the poor doping of base, too thin base and over-etching in the process, Mg memory effect and diffusion under high temperature lead to theⅠC-ⅠCE curves show resistance characteristic.
     Moreover, characteristic of SiCOI (SiC On Insulator) MESFET is also investigated using the device simulation platform set up in this paper. A new type of SiCOI MESFET device structure, SiCOI MESFET with dielectric groove isolation, is presented, and the device structure is optimized. We see SiCOI MESFET with multi-step dielectric groove isolation is a better structure, of which a large decrease of saturated drain current and transconductance doesn't occur while a large increase of the breakdown voltage can be achieved.
引文
[1.1]M. Farahmand, and K. F. Brenna, Comparison between wurtize phase and zincblende phase GaN MESFET using a full band Monte Carlo simulation, IEEE Transactions on Electron Devices,2000,47(3):493-497.
    [1.2]M. A. Khan, J N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGal-xN heterojunctions, Applied Physices Letters, 1992,60(24):3027-3029.
    [1.3]T. Wang, Y. Ohno, Electron mobility exceeding 104cm2/V·s in an AlGaN-GaN heterostructure grown on a sapphier substrate, Applied Physics Letters. 1999,74(23):3531-3533.
    [1.4]R. Gaska, M. S. Shur, A. D. Bykhovski, A.O. Orlov, and G. L. Sneider, Electron mobility in modulation-doped AlGaN-GaN heterostructures, Applied Physics Letters,1999,74(2):287-289.
    [1.5]J. A. Majewski, G. Zander and P. Vogl, Heterostructure field effect transistors based on nitride interfaces, Journal of Physics,2002,14(13):3511-3522.
    [1.6]M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, High electron mobility transistor based on GaN/AlGaN Heterojunction, Applied Physics Letters, 1993,63(9):1214-1215.
    [1.7]A. Vescan, R. Dietrich, A. Wieszt, A. Schurt, H. Leier, E. L. Piner, and J. M. Redwing, MODFETs on semi-insulating SiC with 3W/mm at 20GHz, Electronics Letters,2000,36(14):1234-1236.
    [1.8]A. Vescan, R. Dietrich, A. Wieszt, A. Schurr, H. Leier, E. L. Piner, and J. M. Redwing, MODFETs on semi-insulating SiC with 3W/mm at 20GHz, Electronics Letters,2000,36(4):1234-1236.
    [1.9]E. O. Johnson, Phsical limitations on frequency and power parameters of transistors, RCA Rev.,1965, p163-177
    [1.10]A.J. Baliga, Power semiconductor device figure of merit fot high frequency applications. IEEE electron Device Lett.,1989,10:455-457
    [1.11]Advanced Semiconductor Devices, Courses of EE Class of the University of South Carolina
    [1.12]刘文超,GaAs高温HBT器件及特性研究,中国科学院上海微系统与信息技术研究所,博士论文,2004,p4-7
    [1.13]J.C.Zolper, Wide bandgap semiconductor microwave technologies:From promise to practice, IEDM Tech. Dig.,2001, p381
    [1.14]Vinayak Tilak, Bruce Green, Val Kaper, et al. Influence of Barrier Thickness on the High-Power Performances of AlGaN/GaN HEMTs. IEEE electron Device Lett.,2001,22(11):504-506
    [1.15]J. S. Moom, M. Micovic, P. Janke, et al. GaN/AlGaN HEMTs operationg at 20GHz with continuous-wave power density>6W/mm. Electron. Lett.,2001, 37(8):p528-530
    [1.16]Y. F. Wu, D. Kapolnek, J. P. Igbvbetson, et al. Very high power density AlGaN/GaN HEMTs. IEEE Trans. Electron. Dev.,2001 48(3):p586-590
    [1.17]Y. F. Wu, B.P. Keller, P.Fini, et al. Short-channel Al0.5Ga0.5N/GaN MODFETs with power density>3W/mm at 18GHz. Electron. Lett.,1997,33:1742-1743
    [1.18]R. Hadaway, R. Surridge, Y. Greshishchev, et al. Status and application of advanced semiconductor technologies. Nortel Networks, Ottawa, Canada, Copyright (?) 1999 GaAs Mantech
    [1.19]Feng M., Shen S. C., Caruth D. C., et al. Device technologies for rf front-end circuits in next-generation wireless communications. Proceedings of the IEEE, 2004,92:354-375
    [1.20]Yoshida S. and Suzuki J., Characterization of a GaN bipolar junction transistor after operation at 300 for over 300h. Japanese Journal of Applied Physics,1999, 38:L851-L853
    [1.21]Limb J. B., McCarthy L., Kozodoy P., et al. AlGaN/GaN HBTs using regrown emitter. Electonics Lett.,1999,35:p1671-1673
    [1.22]Huang J.J., Hattendorf M.M., Chowdhury U., et al. Graded-emitter AlGAN/GaN heterojunction bipolar transistors. Electronics Lett.,2000,36:p1239-1240
    [1.23]MakimotoToshiki, Kazuhide Kumakura, and Naoki Kovavashi, High cuttent gain obtained by InGaN/GaN double heterojunction bipolar transistors with p-InGaN base. Applied Physics Letters,2001,79(3):p380-381
    [1.24]MakimotoToshiki, Kazuhide Kumakura, and Naoki Kovavashi, High current gain (>2000) of Ga/InGaN double heterojunction bipolar transistors using base regrown of p-InGaN. Applied Physics Letters,2003,83(5):p1035-1037
    [1.25]Makimoto, Toshiki (NTT Basic Research Laboratories, NTT Corporation); Yamauchi, Yoshiharu; Kumakura, Kazuhide. High-power characteristics of GaN/InGaN double heterojunction bipolar transistors. Applied Physics Letters, v 84, n 11, Mar 15, 2004, p 1964-1966
    [1.26]Huili Xing, Prashant M.Chavarkar, et al. Very High Operation(>330V) With High current Gain of AlGaN/GaN HBTs. IEEE Electron Device Letters,2003,24(3): 141
    [1.27]Keogh, D.M. (Department of Electrical and Computer Engineering, University of California San Diego); Asbeck, P.M.; Chung, T.. High current gain InGaN/GaN HBTs with 300℃ operating temperature. Electronics Letters, v 42, n 11,2006, p 661-663
    [1.28]Lee S. McCarthy, Aluminum Gallium Nitride Gallium Nitride Heterojunction Bipolar Transistors. PH.D.dissertation, Electrical and computer Engineering Department, University of California, Santa Barbara,2001, p36
    [1.29]B.S. Shelton, J.J. Huang, D.J.H. Lambert, et al. AlGaN/GaN heterojunction bipolar transistors grown by metal organic chemical vapour deposition. Electronics Letters,2000,36(1):p80-81
    [1.30]Ran, Junxue (Institute of Semiconductors, Chinese Academy of Sciences); Wang, Xiaoliang; Hu, Guoxin. Study on Mg memory effect in npn type AlGaN/GaN HBT structures grown by MOCVD. Microelectronics Journal, v 37, n 7, July, 2006, p 583-585
    [1.31]郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术,北京,科学出版社,2000,p258
    [1.32]Peter Kozodoy, Steven P. DenBaars, and Umesh K. Mishra. Depletion region effects in Mg-doped GaN. Journal of Applied Physics,2000,87(2):p770-775
    [1.33]L. McCarthy, I. Smorchkova, H. Xing, et al. Effect of threading dislocations on AlGaN/GaN heterojunction bipolar transistors. Applied Physics Letters,78(15): p2235-2237
    [1.34]B. Rong, R. Cheung, W. Gao, et al. Effects of reactive ion etching on the electrical characteristics of GaN, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, v 18, n 6, Nov,2000, p 3467-3470
    [1.35]Kim J. K., Lee J.L., Lee J.W., et al. Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment. Applied Physics Letters,1998,73: p2953-2955
    [1.36]Ren, F., Han, J., Hickman, R., Hove, J. M. V., Chow, P. P., Klaassen, J. J., LaRoche, J. R., Jung, K. B., Cho, H., Cao, X. A., Donovan, S. M., Kopf, R. F., Wilson, R. G., Shul, R. J., Wilson, C. G., Abernathy, C. R., and Pearton, S. J.,
    GaN/AlGaN HBT fabrication, Solid-State Electronics,2000, vol.44, p 239-244
    [1.37]Makimoto, T., Kumarkura, K., and Kobayashi, N., "Reduce damage of electron cyclotron resonance etching by in doping into p-GaN," Journal of Crystal Growth, vol.221, p350-355,2000.
    [1.38]Kumakura, K., Makimoto, T., and Kobayashi, N., "High hole concentrations in Mg-doped InGaN grown by MOVPE," Journal of Crystal Growth,2000,vol.221, p 267-270
    [1.39]umakura, K., Makimoto, T., and Kobayashi, N., "Low resistance non-alloy ohmic contact to p-type GaN using Mg-doped InGaN contact layer," Physica Status Solida,2001, vol. 1,p 363-365
    [2.1]刘恩科,朱秉升,罗晋生等,半导体物理学,第4版,北京,国防工业出版社,1997,p228
    [2.2]虞丽生,半导体异质结物理,第一版,2003,科学出版社,p36
    [2.3]吴杰,高温AlxGa0.52-xIn0.48PGaAs异质结双极晶体管(HBT)的研究,博士论文,中国科学院上海冶金研究所,2000,p39
    [2.4]Atlas User's Manual, Sivaco international,2002
    [2.5]X.A.Cao, J. M.Van Hove, et al. Simulation of GaN/AlGaN heterojunction bipolar transistors:part Ⅰ-npn structures. Solid-State Electronics,2000,44:1255-1259
    [3.1]Atlas User's Manual, Sivaco international,2002
    [3.2]张义门,任建民,半导体器件计算机模拟,第1版,1991,p1-79
    [3.3]赵鸿麟,半导体器件计算机模拟,第1版,1989,p50-57
    [3.4]Michael E. Levinshtein, Sergey L. Rumyantsev and Michael S. Shur. Properties of Advanced Semiconductor Materials. New York:John Wiley & Sons,2001
    [3.5]S.N.Mohammad, A. A. Salvador, et al. Emerging gallium nitride based devices. Proc. IEEE,2000,18:1306-1355
    [3.6]Atlas User's Manual_volumel, Dec.2002, p200
    [3.7]Maziar Farahmand, Carlo Garetto, Enrico Bellotti, et al. Monte Carlo Simulation of Electron Transport in the Ⅲ-Nitride Wurtzite Phase Materials System:Binaries and Ternaries.2001 IEEE Transactions on Electron Devices 48:535
    [3.8]Edgar JH, Strife S, Akasaki I, et al. Properties, processing and applications of GaN and related semiconductors. EMIS Data Review No.23, London:IEE,1999
    [3.9]X.A.Cao, J. M.Van Hove, J.J. Klaassen, et al. Simulation of GaN/AlGaN heterojunction bipolar transistors:part Ⅰ-npn structures. Solid-State Electronics, 44:1255-1259,2000
    [3.10]Fischer S., Wetzel C., Haller E. E., et al. On p-type dopoing in GaN-acceptor binding energies. Applied Physics Letters,1995,67(9):1298-1300
    [3.11]Kozodoy P.. Mg doped gallium nitride for electronic and optoelectronic application, PH.D.dissertation, Electrical and computer Engineering Department, University of California, Santa Barbara,1999
    [3.12]Cedric Monier, Fan Ren, et al. Simulation of NPN and PNP AlGaN/GaN Heterojunction Bipolar transistors Performances:Limiting Factors and Optimum Desigh. IEEE Transactions on Electron Devices,2001,48(3):427-432
    [3.13]O. Ambacher et al. Twodimensional electron gases induced bu spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. Journal of Applied Physics,1999,85:3222
    [3.14]O.Ambacher, B.Foutz, J. Smart, et al.Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. Journal of Applied Physics.87(1):334
    [3.15]L.L.McCarthy, P.Kozodoy, M.J.W. Rodwell, et al. AlGaN/GaN Heterojunction Bipolar Transistor. IEEE Electron device letters,1999,20(6):277-279
    [3.16]F. Bernardini, V. Fiorentini, and D. Vanderbilt. Spontaneous polarization and piezoelectric constants of Ⅲ-Ⅴ nitrides. Physical Review B (Condensed Matter), 6(16):R10024-7,1997.
    [3.17]A. F. Wright. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. Journal of Applied Physics,1997,82(6):2833-2839.
    [3.18]虞丽生,半导体异质结物理,第一版,2003,科学出版社,p77
    [3.19]Z.Z.Bandic, P.M. Bridger, E.C. Piquette, et al. The values of minority carrier duffusion lengths and lifetimes in GaN and their implications for bipolar devices. Solid-State Electronics,2000,44:221-228.
    [3.20]P. M. Asbeck, E.T. Yu, S.S. Lau, et al. Enhancement of base conductivity via the piezoelectric effect in AlGaN/GaN HBTs. Solid-State Electronics,2000,44: 211-219
    [3.21]张屏英,周佑谟,晶体管原理,上海科学技术出版社,1985,p192
    [3.22]J. B. Limb, H. Xing, B. Moran, et al. High voltage operation (>80V) of GaN bipolar junction transistors with low leakage. Applied Physics Letters,76(17): p2457-2459
    [3.23]Huili Xing, Prashant M.Chavarkar, et al. Very High Operation(>330V) With High current Gain of AlGaN/GaN HBTs. IEEE Electron Device Letters,2003,24(3): 141-143
    [4.1]F. Degave, P. Ruterana, G. Nouet, et al. Initial stages of GaN buffer layer growth on (0001) sapphire by metalorganic chemical vapour deposition, Diamond and Related Materials,2002,11:901-904
    [4.2]F. Degave, P. Ruterana, G. Nouet, et al. Analysis of the nucleation fo GaN layers on (0001) sapphire, Materials Science and Engineering,2002, B93,177-180
    [4.3]Handbook of X-Ray photoelectron spectroscopy. Perknelmer, Eden Prairie, MN,1992
    [4.4]Sang Woo Kim, Ji Myon Lee, Chul Huh, et al. Reactivation of Mg acceptor in Mg-doped GaN by nitrogen plasma treatment. Applied Physics Letters,76(21): 3079-3081
    [4.5]郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术,北京,科学出版社,2000,p258
    [5.1]刘恩科,朱秉升,罗晋生等,半导体物理学,第4版,北京,国防工业出版社,1997,p181
    [5.2]S.M.Sze. Physics of Semiconductor Devices, second edition, New York, John Wiley & Sons,1981.p88-89
    [5.3]郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术,北京,科学出版社,2000,p259
    [5.4]Ishikawa H., Kobayashi S, KoiDe K, et al. Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces [J]. JAppl Phys,1997,81 (3):1315-1322.
    [5.5]绍庆辉,叶志镇,黄靖云,GaN基器件中的欧姆接触,材料导报,2003,17(3):p38-44
    [5.6]Y.Y.Wang, C.M. Zhen, H. X. Gong. Measurement of the specific contact resistance of au/Ti/p-diamond using Transmission Line Model, Acta physica Sinica,2000,49(7):1348-1351
    [5.7]G. K. Reeves, Specific contact resistance using a circular transmission line model, Solid-state Electronics,1980,23(5):487-490
    [5.8]Jin Kuo Ho, Charng Shyang Jong, Chien C. Chiu, et al. Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films. Journal of Applied Physics,1999,86(8):4491-4497
    [5.9]Chen Li-Chien, Ho Jin-Kuo, Jong Charng-Shyang, et al. Oxidized Ni/Pt and Ni/Au ohmic contacts to p-type GaN. Applied Physics Letters, v 76, n 25, Jun 19,2000, p 3703-3705
    [5.10]Jan J.C., Asokan,K., Chiou J.W., et al. Electronic structure of oxidized Ni/Au contacts on p-GaN investigated by x-ray absorption spectroscopy. Applied Physics Letters, v 78, n 18, Apr 30,2001, p 2718-2720
    [5.11]Jang Ho Won, Kim Soo Young, Lee Jong-Lam. Mechanism for Ohmic contact formation of oxidized Ni/Au on p-type GaN. Journal of Applied Physics, v 94, n 3, Aug1,2003, p 1748-1752
    [5.12]Narayan, J. (Dept. of Materials Science and Eng., North Carolina State University); Wang, H.; Oh, T.-H.. Formation of epitaxial Au/Ni/Au ohmic contacts to p-GaN. Applied Physics Letters, v 81, n 21, Nov 18,2002, p 3978-3980
    [5.13]Jin Kuo Ho, Charng Shyang Jong, Chien C. Chiu, et al. Low-resistance ohmic contacts to p-type GaN. Applied Physics Letters,1999,74(9):1275-1277
    [5.14]Li Chien Chen, Fu Rong Chen, and Ji Jung Kai. Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN. Journal of Applied Physics,1999, 86(7):3826-3831
    [5.15]D. Qiao, L. S. Yu, and S. S. Lau. A study of the Au/Ni ohmic contact on p-GaN. Journal of Applied Physics,2000,88(7):4196-4199
    [5.16]Chen, Li-Chien (Natl Tsing Hua Univ); Ho, Jin-Kuo; Chen, Fu-Rong. Effect of heat treatment on Ni/Au Ohmic contacts to p-type GaN. Physica Status Solidi (A) Applied Research, v 176, n 1, Nov,1999, p 773-777
    [5.17]Khan, F.A. (Dept. of Electrical and Comp. Eng., Microelectronics Laboratory, University of Illinois); Zhou, L.; Kumar, V.. Plasma-induced damage study for n-GaN using inductively coupled plasma reactive ion etching. Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures, v 19, n 6, November/December,2001,45th International COnference on Electron, Ion, and Photon Beam Technology and Nanofabrication, p 2926-2929
    [5.18]Harush.E, Brandon. S, Salzman. J, et al. The effect of mass transfer on the photoelectrochemical ething of GaN, semicond. Sci. Technol.,2002,17(6):510
    [5.19]Michael Quirk, Julian Serda著,韩郑生等译,半导体制造技术,北京,电子 工业出版社,2004,p181
    [5.20]Shul, R.J. (Sandia Natl Lab); Vawter, G.A.; Willison, C.G.. Comparison of plasma etch techniques for Ⅲ-Ⅴ nitrides. Solid-State Electronics:An International Journal, v 42, n 12, Dec,1998, p 2259-2267
    [5.21]Sheu, J.K. (Department of Electrical Engineering, National Cheng Kung University); Su, Y.K.; Chi, G.C.. Inductively coupled plasma etching of GaN using Cl2/Ar and Cl2/N2 gases. Journal of Applied Physics, v 85, n 3, February, 1999, p 1970-1974
    [5.22]Ji Myon Lee, Ki-Myung Chang, Sang Woo Kim, et al. Dry etch damage in n-type GaN and its recovery by treatment with an N2 Plasma. Journal of Applied Physics,87(11):7667-7670
    [5.23]F. Ren, J. Han, R,Hickman, et al. GaN/AlGaN HBT fabrication. Solid-State Electronics,2000,44:239-244
    [5.24]K.P.Lee, A.P.Zhang, G. Dang, et al. Self-alighed process for emitter-and base-regrowth GaN HBTs and BJTs. Solid-State Electronics,2001,45:243-247
    [5.25]X.A. Cao, J.M. Van Hove, J.J.Klaassen, et al. High temperature characteristics of GaN-based heterojunction bipolar transistors and bipolar junction transistors. Solid-State Electronics,2000,44:649-654
    [5.26]X. A. Cao, A. P. Zhang, G. T. Dang, et al. Schottky diode measurements of dry etch damage in n-and p-type GaN. Journal of Vacuum Science and Technology, Part A:Vacuum, Surfaces and Films, v 18, n 41, Jul,2000, p 1144-1148
    [5.27]B. Rong, R. Cheung, W. Gao, et al. Effects of reactive ion etching on the electrical characteristics of GaN, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, v 18, n 6, Nov,2000, p 3467-3470
    [5.28]R.J. Shul, L. Zhang, A. G. Baca, et al. High-density plasma-induced etch damage of GaN. Materials Research Society Symposium-Proceedings, v 573,1999, p 271-279
    [5.29]S.J. Pearton, C.R. Abernathy, F. Ren and J.R.Lothian, Ar+-ion milling characteristics of Ⅲ-Ⅴ nitrides. Journal of Applied Physics.1994,76(2): 1210-1215
    [5.30]刘恩科,朱秉升,罗晋生等,半导体物理学,第4版,北京,国防工业出版社,1997,p45-46
    [5.31]X.A.Cao, A.P. Zhang, GT.Dang, et al. Plasma damage in p-GaN. Journal of Electronic Materials, v 29, n 3,2000, p 256-261
    [5.32]Ji Myon Lee, Ki Myung Chang, Shang Woo Kim, et al. Dry etch damage in n-type GaN and its recovery by treatment with an N2 plasma. Journal of Applied Physics, v 87, n 11, Jun 1,2000, p 7667
    [5.33]S. tripathy, S. J. Chua, A. Ramam, et al. Electronic and vibronic properties of Mg-doped GaN:The influence of etching and annealing. Journal of Applied Physics,2000,91,3398-3407
    [5.34]Kow-Ming Chang, Chao Chen Cheng, and Jiunn Yi Chu. The Variation of ohmic contacts and surface characteristics on p-GaN induced by reactive ion etching. Journal of The Electrochemical Society,2002,149(7):G367-G369
    [5.35]X. A. Cao, S. J. Pearton, A. P. Zhang, et al. Electrical effects of plasma damage in p-GaN. Applied Physics Letters,75(17):2569-2571
    [5.36]F. Karouta, M.J. Kappers, M.C.J.C.M.kramer, et al. Post-growth enhancement of p-GaN conductivity. Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS, v 1,2004 IEEE LEOS Annual Meeting Conference Proceedings, LEOS 2004,2004, p 284-285
    [6.1]Xing, Huili G.; Mishra, Umesh K. Temperature dependent Ⅰ-Ⅴ characteristics of AlGaN/GaN HBTS and GaN BJTS. International Journal of High Speed Electronics and Systems, v 14, n 3, September,2004, p 819-824
    [6.2]Kozodoy, P., J.P.Ibbetson, H. Marchand, et al. Electrical characterization of GaN p-n junctions with and without threading dislocations. Appl. Phys. Lett.,1998, (73)7, p975-977
    [6.3]张屏英,周佑谟,晶体管原理,上海科学技术出版社,1985,p50
    [6.4]S.M.Sze. Physics of Semiconductor Devices, second edition, New York, John Wiley & Sons,1981. p88-89
    [6.5]Lee S. Mc Carthy, Ioulia P. smorchkova. GaH HBT:Toward an RF Device. IEEE Transactions on Electron Devices,48(3):543
    [7.1]Bhatnagar Mohit, Jayant Baliga B. Comparison of 6H-SiC,3C-SiC, and Si for Power Devices. IEEE Transactions on Electron Devices,1993; 40(3):645-655
    [7.2]王剑屏,郝跃等,蓝宝石衬底上异质外延生长碳化硅薄膜的研究,物理学报,Vol.51,No.8,PP.1793-1797,2002
    [7.3]Chassagne T, Ferro G, Wang H. Improved SiCOI Structures Elaborated by Heteroepitaxy of 3C-SiC on SOI. International Conference on Silicon Carbide and Related Materials 2001, Tsukuba, Japan Oct.28,2001; 343-346
    [7.4]K. J. Schoen, J. M. Woodall, J. A. Cooper, et al. Design Considerations and Experimental Characterization of High Voltage SiC Schottky Barrier Rectifiers. IEEE Transactions on Electron Devices, Vol.45, No.7, pp.1595-1604, July,1998
    [7.5]V. Saxena, A.J. Steckl, M. Vichare, M.L. Ramalingam and K. Reinhart. Temperature Effects in the Operation of High Voltage Ni/6H-SiC Schottky Rectifiers. Transactions of Third International Conference on High Temperature Electronics, pp. Ⅶ.15-Ⅶ.20,1996
    [7.6]Palmour J W, Allen S T, Sadler R A. Progress in SiC Materials and Microwave Devices. Microwave Symposium Digest,1999 IEEE MTT-S International, June 1999; 1:321-324
    [8.1]Toshiki Makimoto, Kazuhide Kumakura, and Naoki Kobayashi. Reduced damage of electron cyclotron resonance etching by In doping into p-GaN. Joutnal of Crystal Growth.2000,221:p350-355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700