用户名: 密码: 验证码:
黄河干流碳输运及人类活动对其影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流是陆源物质向海洋输运的主要通道。当今,以水库修建、农业灌溉引水等为主的人为影响日益加剧,改变了河流自然状态下的物质输运规律,对河流流域的碳收支平衡以及源/汇格局产生重要影响。黄河是中纬度干旱半干旱地区高浑浊度河流的典型代表,也是受人类活动影响最为严重的河流之一。对其碳输运规律及影响因素的探讨,对于讨论同类河流碳输运行为具有重要的借鉴意义。
     本文通过2003年至2012年间黄河干流的多个航次以及花园口(全年)和利津站(调水调沙及24小时连续站)的观测数据,探讨了黄河各形态碳的输运特征和季节变化规律,特别关注自然过程变化和人为活动对其影响,主要结果如下:
     (1)与世界河流有机碳输运以溶解态(DOC)为主不同的是,黄河有机碳输运以颗粒态(POC)为主。且超过85%的POC集中在粒径小于32μm的颗粒物上,自兰州至利津不同粒径悬浮颗粒物承载POC的输运规律是一致的。黄河DOC浓度从上游至下游呈现逐渐升高的趋势,城市污水排放和农业灌溉退水污染的影响也不可忽视,这与大多数河流污染输入的DOC主要来自于城市污水排放不同。另外,全球变暖可能会导致青藏高原河段水体中DOC浓度升高。
     (2)虽然当前黄河水体中有机碳主要来源于黄土母质以及具有难降解的特性。然而黄河水库库容极大,水库对颗粒物的滞留、沉积,使得库区自生源有机碳贡献增加而导致降解率升高,对高浑浊度的黄河来说,库区对河流自身有机碳输运规律产生的影响远远高于其他河流。短时期来看,黄河流域水库因沉积作用已经作为一个稳定的碳汇存在,然而调水调沙工程却在不到一个月的时间里,将超过全年35%和56%的DOC和POC输运入海,瞬时流量和TSS浓度甚至可分别高达4100m3/s和27×103mg/L。
     (3)黄河DIC浓度高达3mmol/L,在世界河流中位居前列。尽管青藏高原亚流域的面积仅占全流域的30%,但作为黄河的主要水源区,强烈的淋溶作用导致该亚流域拥有全流域最高的化学风化速率,其岩石风化大气CO2消耗量也占到全流域的64%;而在占全流域面积近70%黄土高原亚流域,较高的蒸降比限制了化学风化速率,较小的地表径流限制了风化产物向黄河干流的输运,其岩石风化大气CO2消耗量仅占全流域的35%。因此,青藏高原亚流域是黄河水体中高浓度DIC的主要来源。而以往的研究认为“黄土中较高的碳酸岩含量是导致黄河水体中高浓度DIC的原因”。此外,随着全球变暖以及黄土高原干旱的程度增加,青藏高原亚流域对黄河DIC输运入海通量的贡献在未来将呈现上升趋势。
     (4)与世界河流一样,黄河也表现为大气CO2的源。但与大多数河流有机物降解是提供CO2主要来源不同的是,强烈化学风化过程维持的河水高DIC浓度的碳酸盐体系是影响黄河水体pCO2分布的主要因素。黄河水体中TSS含量极高,水体的透光性差,浮游植物的光合作用受到限制,生物固碳能力较弱。
     (5)黄河的DIC收支出现不平衡,进入黄河水体的DIC量大于黄河输运入海通量。水库滞留,农业灌溉取水对河流DIC的清除作用显著。
Rivers play an important role in the global carbon cycle by linking land andocean systems, which are the two largest carbon reservoirs on the earth’s surface.Nowadays, under server human influences such as reservoir construction andagriculture irrigation, natural ways of riverine material transport are totally changed,so are the carbon input/output balance and sink/source patterns. The Yellow Riverrepresents typically rivers which are located in arid and semiarid regions and holdhigh turbidity. Studies on carbon cycles and influence factors in the Yellow Riverestuary can provide some meaningful advice to other rivers with the samecharacteristics.
     Using data from field investigations between2003and2012along the YellowRiver mainstream and some continuous observations at the Huayuankou and Lijinstation, we examined the transport features and seasonal variations of organic andinorganic carbon, with a focus on contrasting the impacts of human activities withthose of natural processes. Conclusions are as follows:
     (1) Different from other large rivers, organic carbon is mainly transported in theparticulate form, and85%of the POC is concentrated in particles with grain sizesmaller than32μm. Due to natural and human influences, DOC correlates weaklywith discharge and it varied as a result of human activities such as agriculturalirrigation and pollution in the whole basin except for the upstream Qinghai-TibetPlateau, where DOC may be influenced by global warming. Organic carbon in theYellow River originates mainly from loess and possesses refractory feature. Labilepart of the organic carbon in reservoirs is much higher compared with that in themainstream, due to more autochthonous contributions.
     (2) CO2consumption by chemical weathering in the Yellow River basinachieves101.8×109mol/a, to which80%and20%are contributed by carbonate andsilicate, respectively. In addition, although the Qinghai-Tibet Plateau only accountsfor30%of the whole basin area, its CO2consumption by chemical weatheringoccupies more than60%of the total. The Qinghai-Tibet Plateau is probably the originof high HCO3-in the Yellow River and contributes about66%of the riverine DIC flux.The contribution from the Loess Plateau was overestimated in the previous studies. Inaddition, we also speculate that, due to global warming, contributions from the Qinghai-Tibet Plateau to the chemical weathering and DIC flux of the Yellow Riverwill probably increase in the future.
     (3) In the Yellow River, inorganic carbon is mainly transported in the dissolvedform. High DIC in the Qinghai-Tibet Plateau is due to the high chemical weatheringrate, and abundant carbonate in the loess is probably the reason that DIC stays at thehigh level in the middle reach. In addition, influcences of high evaporation in theLoess Plateau can not be neglected. The Yellow River acts as a CO2source comparedwith atmosphere, carbonate system is the main control mechanism.
     (4) Monthly fluxes of all kinds of carbon in the Yellow River show the samepattern: high in the wet season and low in the dry season. Total carbon flux of theYellow River amonts to133.8×104tC/a, mainly in inorganic and particulate forms.The water and sediment regulation scheme transports about one-third of the annualDOC flux and one half of the POC flux in about20days. In the whole Yellow Riverbasin, inorganci carbon input is much higher that its output, probably due to carbondepositon in the resevoirs and the downstream river channel. As a result, the naturalriverine transport patterns have been altered and ecosystems in the estuarine andcoastal areas have been influenced.
引文
[1] Metz B, Davidson O R, Bosch P R, et al. Contribution of Working Group III to the fourthassessment report of the Intergovernmental Panel on Climate Change.2007.
    [2] Change I P O C. Climate change: The IPCC scientific assessment. New York: Press Syndicateof the University of Cambridge,1990.
    [3] Gaillardet J, DupréB, Louvat P, et al. Global silicate weathering and CO2consumption ratesdeduced from the chemistry of large rivers. Chemical Geology,1999,159(1):3-30.
    [4] Chetelat B, Liu C Q, Zhao Z Q, et al. Geochemistry of the dissolved load of the ChangjiangBasin rivers: anthropogenic impacts and chemical weathering. Geochimica et CosmochimicaActa,2008,72(17):4254-4277.
    [5] Ollivier P, Hamelin B, Radakovitch O. Seasonal variations of physical and chemical erosion:A three-year survey of the Rhone River (France). Geochimica et Cosmochimica Acta,2010,74(3):907-927.
    [6] Elderfield H. Seawater chemistry and climate. Science,2010,327(5969):1092-1093.
    [7] Liu Z, Dreybrodt W, Liu H. Atmospheric CO2sink: Silicate weathering or carbonateweathering?. Applied Geochemistry,2011,26: S292-S294.
    [8] Moquet J S, Crave A, Viers J, et al. Chemical weathering and atmospheric/soil CO2uptake inthe Andean and Foreland Amazon basins. Chemical Geology,2011,287(1):1-26.
    [9] Richey J E, Field C B, Raupach M R. Pathways of atmospheric CO2through fluvial systems.The global carbon cycle: integrating humans, climate and the natural world,2004:329-340.
    [10] Aufdenkampe A K, Mayorga E, Raymond P A, et al. Riverine coupling of biogeochemicalcycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment,2011,9(1):53-60.
    [11] Butman D, Raymond P A. Significant efflux of carbon dioxide from streams and rivers in theUnited States. Nature Geoscience,2011,4(12):839-842.
    [12] Bianchi T S, Mitra S, McKee B A. Sources of terrestrially-derived organic carbon in lowerMississippi River and Louisiana shelf sediments: implications for differential sedimentationand transport at the coastal margin. Marine Chemistry,2002,77(2):211-223.
    [13] Bianchi T S, Filley T, Dria K, et al. Temporal variability in sources of dissolved organiccarbon in the lower Mississippi River. Geochimica et Cosmochimica Acta,2004,68(5):959-967.
    [14] Bianchi T S, Wysocki L A, Stewart M, et al. Temporal variability in terrestrially-derivedsources of particulate organic carbon in the lower Mississippi River and its upper tributaries.Geochimica et Cosmochimica Acta,2007,71(18):4425-4437.
    [15] Balakrishna K, Probst J L. Organic carbon transport and C/N ratio variations in a largetropical river: Godavari as a case study, India. Biogeochemistry,2005,73(3):457-473.
    [16] Alvarez-Cobelas M, Angeler D G, Sánchez-Carrillo S, et al. A worldwide view of organiccarbon export from catchments. Biogeochemistry,2012,107(1-3):275-293.
    [17] Dai M, Yin Z, Meng F, et al. Spatial distribution of riverine DOC inputs to the ocean: anupdated global synthesis. Current Opinion in Environmental Sustainability,2012,4(2):170-178.
    [18] Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbonexchange by terrestrial ecosystems. Nature,2001,414(6860):169-172.
    [19] Balakrishna K, Kumar I A, Srinikethan G, et al. Natural and anthropogenic factors controllingthe dissolved organic carbon concentrations and fluxes in a large tropical river, India.Environmental monitoring and assessment,2006,122(1-3):355-364.
    [20] Battin T J, Kaplan L A, Findlay S, et al. Biophysical controls on organic carbon fluxes influvial networks. Nature Geoscience,2008,1(2):95-100.
    [21] Barnes R T, Raymond P A. The contribution of agricultural and urban activities to inorganiccarbon fluxes within temperate watersheds. Chemical Geology,2009,266(3):318-327.
    [22] Houghton R A, Davidson E A, Woodwell G M. Missing sinks, feedbacks, and understandingthe role of terrestrial ecosystems in the global carbon balance. Global BiogeochemicalCycles,1998,12(1):25-34.
    [23] Matthews H D, Weaver A J, Meissner K J. Terrestrial carbon cycle dynamics under recentand future climate change. Journal of Climate,2005,18(10).
    [24] Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks.Nature,2008,451(7176):289-292.
    [25] Meybeck M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci,1982,282(4):401-450.
    [26] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans. The Journalof Geology,1983:1-21.
    [27] Wright L D, Nittrouer C A. Dispersal of river sediments in coastal seas: six contrasting cases.Estuaries,1995,18(3):494-508.
    [28]Wang H, Yang Z, Saito Y, et al. Interannual and seasonal variation of the Huanghe (YellowRiver) water discharge over the past50years: connections to impacts from ENSO events anddams. Global and Planetary Change,2006,50(3):212-225.
    [29] Wang H, Yang Z, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sedimentload (1950–2005): Impacts of climate change and human activities. Global and PlanetaryChange,2007,57(3):331-354.
    [30] Zhang X, Wang L, Si F. Prediction of water consumption in the Huanghe river basin. WaterResources and Hydropower Technology,2001,6:8-13.
    [31] Milliman J D, Farnsworth K L, Jones P D, et al. Climatic and anthropogenic factors affectingriver discharge to the global ocean,1951–2000. Global and planetary change,2008,62(3):187-194.
    [32] Yellow River Sediment Bulletin, The Yellow River Conservancy Commission.
    [33] Zhang L J, Wang L, Cai W J, et al. Impact of human activities on organic carbon transport inthe Yellow River. Biogeosciences,2013,10(4):2513-2524.
    [34] Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon bycontinental erosion. Global Biogeochemical Cycles,1996,10(1):23-41.
    [35] Wu Y, Zhang J, Liu S M, et al. Sources and distribution of carbon within the Yangtze Riversystem. Estuarine, Coastal and Shelf Science,2007,71(1):13-25.
    [36] Bouillon S, Abril G, Borges A V, et al. Distribution, origin and cycling of carbon in the TanaRiver (Kenya): a dry season basin-scale survey from headwaters to the delta. Biogeosciences,2009,6(11):2475-2493.
    [37] Nosrati K, Govers G, Smolders E. Dissolved organic carbon concentrations and fluxescorrelate with land use and catchment characteristics in a semi-arid drainage basin of Iran.Catena,2012,95:177-183.
    [38] Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate organicmaterial in the Amazon River. Limnology and Oceanography,1986,31(4):717-738.
    [39] Hedges J I, Cowie G L, Richey J E, et al. Origins and processing of organic matter in theAmazon River as indicated by carbohydrates and amino acids. Limnology and oceanography,1994,39(4):743-761.
    [40] Moreira-Turcq P, Seyler P, Guyot J L, et al. Exportation of organic carbon from the AmazonRiver and its main tributaries. Hydrological Processes,2003,17(7):1329-1344.
    [41] Townsend-Small A, McClain M E, Hall B, et al. Suspended sediments and organic matter inmountain headwaters of the Amazon River: Results from a1-year time series study in thecentral Peruvian Andes. Geochimica et Cosmochimica Acta,2008,72(3):732-740.
    [42] Neu V, Neill C, Krusche A V. Gaseous and fluvial carbon export from an Amazon forestwatershed. Biogeochemistry,2011,105(1-3):133-147.
    [43] Cerri C C, Bernoux M, Feigl B J, et al. Carbon Cycling in the Amazon[M]//Recarbonizationof the Biosphere. Springer Netherlands,2012:253-273.
    [44] Wang X C, Chen R F, Gardner G B. Sources and transport of dissolved and particulateorganic carbon in the Mississippi River estuary and adjacent coastal waters of the northernGulf of Mexico. Marine Chemistry,2004,89(1):241-256.
    [45] Dubois K D, Lee D, Veizer J. Isotopic constraints on alkalinity, dissolved organic carbon, andatmospheric carbon dioxide fluxes in the Mississippi River. Journal of Geophysical Research:Biogeosciences (2005–2012),2010,115(G2).
    [46] Bianchi T S, Wysocki L A, Schreiner K M, et al. Sources of terrestrial organic carbon in theMississippi plume region: evidence for the importance of coastal marsh inputs. AquaticGeochemistry,2011,17(4-5):431-456.
    [47] Coynel A, Seyler P, Etcheber H, et al. Spatial and seasonal dynamics of total suspendedsediment and organic carbon species in the Congo River. Global Biogeochemical Cycles,2005,19(4).
    [48] Spencer R G M, Hernes P J, Aufdenkampe A K, et al. An initial investigation into the organicmatter biogeochemistry of the Congo River. Geochimica et Cosmochimica Acta,2012,84:614-627.
    [49] Wang X, Ma H, Li R, et al. Seasonal fluxes and source variation of organic carbontransported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze) River.Global Biogeochemical Cycles,2012,26(2).
    [50] Ittekkot V, Safiullah S, Arain R. Nature of organic matter in rivers with deep sea connections:The Ganges-Brahmaputra and Indus. Science of the Total Environment,1986,58(1):93-107.
    [51] Ittekkot V, Safiullah S, Mycke B, et al. Seasonal variability and geochemical significance oforganic matter in the River Ganges, Bangladesh.1985.
    [52] Ittekkot V, Arain R. Nature of particulate organic matter in the river Indus, Pakistan.Geochimica et Cosmochimica Acta,1986,50(8):1643-1653.
    [53]李晶莹,张经.流域盆地的风化作用与全球气候变化.地球科学进展,2002,17(3):411-419.
    [54] Cauwet G, Mackenzie F T. Carbon inputs and distribution in estuaries of turbid rivers: theYang Tze and Yellow rivers (China). Marine Chemistry,1993,43(1):235-246.
    [55] Amiotte Suchet P, Probst J L, Ludwig W. Worldwide distribution of continental rocklithology: Implications for the atmospheric/soil CO2uptake by continental weathering andalkalinity river transport to the oceans. Global Biogeochemical Cycles,2003,17(2).
    [56] Mackenzie F T, Lerman A, Andersson A J. Past and present of sediment and carbonbiogeochemical cycling models. Biogeosciences Discussions,2004,1(1):27-85.
    [57] Lerman A, Wu L, Mackenzie F T. CO2and H2SO4consumption in weathering and materialtransport to the ocean, and their role in the global carbon balance. Marine Chemistry,2007,106:326-350.
    [58] Cai W. J., Guo X. H., Chen C., Dai M. H., Zhang L. J., Zhai W. D., Lohrenz S. E., Yin K.,Harrison P. J. and Wang Y. C. A comparative overview of weathering intensity and HCO-3flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl)and Mississippi Rivers. Continental shelf research,2008,28(12):1538-1549.
    [59] Richey J E, Melack J M, Aufdenkampe A K, et al. Outgassing from Amazonian rivers andwetlands as a large tropical source of atmospheric CO2. Nature,2002,416(6881):617-620.
    [60] Berner R A. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature,2003,426(6964):323-326.
    [61] Sun H, Han J, Li D, et al. Chemical weathering inferred from riverine water chemistry in thelower Xijiang basin, South China. Science of the total environment,2010,408(20):4749-4760.
    [62] Berner R. A., Lasaga A. C. and Garrels R. M.(1983) The carbonate-silicate geochemicalcycle and its effect on atmospheric carbon dioxide over the past100million years. Am. J. Sci.283(7),641-683.
    [63] Hartmann J, Jansen N, Dürr H H, et al. Global CO2-consumption by chemical weathering:What is the contribution of highly active weathering regions?. Global and Planetary Change,2009,69(4):185-194.
    [64] Oh N H, Raymond P A. Contribution of agricultural liming to riverine bicarbonate export andCO2sequestration in the Ohio River basin. Global biogeochemical cycles,2006,20(3).
    [65] Raymond P A, Cole J J. Increase in the export of alkalinity from North America's largestriver. Science,2003,301(5629):88-91.
    [66] Moon S, Huh Y, Qin J, et al. Chemical weathering in the Hong (Red) River basin: rates ofsilicate weathering and their controlling factors. Geochimica et cosmochimica acta,2007,71(6):1411-1430.
    [67] Raymond P A, Oh N H, Turner R E, et al. Anthropogenically enhanced fluxes of water andcarbon from the Mississippi River. Nature,2008,451(7177):449-452.
    [68] Karim A, Veizer J. Weathering processes in the Indus River Basin: implications from riverinecarbon, sulfur, oxygen, and strontium isotopes. Chemical Geology,2000,170(1):153-177.
    [69] Mortatti J, Probst J L. Silicate rock weathering and atmospheric/soil CO2uptake in theAmazon basin estimated from river water geochemistry: seasonal and spatial variations.Chemical Geology,2003,197(1):177-196.
    [70] Picouet C, Dupre B, Orange D, et al. Major and trace element geochemistry in the upperNiger river (Mali): physical and chemical weathering rates and CO2consumption. ChemicalGeology,2002,185(1):93-124.
    [71] Rai S K, Singh S K, Krishnaswami S. Chemical weathering in the plain and peninsular sub-basins of the Ganga: Impact on major ion chemistry and elemental fluxes. Geochimica etCosmochimica Acta,2010,74(8):2340-2355.
    [72] Hartmann J. Bicarbonate-fluxes and CO2-consumption by chemical weathering on theJapanese Archipelago—Application of a multi-lithological model framework. ChemicalGeology,2009,265(3-4):237-271.
    [73] Gao Q, Tao Z, Huang X, et al. Chemical weathering and CO2consumption in the XijiangRiver basin, South China. Geomorphology,2009,106:324-332.
    [74] Meybeck M, Ragu A. River discharges to the oceans: an assessment of suspended solids,major ions and nutrients[M]. UNEP,1997.
    [75] WRI, World Resources Institute,1998. World Resources1998–99,Freshwater Resources andWithdrawals1970–98, Data Table12.1,(05.12.2000).
    [76] Haefele S M, Wopereis M C S, Ndiaye M K, et al. A framework to improve fertilizerrecommendations for irrigated rice in West Africa. Agricultural Systems,2003,76(1):313-335.
    [77] Van der Zaag P, Juizo D, Vilanculos A, et al. Does the Limpopo River Basin have sufficientwater for massive irrigation development in the plains of Mozambique?. Physics andChemistry of the Earth, Parts A/B/C,2010,35(13):832-837.
    [78] Olsson O, Gassmann M, Wegerich K, et al. Identification of the effective water availabilityfrom streamflows in the Zerafshan river basin, Central Asia. Journal of hydrology,2010,390(3):190-197.
    [79] Haddeland I, Lettenmaier D P, Skaugen T. Effects of irrigation on the water and energybalances of the Colorado and Mekong river basins. Journal of Hydrology,2006,324(1):210-223.
    [80] Thoms M C, Sheldon F. Water resource development and hydrological change in a largedryland river: the Barwon–Darling River, Australia. Journal of Hydrology,2000,228(1):10-21.
    [81] Milliman J D, Farnsworth K L, Jones P D, et al. Climatic and anthropogenic factors affectingriver discharge to the global ocean,1951–2000. Global and planetary change,2008,62(3):187-194.
    [82] Yellow River Water Resources Bulletin, The Yellow River Conservancy Commission,2001-2010.
    [83]刘冬梅,张龙军.黄河干流有机碳的时空分布特征.中国海洋大学学报:自然科学版,2010(012):105-110.
    [84]刘立芳,张龙军,张向上.黄河利津水文站不同粒径悬浮颗粒物中有机碳含量的研究.中国海洋大学学报:自然科学版,2006,36(B05):126-130.
    [85]张龙军,徐雪梅,何会军.黄河不同粒径悬浮物中POC含量及输运特征研究.环境科学,2009,30(2):342-347.
    [86]苏征,张龙军,王晓亮.黄河河流水体二氧化碳分压及其影响因素分析.海洋科学,2005,29(4):41-44.
    [87]孙超,张龙军,江春波.黄河调水调沙与雨致洪水导致水体pCO2控制机制的差异.中国海洋大学学报(自然科学版),2007,37(4s):78-82.
    [88]张龙军,徐雪梅,温志超.秋季黄河pCO2控制因素及水-气界面通量.水科学进展,2009,20(2):227-235.
    [89] Wu L, Huh Y, Qin J, et al. Chemical weathering in the Upper Huang He (Yellow River)draining the eastern Qinghai-Tibet Plateau. Geochimica et Cosmochimica Acta,2005,69(22):5279-5294.
    [90] Wu W, Xu S, Yang J, et al. Silicate weathering and CO2consumption deduced from theseven Chinese rivers originating in the Qinghai-Tibet Plateau. Chemical Geology,2008,249(3-4):307-320.
    [91] Li J, Zhang J. Chemical weathering processes and atmospheric CO2consumption of HuangheRiver and Changjiang River basins. Chinese Geographical Science,2005,15(1):16-21.
    [92]张龙军,王宝森,薛明,等.黄河流域硅酸盐风化的讨论(2)——流域耗水量对化学风化消耗大气CO2的贡献.中国海洋大学学报:自然科学版,2011,41(4):109-115.
    [93] Zhang J, Huang W W, Liu M G, et al. Drainage basin weathering and major element transportof two large Chinese rivers (Huanghe and Changjiang). Journal of Geophysical Research:Oceans (1978–2012),1990,95(C8):13277-13288.
    [94] Yang D, Li C, Hu H, et al. Analysis of water resources variability in the Yellow River ofChina during the last half century using historical data. Water resources research,2004,40(6):W06502.1-W06502.12.
    [95] Chen J S, Wang F Y, He D W. Geochemistry of water quality of the Yellow River basin.Dixue Qianyuan/Earth Science Frontiers,2006,13(1):58-73.
    [96] Zhang J, Huang W W, Letolle R, et al. Major element chemistry of the Huanghe (YellowRiver), China-weathering processes and chemical fluxes. Journal of Hydrology,1995,168(1):173-203.
    [97] Yang, Z. S., B. X. Sun, and W. Q. Shen, Characteristics of fine-grained sediment of the shelfarea adjacent to the mouth of the Huanghe and sediment dispersion in that region (inChinese), Shandong Haiyang Xueyuan Xuebao,1985,15(2),121-129.
    [98] Zhang, J., Geochemical behavior of particulate trace metals in the Huanghe estuary (inChinese), M. D. thesis,155pp., Shandong Coll. Oceanogr., Qingdao, China,1985.
    [99]赵沛伦,申献辰,夏军等.泥沙对黄河水质影响及重点河段水污染控制.黄河水体出版社,郑州,1998, P9~11.
    [100]徐香兰,张科利,徐宪立,等.黄土高原地区土壤有机碳估算及其分布规律分析.水土保持学报,2003,17(3):13-15.
    [101]曾永年,冯兆东,曹广超,等.黄河源区高寒草地土壤有机碳储量及分布特征.地理学报,2004,59(4):497-504.
    [102]徐嵩龄,方精云.黄河水系对流域碳分布的影响.生态学报,1995,15(3):287-295.
    [103] Wu H, Guo Z, Peng C. Distribution and storage of soil organic carbon in China. Globalbiogeochemical cycles,2003,17(2):17.1-17.11.
    [104] Lishan Ran. Recent Riverine Carbon of the Yellow River: Fluxes, Outgassing and Burial.2013.
    [105] Dai S B, Yang S L, Li M. The sharp decrease in suspended sediment supply from China'srivers to the sea: anthropogenic and natural causes. Hydrological sciences journal,2009,54(1):135-146.
    [106] Chen J, He D, Cui S. The response of river water quality and quantity to the development ofirrigated agriculture in the last4decades in the Yellow River Basin, China. Water ResourcesResearch,2003,39(3):1047.
    [107]丁艳峰,潘少明.近50年黄河入海径流变化特征及影响因素分析.第四纪研究,2007,27(5):709-717.
    [108] Wang H, Bi N, Saito Y, et al. Recent changes in sediment delivery by the Huanghe (YellowRiver) to the sea: Causes and environmental implications in its estuary. Journal of Hydrology,2010,391(3):302-313.
    [109] Harris D, Horwáth W R, van Kessel C. Acid fumigation of soils to remove carbonates priorto total organic carbon or carbon-13isotopic analysis. Soil Science Society of AmericaJournal,2001,65(6):1853-1856.
    [110] Tamooh F, Meersche K, Meysman F, et al. Distribution and origin of suspended matter andorganic carbon pools in the Tana River Basin, Kenya. Biogeosciences,2012,9(8):2905-2920.
    [111] He B, Dai M, Zhai W, et al. Distribution, degradation and dynamics of dissolved organiccarbon and its major compound classes in the Pearl River estuary, China. Marine Chemistry,2010,119(1):52-64.
    [112] Zhang L, Xue M, Liu Q. Distribution and seasonal variation in the partial pressure of CO2during autumn and winter in Jiaozhou Bay, a region of high urbanization. Marine PollutionBulletin,2012,64(1):56-65.
    [113] Wang D. M. Study on the correlation of TOC with CODCr, BOD5and CODMnin water,Chemical Analysis and Meterage,2010,9(3):61-64.
    [114] Zhang Z. B., Chen, C. T. A., Liu L. S. and Wang Z. D. Marine Chemistry Principle andApplication. Ocean Press, Beijing.(1999).
    [115] Walling D E, Woodward J C. Use of a field-based water elutriation system for monitoringthe in situ particle size characteristics of fluvial suspended sediment. Water Research,1993,27(9):1413-1421.
    [116] Zhang L, Zhang J, Gong M. Size distributions of hydrocarbons in suspended particles fromthe Yellow River. Applied Geochemistry,2009,24(7):1168-1174.
    [117] Zhang L, Xue L, Song M, et al. Distribution of the surface partial pressure of CO2in thesouthern Yellow Sea and its controls. Continental Shelf Research,2010,30:293-304.
    [118]刘莉,杨桂朋,陈岩.秋季中国东海海水中溶解氨基酸的分布与组成.海洋环境科学,2013,32(004):510-517.
    [119]王毅梦,吴冠伟,杨桂朋,等.夏季黄,渤海溶解碳水化合物的浓度分布.海洋环境科学,2013,2:015.
    [120] Xin W. C., Lin X. H., Xu L. Determination of boron in marine sediment samples by ICP-AES. Modern instruments,2011,17,91-92.
    [121] Ittekkot V. Global trends in the nature of organic matter in river suspensions. Nature,1988,332:436-438.
    [122]文启忠.中国黄土地球化学[M].北京,科学出版社,1989.
    [123] Duan S, Bianchi T S. Seasonal changes in the abundance and composition of plant pigmentsin particulate organic carbon in the lower Mississippi and Pearl Rivers. Estuaries and Coasts,2006,29(3):427-442.
    [124] Yu H, Wu Y, Zhang J, et al. Impact of extreme drought and the Three Gorges Dam ontransport of particulate terrestrial organic carbon in the Changjiang (Yangtze) River. Journalof Geophysical Research: Earth Surface (2003–2012),2011,116(F4).
    [125] Kim B, Choi K, Kim C, et al. Effects of the summer monsoon on the distribution andloading of organic carbon in a deep reservoir, Lake Soyang, Korea. Water Research,2000,34(14):3495-3504.
    [126] Park H K, Byeon M S, Shin Y N, et al. Sources and spatial and temporal characteristics oforganic carbon in two large reservoirs with contrasting hydrologic characteristics. WaterResources Research,2009,45:11418.
    [127] Zeng, Y. N., Feng Z. D., Cao G. C., and Xue L.: The soil organic carbon storage and itsspatial distribution of alpine grassland in the source region of the Yellow River, ActaGeographica Sinica,2004,59,497-504.
    [128] Co teaux M M, Sarmiento L, Bottner P, et al. Decomposition of standard plant materialalong an altitudinal transect (65–3968m) in the tropical Andes. Soil Biology andBiochemistry,2002,34(1):69-78.
    [129] Finlay J C, Kendall C. Stable Isotope Tracing of Temporal and Spatial Variability inOrganic Matter Sources to Freshwater Ecosystems. Stable Isotopes in Ecology andEnvironmental Science, Second Edition,283-333.
    [130] Wang G, Qian J, Cheng G, et al. Eco-environmental degradation and causal analysis in thesource region of the Yellow River. Environmental Geology,2001,40(7):884-890.
    [131] Zhang, A. P., Yang, S. Q., Zhang, Q. Z., Yang, S. J., and Yang, Z. L.: Influencing factorsand countermeasures of irrigation return flow pollution in Ningxia Yellow River waterirrigation district, Chinese Journal of Eco-Agriculture,2008,16(4),1037-1042.
    [132] Luo Y. L., Wang Y. F., Zhang H. M., and Huang F. G.: Impacts of Ningxia–Inner Mongoliairrigation area diversion on the runoff of the Yellow River mainstream, Yellow River,2010,32:81-83,86.
    [133] Degens, E. T., Kempe, S., and Richey, J. E.: SCOPE42: Biogeochemistry of major worldrivers, UK: Wiley,1991.
    [134] Dagg M, Benner R, Lohrenz S, et al. Transformation of dissolved and particulate materialson continental shelves influenced by large rivers: plume processes. Continental ShelfResearch,2004,24(7):833-858.
    [135] Abril G, Nogueira M, Etcheber H, et al. Behaviour of organic carbon in nine contrastingEuropean estuaries. Estuarine, Coastal and Shelf Science,2002,54(2):241-262.
    [136] Zhang S, Gan W B, Ittekkot V. Organic matter in large turbid rivers: the Huanghe and itsestuary. Marine Chemistry,1992,38(1):53-68.
    [137] Diao G. Y., Wen Q Z. The organic matter in loess. Scientia Geographica Sinica8,226-231,1988.
    [138] Chen J. S., Zhang Y., Yu T. and He D. W. A study on dissolution and bio-degradation oforganic matter in sediments from the Yellow River. Acta Scientiae Circumstantiae,2004,24,1-5.
    [139] Zhang S, Gan W B, Ittekkot V. Organic matter in large turbid rivers: the Huanghe and itsestuary. Marine Chemistry,1992,38(1):53-68.
    [140] Asselman N E M. Suspended sediment dynamics in a large drainage basin: the River Rhine.Hydrological Processes,1999,13(10):1437-1450.
    [141] Gao Q, Tao Z, Shen C, et al. Riverine organic carbon in the Xijiang River (South China):seasonal variation in content and flux budget. Environmental Geology,2002,41(7):826-832.
    [142]徐国宾,张金良,练继建.黄河调水调沙对下游河道的影响分析.水科学进展,2005,16(4):518-523.
    [143]王开荣.黄河调水调沙对河口及其三角洲的影响和评价.泥沙研究,2005,6:29-33.
    [144]朱国清,赵瑞亮,胡振平,等.小浪底水库调水调沙对黄河中游鱼类及生态敏感区的影响.水生态学杂志,2012,33(5):7-12.
    [145] Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, andpeatlands. Geology,1998,26(6):535-538.
    [146] Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: integrating inlandwaters into the terrestrial carbon budget. Ecosystems,2007,10(1):172-185.
    [147] Chen J, He D, Zhang Y. Is COD a suitable parameter to evaluate the water pollution in theyellow river?. Environmental Chemistry–Beijing,2003,22(6):614-617.
    [148] Teodoru C, Wehrli B. Retention of sediments and nutrients in the Iron Gate I Reservoir onthe Danube River. Biogeochemistry,2005,76(3):539-565.
    [149] Galy A, France-Lanord C. Weathering processes in the Ganges–Brahmaputra basin and theriverine alkalinity budget. Chemical Geology,1999,159(1):31-60.
    [150] Shin W J, Ryu J S, Park Y, et al. Chemical weathering and associated CO2consumption insix major river basins, South Korea. Geomorphology,2011,129(3-4):334-341.
    [151] Wu L, Huh Y, Qin J, et al. Chemical weathering in the Upper Huang He (Yellow River)draining the eastern Qinghai-Tibet Plateau. Geochimica et Cosmochimica Acta,2005,69(22):5279-5294.
    [152] Soumya B S, Sekhar M, Riotte J, et al. Inverse models to analyze the spatiotemporalvariations of chemical weathering fluxes in a granito-gneissic watershed: Mule Hole, SouthIndia. Geoderma,2011,165(1):12-24.
    [153] Chen T., Chen S., Xu H., Huang S. and Chen Y. Simulation study on rations of nitrogen,phosphorus and potassium fertilizers required in the crop production in China. ActaGeographica Sinica,1998,53(1):32-41.
    [154] Noh H, Huh Y, Qin J, et al. Chemical weathering in the Three Rivers region of EasternTibet. Geochimica et Cosmochimica Acta,2009,73(7):1857-1877.
    [155] Millot R, Gaillardet J, DupréB, et al. Northern latitude chemical weathering rates: cluesfrom the Mackenzie River Basin, Canada. Geochimica et Cosmochimica Acta,2003,67(7):1305-1329.
    [156] Reeder S W, Hitchon B, Levinson A A. Hydrogeochemistry of the surface waters of theMackenzie River drainage basin, Canada—I. Factors controlling inorganic composition.Geochimica et Cosmochimica Acta,1972,36(8):825-865.
    [157] Meybeck M. Composition chimique des ruisseaux non pollués de France. Sci. Geol. Bull,1986,39(1):3-77.
    [158] Krishnaswami S, Singh S K, Dalai T K. Silicate weathering in the Himalaya: Role incontributing to major ions and radiogenic Sr to the Bay of Bengal. Ocean Science, Trendsand Future Directions,1999:23-51.
    [159] Huh Y, Tsoi M Y, Zaitsev A, et al. The fluvial geochemistry of the rivers of Eastern Siberia:I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton.Geochimica et cosmochimica acta,1998,62(10):1657-1676.
    [160] Dalai T K, Krishnaswami S, Sarin M M. Major ion chemistry in the headwaters of theYamuna river system:: Chemical weathering, its temperature dependence and CO2consumption in the Himalaya. Geochimica et Cosmochimica Acta,2002,66(19):3397-3416.
    [161] Han G, Liu C Q. Water geochemistry controlled by carbonate dissolution: a study of theriver waters draining karst-dominated terrain, Guizhou Province, China. Chemical Geology,2004,204(1):1-21.
    [162] Li J, Zhang J. Chemical weathering processes and atmospheric CO2consumption ofHuanghe River and Changjiang River basins. Chinese Geographical Science,2005,15(1):16-21.
    [163] Sarin M M, Krishnaswami S. Major ion chemistry of the Ganga-Brahmaputra river systems,India. Nature,1984,312:538-541.
    [164] Borges, A. V., Kone, Y. M., Schiettecatte, L.-S., Delille, B., Frankignoulle, M.,Bouillon, S.,2005. Primary results on the biogeochemistry in the Mekong estuary and delta (Vietnam),poster on European Geosciences Union2nd General Assembly, Vienna, Austria,24–29April2005).
    [165] Wu W, Yang J, Xu S, et al. Geochemistry of the headwaters of the Yangtze River, TongtianHe and Jinsha Jiang: Silicate weathering and CO2consumption. Applied geochemistry,2008,23(12):3712-3727.
    [166]Zhang, L., Xue, M., Wang, M., Cai, W. J., Wang, L.,&Yu, Z.(2014). The spatiotemporaldistribution of dissolved inorganic and organic carbon in the main stem of the Changjiang(Yangtze) River and the effect of the Three Gorges Reservoir. Journal of GeophysicalResearch: Biogeosciences.
    [167] Dürr H H, Meybeck M, Dürr S H. Lithologic composition of the Earth's continental surfacesderived from a new digital map emphasizing riverine material transfer. GlobalBiogeochemical Cycles,2005,19(4).
    [168] Oki T, Kanae S. Global hydrological cycles and world water resources. science,2006,313(5790):1068-1072.
    [169] Thenkabail P S, Schull M, Turral H. Ganges and Indus river basin land use/land cover(LULC) and irrigated area mapping using continuous streams of MODIS data. RemoteSensing of Environment,2005,95(3):317-341.
    [170] Eastham J, M Kirby M M, Thomas M. BFP07. Water-use accounts in CPWF basins: Simplewater-use accounting of the Indus Basin.2010.
    [171] Changjiang&Southwest Rivers Water Resources Bulletin,2006. Changjiang WaterResources Commission of MWR.
    [172] Pearl River Water Resources Bulletin,2005~2006. Pearl River Conservancy Commissionof MWR.
    [173] Siebert S, Burke J, Faures J M, et al. Groundwater use for irrigation–a global inventory.Hydrol. Earth Syst. Sci,2010,14:1863-1880.
    [174] Mohan S, Vijayalakshmi D P. Prediction of irrigation return flows through a hierarchicalmodeling approach. Agricultural water management,2009,96(2):233-246.
    [175]刘艳,王海江.河套灌区节水灌溉措施的新思考.内蒙古水利,2007(3):33-34.
    [176] Hao F H, Zeng A Y, Ma G F, et al. Study on salt losses in the period of fall irrigation in theagricultural irrigation area of Inner Mongolia. Acta Scientiae Circumstantiae,2008,28(5):832-837.
    [177] Zhang, L.J. and Wen, Z.C. Discussion on silicate weathering in the Huanghe drainage basin.Periodical of Ocean University of China,2009,39(5):988–994.
    [178]韩清.塔里木河流域农垦后水质的变化及其控制途径.地理学报,1980,35(3):219-231.
    [179]魏忠义.塔里木盆地地表水化学特征及在人类活动影响下的变化.干旱区资源与环境,1994,8(2):23-30.
    [180]李新,樊自立.中国干旱水量转化特征及其对环境的影响分析:以新疆阿拉尔灌区为例.干旱区地理,1999,22(2):1-7.
    [181]王玲,孙东坡,缑元有等著.黄河水沙变化对河流系统的影响.郑州:黄河水利出版社,1998,24~54.
    [182]曹惠提,罗玉丽.宁蒙灌区土壤盐碱化综述.水利科技与经济,2010,16(3):267-268.
    [183]刘秉旺,张茂盛,陈龙生,等.内蒙古河套灌区土壤盐渍化成因研究.西部资源,2012(3):172-173.
    [184]郝芳华,欧阳威,岳勇,等.内蒙古农业灌区水循环特征及对土壤水运移影响的分析.环境科学学报,2008,28(5):825-831.
    [185]林学钰,廖资生,钱云平,等.基流分割法在黄河流域地下水研究中的应用.吉林大学学报:地球科学版,2009,39(6):959-967.
    [186]张义强,白巧燕.内蒙古河套灌区水盐运移状况分析研究——中日合作项目最新研究成果.中国水利学会2006学术年会论文集(农村水利与社会主义新农村建设),2006.
    [187]樊银军,王怀军,唐宁生.宁夏黄河引水灌区盐渍化问题及解决对策.水利科技与经济,2010(2):185-187.
    [188]周垂田,齐春三,董温荣,等.引黄灌溉对土壤含盐量的影响分析与对策.山东水利,2006(1):34-35.
    [189]宰松梅,仵峰,丁铁山,等.引黄灌区土壤次生盐碱化防治对策研究.人民黄河,2010,32(3):66-68.
    [190]吴凯凌,张明泉.秦王川灌区15年来地下水变化特征分析.节水灌溉,,2011,12:020.
    [191]马耀光,李书琴等.灌溉条件下黄土层的水盐效应研究.西北农林科技大学学报(自然科学版),2003,31(5).
    [192] Chen J, Wang F, Meybeck M, et al. Spatial and temporal analysis of water chemistryrecords (1958-2000) in the Huanghe (Yellow River) basin. Global Biogeochemical Cycles,2005,19:3016.
    [193]徐嵩龄,方精云.黄河水系对流域碳分布的影响.生态学报,1995,15(3):287-295.
    [194]杨守业,李从先.长江与黄河沉积物元素组成及地质背景.海洋地质与第四纪地质.1999,19(2):19-26.
    [195]胡国华,赵沛伦,肖翔群.黄河泥沙特性及对水环境的影响.水利水电技术,2004,35(8):17-20.
    [196] Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2solutions in turbulent flow: The role of the diffusion boundary layer and the slow reactionH+2O+CO2H+HCO-3. Geochimica et Cosmochimica Acta,1997,61(14):2879-2889.
    [197] Blum J D, Gazis C A, Jacobson A D, et al. Carbonate versus silicate weathering in theRaikhot watershed within the High Himalayan Crystalline Series. Geology,1998,26(5):411-414.
    [198] Kump L R, Brantley S L, Arthur M A. Chemical weathering, atmospheric CO2, and climate.Annual Review of Earth and Planetary Sciences,2000,28(1):611-667.
    [199] Jacobson A D, Blum J D, Chamberlain C P, et al. Ca/Sr and Sr isotope systematics of aHimalayan glacial chronosequence: carbonate versus silicate weathering rates as a function oflandscape surface age. Geochimica et Cosmochimica Acta,2002,66(1):13-27.
    [200] Biddanda B, Opsahl S, Benner R. Plankton respiration and carbon flux throughbacterioplankton on the Louisiana shelf. Limnology and oceanography.1994:1259-1275.
    [201] Chen C T A, Lin C M, Huang B T, et al. Stoichiometry of carbon, hydrogen, nitrogen, sulfurand oxygen in the particulate matter of the western North Pacific marginal seas. MarineChemistry.1996,54(1-2):179-190.
    [202] Taylor G T, Way J, Scranton M I. Planktonic carbon cycling and transport in surface watersof the highly urbanized Hudson River estuary. Limnology and oceanography.2003,48(5):1779-1795.
    [203] Zhai W, Dai M, Cai W J, et al. High partial pressure of CO2and its maintaining mechanismin a subtropical estuary: the Pearl River estuary, China. Marine Chemistry.2005,93(1):21-32.
    [204] Wanninkhof R. Relationship between wind speed and gas exchange. J. Geophys. Res.1992,97(25):7373-7382.
    [205] Weiss R F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. MarineChemistry.1974,2(3):203-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700