用户名: 密码: 验证码:
天然及靶向设计小分子化合物抗非小细胞肺癌活性和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌已成为发病率和死亡率增长最快,严重危害人类健康和生命的恶性肿瘤之一。我国肺癌病死率在城市已居肿瘤死亡首位,非小细胞肺癌(Non-small cell lung cancer,NSCLC)占肺癌的85%,预后较差,致死率高,多数患者确诊时已属晚期。在不同疾病发展阶段需采取不同的治疗策略,早期的局灶性疾病往往用手术治疗而转移性肺癌常采取姑息疗法。药物治疗是控制病程的重要环节,现有药物在有效性方面虽有明显突破,但仍存在毒副反应和多药耐药性问题亟待克服。如何选择高效低毒而不易耐药的药物成为提高疗效的关键。肿瘤耐药和药物毒性依然是临床上肿瘤化疗的难题,这一问题的解决必将对提高肿瘤患者治疗效果、延长生存有重大影响。
     小分子化合物(small molecular compound)一般由几个或几十个原子组成,药物小分子分子量通常在500以下。按照抗NSCLC的作用原理和来源分类,可包括烷化剂、抗代谢药物、抗肿瘤天然来源小分子、抗肿瘤金属配合物,及酪氨酸激酶抑制剂等等。
     合成的化学类抗NSCLC药物多数以天然抗肿瘤活性成分为先导化合物研究而来,因此不断发现具有抗肿瘤活性化合物,可为以天然抗癌活性成分为基础,大规模快速筛选先导化合物提供依据。运用计算机模拟和仿生设计对天然产物进行结构修饰改造,是当前及今后一段时期内抗肿瘤药物研究的热点。目前临床常用的抗NSCLC天然来源化合物,主要包括鬼臼毒素、紫杉醇、喜树碱、长春新碱、白藜芦醇、茶多酚等。
     小分子酪氨酸激酶抑制剂等靶向治疗药物是从分子机理和先导化合物结构出发设计而成,因此,与传统药物相比,对肿瘤细胞的攻击有更好的选择性,具有不良反应相对小,疗效相对高的特点。采用基于结构的靶向设计策略,在设计化合物时引入关于靶标的有价值信息,将会提高活性化合物的命中率,同时降低因合成与筛选大量化合物消耗的成本。
     相对于传统的药物随机合成研究方法,组合化学提供了结构多样性化合物库构建和丰富的化合物库内化合物样品来源问题。靶向针对表皮生长因子受体(Epidermal growth factor receptor, EGFR)设计喹唑啉化合物库,构建组合化学小分子库,并进行抗NSCLC活性筛选,可望高效快速发现酪氨酸激酶抑制活性化合物,寻找和确认作用多靶点的候选化合物。
     本论文对若干来源于植物及靶向设计组合化学库内小分子,抗NSCLC活性和机制进行研究,以期找到潜在的更具特异性且效果更好的活性小分子。
     第一部分补骨脂酚对人非小细胞肺癌A549细胞株增殖抑制作用及机制研究
     天然来源小分子白藜芦醇(Resveratrol,3,4,5-trihydroxystilbene)是一种很有前景的抗癌药物。白黎芦醇能抑制人类NSCLC细胞增殖,促进细胞凋亡及坏死。补骨脂酚(Bakuchiol)和白藜芦醇的结构相似,两个化合物都具有“(4-羟苯基)-乙烯基(4-hydroxystyryl moiety) ",且均具有抑制DNA聚合酶的作用,该作用可能与两者结构的相似性有关,因此补骨脂酚也极有可能具有抗NSCLC活性。本部分通过对NSCLC A549细胞株增殖、周期变化、胞内活性氧生成、线粒体膜电位(mitochondrial membrane potential,Δψm)变化、细胞凋亡/坏死情况、及相关蛋白表达水平变化等一系列研究,旨在探索补骨脂酚抑制A549增殖活性及其相关机制,并与白藜芦醇进行平行比较。
     本研究采用MTT法检测补骨脂酚和白藜芦醇对A549细胞体外细胞毒性;用H2-DCFDA染色-流式细胞术(Flow cytometry, FCM)检测细胞内活性氧生成;用JC-1染色-FCM检测线粒体△Ψm变化。用Annexin V/PI双染-FCM、AO/EB染色检测细胞凋亡情况。用PI染色-FCM检测细胞周期变化。用Western-Blotting法检测相关蛋白表达水平变化。
     实验结果显示,补骨脂酚具有抑制A549细胞增殖活性,作用强于白藜芦醇,补骨脂酚和白藜芦醇作用72 h的ICso分别为9.58±1.12μmol/l和33.02±2.35μmol/l。补骨脂酚作用1h后细胞内ROS显著增加;引起线粒体△Ψm下降,该作用呈量效与时效依赖性,且强于白藜芦醇。补骨脂酚处理36h引起细胞凋亡,而白藜芦醇则以引起细胞坏死为主。补骨脂酚处理48 h后,采用AO/EB进行染色并用荧光显微镜观察,发现出现部分凋亡细胞,核固缩且呈现明亮的红色,呈现明显的量效关系,该作用强于白藜芦醇。此外,周期分布实验表明,补骨脂酚处理24 h引起A549细胞S期阻滞。Western-Blotting结果表明其引起细胞p53、Bax蛋白表达上调,Bcl-2蛋白表达水平下调,出现Caspase 3裂解片段。
     本实验结果提示,(1)补骨脂酚具有抑制人非小细胞肺癌A549细胞株增殖活性,该作用与经由线粒体依赖通路诱导细胞凋亡,并使细胞周期阻滞相关。(2)补骨脂酚抑制增殖作用明显强于白藜芦醇;其中呈现其特有的诱导ROS-线粒体依赖通路凋亡,可能是两者作用强弱差异的主要机制。
     第二部分8-芳胺基-3H-咪唑[4,5-g]喹唑啉类衍生物B-2对人非小细胞肺癌A549细胞株体内外抗肿瘤活性及相关机制
     喹唑啉(quinazoline)杂环是医药化合物中非常重要的核心结构,喹唑啉类衍生物具有重要的生理活性。靶向设计2,3-二取代-8-芳胺基-3H-咪唑[4,5-g]喹唑啉类化合物,通过组合化学构建小分子化合物库,发现新型EGFR酪氨酸磷酸激酶抑制剂是一种崭新的方向。本课题组前期从该化合物库大量具有分子结构多样性化合物中,筛选得到若干抗NSCLC活性化合物[23,24]。其中2-Isopropyl-3-butyl-8-(4-fluorophenylamino)-3H-imidazo [4,5-g] quinazoline (B-2)对人非小细胞肺癌A549细胞株具有最佳增殖抑制活性。本研究第二部分考察了B-2对该细胞株体内外抗肿瘤活性和相关作用机制。
     本实验首先采用MTT法检测B-2体外对肿瘤细胞和非肿瘤细胞增殖抑制活性。为阐明上述体外抑制增殖作用是否可在体内重现,本研究采用中空纤维内置肿瘤细胞模型,植入实体瘤A549和白血病K562两种不同的细胞株(除了考察体内药物是否分布到达靶部位外,尚评价对A549的选择性抑制作用),给裸鼠口服25、50、100mg/kg的B-2和100mg/kg Iressa(为临床推荐剂量的2.67倍,按体表面积折算),初步探索B-2对裸鼠皮下埋植中空管中细胞增殖抑制活性。之后采用裸小鼠皮下移植瘤模型,评价B-2对荷A549细胞裸小鼠实验治疗作用。并采用计算机辅助受体一配体对接实验、体外激酶活性测试B-2对EGFR酪氨酸激酶活性影响。最后对B-2作用机制进行研究。用PI染色-FCM检测B-2对A549细胞周期分布的影响。用JC-1染色-FCM检测该化合物作用后线粒体ΔΨm变化情况。用Annexin V/PI双染-FCM检测B-2诱导的细胞凋亡。用AO/EB染色观察细胞核损伤情况。用Western-Blotting法检测A549细胞周期和凋亡相关蛋白表达变化。
     实验结果显示,B-2化合物对A549细胞具有较强体外增殖抑制活性,48 h IC50为4.30±0.33μmol/L。而对非肿瘤来源的细胞EA.hy926和MEF则未呈现明显的抑制增殖作用。中空纤维模型实验中,B-2裸小鼠经口给药,结果发现,化合物B-2特异性地抑制了管内A549细胞的生长,并体现了良好的量效关系,其作用强于Iressa。25、50、100 mg/kg B-2对A549细胞抑制率分别为38.45±2.94%、60.43±1.86%、65.83±2.46%,而100mg/kg Iressa对A549细胞抑制率为47.05±1.15%,但对体重影响不明显。荷A549细胞裸小鼠模型实验中,给药三周后,各组均无一动物死亡,与阴性对照组比较,B-2 50、100、150 mg/kg以及Iressa 100 mg/kg组的小鼠体重无显著变化。B-2 50、100、150 mg/kg组抑瘤率分别为48.69%、85.50%和86.45%,均大于40%,Iressa 100 mg/kg组抑瘤率为67.52%,也大于40%。中剂量组B-2100mg/kg抑瘤作用就显著优于Iressa100 mg/kg。
     B-2对EGFR酪氨酸激酶活性抑制结果表明,B-2与Iressa的EGFRIC50分别为0.067、0.042μmol/L。计算机辅助进行EGFR蛋白-配基对接实验结果表明,B-2与EGFR具有较好匹配能力,但对接得分弱于Iressa。这与B-2对EGFR酪氨酸激酶活性抑制能力弱于Iressa的结果相吻合。机制研究结果表明,B-2处理24 h引起细胞G1期阻滞,后续Western-Blotting结果表明B-2诱导的G1期阻滞与下调Cyclin D1、CDK4,上调p53、p27Kip1、Rb的蛋白表达水平相关。B-2处理6h即引起A549线粒体△Ψm下降,具有量效依赖关系,提示细胞启动了凋亡程序。B-2处理36h用Annexin V/PI双染-FCM检测1、5、25μmol/L B-2细胞凋亡率分别为6.79±1.11%、14.58±3.53%、50.25±11.34%。B-2处理48 h采用AO/EB进行染色并用荧光显微镜观察,发现出现凋亡细胞,核固缩且呈现明亮的红色,呈现明显的量效关系。后续Western-Blotting结果表明B-2上调Bax/Bcl-2比值,引起细胞色素C大量释放和caspase 9/3激活。提示B-2介导了A549线粒体ΔΨm下降触发的线粒体功能丧失、Bax/Bcl-2比值变化、线粒体细胞色素C释放、caspase活化,最终引起凋亡。
     本研究结果提示,喹唑啉杂环化合物B-2具有体外选择性抑制人非小细胞肺癌A549增殖作用,作用强于市售同类产品Iressa,但对非肿瘤细胞增殖抑制作用不明显。B-2裸小鼠经口给药,对中空纤维管内A549具有选择性抑制增殖作用;对荷A549细胞裸小鼠具有显著实验治疗作用,作用强于Iressa,但对体重影响不明显。B-2的抗肿瘤作用并非单纯是通过阻断EGFR酪氨酸激酶活性,尚与诱导细胞周期G1期阻滞、促凋亡相关。
     全文结论:
     1.补骨脂酚具有抑制人非小细胞肺癌A549细胞株增殖活性,该作用与经由线粒体依赖通路诱导细胞凋亡,并使细胞周期阻滞相关。补骨脂酚抑制增殖作用明显强于白藜芦醇;其中呈现其特有的诱导ROS-线粒体依赖通路凋亡,可能是两者作用强弱差异的主要机制。
     2.喹唑啉杂环化合物B-2具有体外选择性抑制人非小细胞肺癌A549增殖作用,作用强于市售同类产品Iressa,但对非肿瘤细胞增殖抑制作用不明显。B-2裸小鼠经口给药,对中空纤维管内A549具有选择性抑制增殖作用;对荷A549细胞裸小鼠具有显著实验治疗作用,作用强于Iressa,但对体重影响不明显。B-2的抗肿瘤作用并非单纯是通过阻断EGFR酪氨酸激酶活性,尚与诱导细胞周期G1期阻滞、促凋亡相关。
The morbidity and mortality of the lung cancer has become the fastest-growing in a variety of cancers, which seriously harm to human's health and life. China's mortality rate of lung cancer in the city now ranks first in cancer mortality. Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer patients, associated with poor prognosis and high death rate.The majority of patients belonged to the later period of caancer process when diagnosed. At different stages of development of the disease should be taken to a different treatment strategies.Surgical treatment aimed at early-stage of focal disease, while palliative treatment targeted of metastatic lung cancer. Drug therapy is one of the pillars of its treatment. The key point in enhancing the effect of treatment may be how to choose a relatively sensitive drug to avoid drug resistance.Tumor resistance and drug toxicity remains a problem in clinical cancer chemotherapy. Resolution of this problem will certainly improve the treatment of cancer patients and extend the life of patients.
     Small molecular compounds are usually formed by several or dozens of atoms, whose molecular weight are in the dozens to hundreds (general molecular weight below 500). In accordance with the role of anti-NSCLC principle and source categories, small molecular compounds may include alkylating agents, anti-metabolism drugs, natural source of anti-tumor small molecules, anti-tumor metal complexes, as well as small molecular tyrosine kinase inhibitors and so on.
     The research and development of most synthetic chemical anti-NSCLC drugs are based on natural active ingredients as the leading compound. Based on natural active anti-cancer ingredients, large-scale, rapid screening of leading compounds and using computer simulation and bionic design to carry out structural modification of the transformation of natural products will be a hotspot of antitumor drugs during the current and future period of time. Anti-NSCLC chemotherapy herbal and complementary medicine which are commonly used in the current clinical treatment include podophyllotoxin, paclitaxel, camptothecin, vincristine, resveratrol, polyphenols and so on.
     Small molecular tyrosine kinase inhibitors which used in targeted therapy are developed from the molecular mechanism. Therefore, compared with traditional drugs, they have better selectivity and fewer side effects.Using structure-based targeted design strategy to design compounds will increase the hit rate of active compounds and reduce the cost of the synthesis and screening of a large number of compounds。
     Opposed to the traditional drug discovery methods based on natural leading compounds, emerging combinatorial chemistry efficiently resolved the problem of the origins of the samples. Designing dioxane quinazoline compound libraries as a new EGFR tyrosine kinase inhibitor libraries, using combinatorial chemistry and anti-NSCLC pharmacological screening, will comply rapid and efficient discovery of active anti-NSCLC compounds.
     In this paper, anticancer activity and mechanism of several small molecules (from plants and target-designed combinatorial chemistry libraries) on non-small cell lung cancer A549 was studied, hoping to find more potential and specific small molecules.
     1 Anti-tumor effects of bakuchiol and mechanism on human lung adenocarcinoma A549 cell line
     Resveratrol (3,5,4-trihydroxy-trans-stilbene), a phytoalexin found in grapes, berries, and peanuts, is one of the most promising agents for cancer prevention.In view of the anti-NSCLC potential of resveratrol,it is expected to discover novel chemotherapeutic agents with resveratrol-like structure. Both of bakuchiol and resveratrol have a "4-hydroxystyryl moiety", which suggests that bakuchiol may also play an anti-tumor activity.Therefore, the antitumor activity of bakuchiol, an analogue of resveratrol, was explored on human lung adenocarcinoma cells.MTT assay revealed that IC50 of bakuchiol at 72 h was 9.58±1.12μmol/1,much lower than that of resveratrol (33.02±2.35μmol/1). Bakuchiol but not resveratrol elevated intracellular reactive oxygen species (ROS). Bakuchiol reduced mitochondrial membrane potential (Δψm) of cells in a concentration-and time-dependent manner, showing more potent effect than that of resveratrol.More apoptotic cells were induced by bakuchiol, compared with resveratrol. Subsequently, S-phase arrest, caspase 9/3 activaton, p53 and Bax up-regulation, as well as Bcl-2 down-regulation were observed in bakuchiol-treated A549 cells. The results point toward that S phase-related cell cycle regulation, more importantly ROS-related apoptosis might contribute to the anticancer properties of bakuchiol, which will strongly support the further development of bakuchiol against NSCLC.
     These results suggested that bakuchiol has selective cytotoxic activity on human lung adenocarcinoma A549 cell line but has hardly any cytotoxicity in other nontumorous cell lines. Bakuchiol showed more potent anti-tumor effect on A549 cells than that of resveratrol. S phase-related cell cycle regulation, more importantly ROS-related apoptosis might contribute to the anticancer properties of bakuchiol.
     2 Anti-tumor effects and mechanism of 2,3-disubstituted 8-arylamino-3H-imidazo [4,5-g] quinazoline derivative B-2 on human lung adenocarcinoma A549 cell line in vitro and in vivo
     Quinazoline heterocyclic compounds is a very important medicine core structure. Quinazoline derivatives have important biological activities. Chemists targeting designed 2,3-disubstituted 8-arylamino-3H-imidazo [4,5-g] quinazolines compound libraries as a new EGFR tyrosine kinase inhibitor libraries and constructed small molecule combinatorial chemistry library. Previously we screened the anti-cancer activity of these compounds on different cancer cell lines. Among them, B-2 (2-Isopropyl-3-butyl-8-(4-fluorophenylamino)-3H-imidazo [4,5-g] quinazoline possessed high anti-NSCLC activity.In this part, the antitumor effect of B-2 (compared with Iressa) against human lung adenocarcinoma A549 cell line in vitro and in vivo were investigated.
     Cytotoxicity assays revealed that B-2 was a potential antitumor compound with IC50 value of (4.30±0.30)μmol/L at 48 h in human lung adenocarcinoma A549 cell line. The MTT assay and morphological analysis revealed a remarkable difference between B-2-treated A549 and nontumorous cells.
     In hollow fiber, containing two different tumor cell lines, B-2 selectively inhibited A549 cells and was demonstrated strong antitumor activity with a dose-dependent effect in vivo. The cell inhibition rates against A549 cells in hollow fiber were (38.45±2.94)%, (60.43±1.86)% and (65.83±2.46)% respectively, at the doses of B-225,50 and 100 mg/kg; while cell inhibition rate of 100 mg/kg Iressa was (47.05±1.15)%.
     In the study with A549 xenograft models, B-2 was administrated orally once a day for five 5 days/wk for 3 weeks. The inhibition rates were 48.69%,85.50% and 86.45%, respectively, at the doses of B-2 50,100 and 150 mg/kg. The treatment effect of B-2 is better than Iressa at the same dose (100 mg/kg). No significant effect on body weight of nude mice was observed after B-2 treatment.
     However, B-2 exhibited weaker epithelial growth factor receptor (EGFR) ligand-binding affinity compared with its parent compound Iressa according to the docking results and EGFR PTK assay. Administration of B-2 for 24 h caused a concentration dependent increase in the proportion of cells in the G1 phase in comparison with control cultures. B-2 increased the protein levels of p53, p27K1P1 and pRb while decreased the expression of cyclin-dependent kinase 4 (CDK4) and cyclin Dl.
     After 6 h treatment,1~25μmol/L B-2 lowered mitochondrial transmembrane potential presented as green fluorescence in a dose-dependent manner, indicating a dose-dependent decrease of the mitochondrial transmembrane, proved that B-2-induced early stage depolarization of the mitochondrial transmembrane followed apoptosis. After incubation with B-2 for 36 h, demonstration of apoptosis was shown by annexin V and propidium Iodide staining for apoptosis. The apoptotic rates were (6.79±1.11)%, (14.58±3.53)% and (50.25±11.34)%, respectively, at the concentrations of B-2 1,5 and 25μmol/L. Then after 48 h treatment of B-2, AO-EB staining showed a number of cells exhibited a flattened polygonal morphology, and partial cells showed morphological features of apoptosis.
     In addition, B-2-induced death of A549 cells were identified by characteristics of apoptosis including Cytochrome C release and huge increase of Bax/Bcl-2 ratio. These events were accompanied by activation of caspase-3 and-9.
     These results suggested that B-2 demonstrated strong antitumor activity with a dose-dependent effect in vitro and in vivo on human lung adenocarcinoma A549 cell line. Inhibition of cell cycle progression and induction of apoptotic cell death contributed to the anti-NSCLC effects of B-2.
     Summary
     1. Bakuchiol has selective cytotoxic activity on human lung adenocarcinoma A549 cell line but has hardly any cytotoxicity in other nontumorous cell lines. Bakuchiol showed more potent anti-tumor effect on A549 cells than that of resveratrol. S phase-related cell cycle regulation, more importantly ROS-related apoptosis might contribute to the anticancer properties of bakuchiol.
     2. B-2 demonstrated strong antitumor activity with a dose-dependent effect in vitro and in vivo on human lung adenocarcinoma A549 cell line. Inhibition of cell cycle progression and induction of apoptotic cell death contributed to the anti-NSCLC effects of B-2.
引文
1. Zhang, Q., et al., Advances in preclinical small molecules for the treatment of NSCLC. Expert. Opin. Ther.Pat.,2009.19(6):p.731-51.
    2. Motadi, L.R., et al., Molecular genetics and mechanisms of apoptosis in carcinomas of the lung and pleura:therapeutic targets. Int. Immunopharmacol.,2007.7(14): p.1934-47.
    3. Alvarez, M., et al., New targets for non-small-cell lung cancer therapy. Expert. Rev. Anticancer Ther.,2007.7(10):p.1423-37.
    4. Felip, E., M. Santarpia, and R. Rosell, Emerging drugs for non-small-cell lung cancer. Expert. Opin. Emerg. Drugs,2007.12(3):p.449-60.
    5. Ramalingam, S. and C. Belani, Systemic chemotherapy for advanced non-small cell lung cancer:recent advances and future directions. Oncologist,2008.13 Suppl 1:p.5-13.
    6. Thatcher, N., First-and second-line treatment of advanced metastatic non-small-cell lung cancer:a global view. BMC Proc.,2008.2 Suppl 2:p. S3.
    7. Bonomi, P.D., Implications of key trials in advanced nonsmall cell lung cancer. Cancer.116(5):p.1155-64.
    8. Goffin, J., et al., First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer:a systematic review. J. Thorac. Oncol..5(2):p.260-74.
    9. Jhoti, H., Fragment-based drug discovery using rational design. Ernst. Schering. Found. Symp. Proc.,2007(3):p.169-85.
    10. Reade, C.A. and A.K. Ganti, EGFR targeted therapy in non-small cell lung cancer: potential role of cetuximab. Biologics,2009.3:p.215-24.
    11. Pennell, N.A. and T. Mekhail, Investigational agents in the management of non-small cell lung cancer. Curr.Oncol. Rep.,2009.11(4):p.275-84.
    12. Linardou, H., et al., Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nat. Rev. Clin. Oncol.,2009.6(6):p.352-66.
    13. Kennedy, J.P., et al., Application of combinatorial chemistry science on modern drug discovery. J. Comb. Chem.,2008.10(3):p.345-54.
    14. Marechal, E., Chemogenomics:a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence. Comb. Chem. High Throughput Screen,2008.11(8): p.583-6.
    15. Diller, D.J., The synergy between combinatorial chemistry and high-throughput screening. Curr. Opin. Drug Discov. Devel.,2008.11(3):p.346-55.
    16. She, Q.B., et al., Resveratrol-induced activation ofp53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res.,2001.61(4):p. 1604-10.
    17. Dong, Z., Molecular mechanism of the chemopreventive effect of resveratrol. Mutat. Res.,2003.523-524:p.145-50.
    18. Athar, M., et al., Resveratrol:a review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol.,2007.224(3):p.274-83.
    19. Kim, Y.A., et al., Involvement of p21 WAF1/CIP1, pRB, Bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells. Int. J. Oncol.,2003.23(4):p.1143-9.
    20. Zhao, W., et al., Resveratrol down-regulates survivin and induces apoptosis in human multidrug-resistant SPC-A-1/CDDP cells. Oncol. Rep..23(1):p.279-86.
    21. Kubota, T., et al., Combined effects of resveratrol and paclitaxel on lung cancer cells. Anticancer Res.,2003.23(5A):p.4039-46.
    22. Sun, N.J., et al., DNA polymerase and topoisomerase Ⅱ inhibitors from Psoralea corylifolia. J. Nat. Prod.,1998.61(3):p.362-6.
    23. Zhang, Y., et al., Scaffold approach for solid-phase synthesis of 2,3-disubstituted 8-arylamino-3H-imidazo[4,5-glquinazolines. J. Comb. Chem.,2007.9(1):p.9-11.
    24. Zhang, Y., et al.,2,3-Disubstituted 8-arylamino-3H-imidazo[4,5-g]quinazolines:a novel class of antitumor agents. Eur. J. Med. Chem.,2009.44(1):p.448-52.
    25. Liu, E.H., et al., Anticancer Agents Derived from Natural Products. Mini. Rev. Med. Chem.,2009.
    26. Dennis, T., M. Fanous, and S. Mousa, Natural products for chemopreventive and adjunctive therapy in oncologic disease. Nutr. Cancer,2009.61(5):p.587-97.
    27. Sun, A.Y., A. Simonyi, and GY. Sun, The "French Paradox"and beyond: neuroprotective effects of polyphenols. Free Radic. Biol. Med.,2002.32(4):p.314-8.
    28. Hansen, H.C., et al., Stilbene analogs as inducers of apolipoprotein-I transcription. Eur. J. Med. Chem..
    29. Lakshman, R., et al., Is alcohol beneficial or harmful for cardioprotection? Genes Nutr.,2009.
    30. Bertelli, A.A. and D.K. Das, Grapes, wines, resveratrol, and heart health. J. Cardiovasc. Pharmacol.,2009.54(6):p.468-76.
    31. Campagna, M. and C. Rivas, Antiviral activity of resveratrol. Biochem. Soc. Trans..38(Pt 1):p.50-3.
    32. Albani, D., L. Polito, and G. Forloni, Sirtuins as novel targets for Alzheimer's disease and other neurodegenerative disorders:experimental and genetic evidence. J. Alzheimers Dis..19(1):p.11-26.
    33. Bishayee, A., T. Politis, and A.S. Darvesh, Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat. Rev..36(1):p.43-53.
    34. Kimura, Y. and H. Okuda, Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J. Nutr.,2001.131(6):p.1844-9.
    35. Holme, A.L. and S. Pervaiz, Resveratrol in cell fate decisions. J. Bioenerg. Biomembr.,2007.39(1):p.59-63.
    36. Katsura, H., et al., In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrobial. Agents & Chemotherapy,2001.45(11):p.3009-13.
    37. Park, E.J., et al., Protective effect of (S)-bakuchiol from Psoralea corylifolia on rat liver injury in vitro and in vivo. Planta Med.,2005.71(6):p.508-13.
    38. Iwamura, J., et al., lCytotoxicity of corylifoliae fructus. Ⅱ. Cytotoxicity of bakuchiol and the analogues]. Yakugaku Zasshi,1989.109(12):p.962-5.
    39. Backhouse, C.N., et al., Active constituents isolated from Psoralea glandulosa L. with antiinflammatory and antipyretic activities. J. Ethnopharmacol.,2001.78(1):p.27-31.
    40. Ferrandiz, M.L., et al., Effect of bakuchiol on leukocyte functions and some inflammatory responses in mice. J. Pharm. Pharmacol.,1996.48(9):p.975-80.
    41. Park, E.J., et al., Bakuchiol-induced caspase-3-dependent apoptosis occurs through c-Jun NH2-terminal kinase-mediated mitochondrial translocation of Bax in rat liver myofibroblasts. Eur. J. Pharmacol.,2007.559(2-3):p.115-23.
    42. Zhang, Y.B., et al., Astilbotriterpenic acid induces growth arrest and apoptosis in HeLa cells through mitochondria-related pathways and reactive oxygen species (ROS) production. Chem. Biodivers.,2009.6(2):p.218-30.
    43. Choi, H., et al., Cell death and intracellular distribution of hematoporphyrin in a KB cell line. Photomed. Laser Surg.,2009.27(3):p.453-60.
    44. Lai, W.W., et al., Rhein induced apoptosis through the endoplasmic reticulum stress, caspase-and mitochondria-dependent pathways in SCC-4 human tongue squamous cancer cells. In Vivo,2009.23(2):p.309-16.
    45. Neuzil, J., et al., Molecular mechanism of'mitocan'-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett.,2006.580(22):p.5125-9.
    46. Nguyen, D.M. and M. Hussain, The role of the mitochondria in mediating cytotoxicity of anti-cancer therapies. J. Bioenerg. Biomembr.,2007.39(1):p.13-21.
    47. Lu, P.Z., C.Y. Lai, and W.H. Chan, Caffeine Induces Cell Death via Activation of Apoptotic Signal and Inactivation of Survival Signal in Human Osteoblasts. Int. J. Mol. Sci., 2008.9(5):p.698-718.
    48. Su, Y.T., et al., Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem. Pharmacol.,2005.70(2):p.229-41.
    49. Wilmut, I., L. Young, and K.H. Campbell, Embryonic and somatic cell cloning. Reproduction, Fertility,& Development,1998.10(7-8):p.639-43.
    50. Burris, H.A.,3rd, Shortcomings of current therapies for non-small-cell lung cancer:unmet medical needs. Oncogene,2009.28 Suppl 1:p. S4-13.
    51. Jemal, A., et al., Cancer statistics,2006. CA Cancer J. Clin.,2006.56(2):p. 106-30.
    52. Agarwal, S., et al., Association of constitutively activated hepatocyte growth factor receptor (Met) with resistance to a dual EGFR/Her2 inhibitor in non-small-cell lung cancer cells. Br. J. Cancer,2009.100(6):p.941-9.
    53. Benlloch, S., et al., Expression of molecular markers in mediastinal nodes from resected stage I non-small-cell lung cancer (NSCLC):prognostic impact and potential role as markers of occult micrometastases. Ann. Oncol.,2009.20(1):p.91-7.
    54. Andreescu, S., O.A. Sadik, and D.W. McGee, Effect of natural and synthetic estrogens on a549 lung cancer cells:correlation of chemical structures with cytotoxic effects. Chem. Res. Toxicol.,2005.18(3):p.466-74.
    55. Vansteenkiste, J., Improving patient management in metastatic non-small cell lung cancer. Lung Cancer,2007.57 Suppl 2:p. S12-7.
    56. Kummalue, T., Molecular mechanism of herbs in human lung cancer cells. J. Med. Assoc. Thai.,2005.88(11):p.1725-34.
    57. Wang, W.B., et al., Inhibition of swarming and virulence factor expression in Proteus mirabilis by resveratrol. J. Med. Microbiol.,2006.55(Pt 10):p.1313-21.
    58. Kris-Etherton, P.M., et al., The role of tree nuts and peanuts in the prevention of coronary heart disease:multiple potential mechanisms. J. Nutr.,2008.138(9):p.1746S-1751S.
    59. Chao, J., et al., Protective effects ofpinostilbene, a resveratrol methylated derivative, against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. J. Nutr. Biochem.,2009.
    60. Cheson, B.D., Resveratrol and cancer prevention. Clin. Adv. Hematol. Oncol., 2009.7(3):p.142.
    61. Bishayee, A., Cancer prevention and treatment with resveratrol:from rodent studies to clinical trials. Cancer Prev. Res. (Phila Pa),2009.2(5):p.409-18.
    62. Weng, C.J., et al., Mechanisms ofApoptotic Effects Induced by Resveratrol, Dibenzoylmethane, and Their Analogues on Human Lung Carcinoma Cells. J. Agric. Food Chem.,2009.
    63. Shao, J., et al., Enhanced growth inhibition effect of Resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels. Colloids Surf. B. Biointerfaces,2009.
    64. Narayanan, N.K., et al., Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer,2009. 125(1):p.1-8.
    65. Wolter, F., et al., Downregulation of the cyclin Dl/Cdk4 complex occurs during resveratrol-induced cell cycle arrest in colon cancer cell lines. J. Nutr.,2001.131(8):p. 2197-203.
    66. Bernhard, D., et al., Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death Differ.,2000.7(9): p.834-42.
    67. Souza, I.C., et al., Resveratrol inhibits cell growth by inducing cell cycle arrest in activated hepatic stellate cells. Mol. Cell Biochem.,2008.315(1-2):p.1-7.
    68. Chen, Y., et al., Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery.,2004.136(1):p. 57-66.
    69. Raynal, S., et al., Transforming growth factor-betal enhances the lethal effects of DNA-damaging agents in a human lung-cancer cell line. Int. J. Cancer,1997.72(2):p.356-61.
    70. Ling, Y.H., et al., Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J. Biol. Chem.,2003.278(36):p.33714-23.
    71. Ryan, L., Y.C. O'Callaghan, and N.M. O'Brien, The role of the mitochondria in apoptosis induced by 7beta-hydroxycholesterol and cholesterol-5beta,6beta-epoxide. Br. J. Nutr.,2005.94(4):p.519-25.
    72. Tang, L. and Y. Zhang, Mitochondria are the primary target in isothiocyanate-induced apoptosis in human bladder cancer cells. Mol. Cancer Ther.,2005.4(8): p.1250-9.
    73. Rotem, R., et al., Jasmonates:novel anticancer agents acting directly and selectively on human cancer cell mitochondria. Cancer Res.,2005.65(5):p.1984-93.
    74. Ogbourne, S.M., et al.,Antitumor activity of 3-ingenyl angelate:plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res.,2004.64(8):p.2833-9.
    75. Wu, C.C., et al., Pristimerin induces caspase-dependent apoptosis in MDA-MB-231 cells via direct effects on mitochondria. MoI Cancer Ther,2005.4(8):p. 1277-85.
    76. Doi, S., et al., The histone deacetylase inhibitor FR901228 induces caspase-dependent apoptosis via the mitochondrial pathway in small cell lung cancer cells. Mol. Cancer Ther.,2004.3(11):p.1397-402.
    77. Hayward, R.L., et al., Enhanced oxaliplatin-induced apoptosis following antisense Bcl-xl down-regulation is pS3 and Box dependent:Genetic evidence for specificity of the antisense effect. Mol. Cancer Ther.,2004.3(2):p.169-78.
    78. Katiyar, S.K., A.M. Roy, and M.S. Baliga, Silymarin induces apoptosis primarily through a p53-dependentpathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol. Cancer Ther.,2005.4(2):p.207-16.
    79. Childs, A.C., et al., Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res.,2002.62(16):p.4592-8.
    80. Rosato, R.R., J.A. Almenara, and S. Grant, The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction ofp21CIP1/WAF1 1. Cancer Res.,2003.63(13):p.3637-45.
    81. Batra, S., C.P. Reynolds, and B.J. Maurer, Fenretinide cytotoxicity for Ewing's sarcoma and primitive neuroectodermal tumor cell lines is decreased by hypoxia and synergistically enhanced by ceramide modulators. Cancer Res.,2004.64(15):p.5415-24.
    82. Zhang, H., et al., Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol. Sci.,2009.
    83. Wang, C.C., et al., Involvement of the mitochondrion-dependent pathway and oxidative stress in the apoptosis of murine splenocytes induced by areca nut extract. Toxicol. In Vitro,2009.
    84. Xiao, D., et al., Cellular Responses to Cancer Chemopreventive Agent D,L-Sulforaphane in Human Prostate Cancer Cells Are Initiated by Mitochondrial Reactive Oxygen Species. Pharm. Res.,2009.
    85. Yao, L., J.A. Evans, and A. Rzhetsky, Novel opportunities for computational biology and sociology in drug discovery. Trends Biotechnol..28(4):p.161-70.
    86. Sleno, L. and A. Emili, Proteomic methods for drug target discovery. Curr. Opin. Chem. Biol.,2008.12(1):p.46-54.
    87. Liverton, N.J., et al., Nonpeptide glycoprotein Ⅱb/Ⅲa inhibitors:substituted quinazolinediones and quinazolinones as potent fibrinogen receptor antagonists. Bioorg. Med. Chem. Lett.,1998.8(5):p.483-6.
    88. Bridges, A.J., et al., Tyrosine kinase inhibitors.8. An unusually steep structure-activity relationship for analogues of 4-(3-bromoanilino)-6,7-dimethoxyquinazoline (PD 153035), a potent inhibitor of the epidermal growth factor receptor. J. Med. Chem.,1996. 39(1):p.267-76.
    89. Okabe, T., et al., Synergistic antitumor effect of S-1 and the epidermal growth factor receptor inhibitor gefitinib in non-small cell lung cancer cell lines:role of gefitinib-induced down-regulation of thymidylate synthase. Mol. Cancer Ther.,2008.7(3):p. 599-606.
    90. Roskoski, R., Jr., The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem. Biophys. Res. Commun.,2004.319(1):p.1-11.
    91. Silvestri, G.A. and M.P. Rivera, Targeted therapy for the treatment of advanced non-small cell lung cancer:a review of the epidermal growth factor receptor antagonists. Chest, 2005.128(6):p.3975-84.
    92. Cohen, E.E., et al., Phase Ⅱ trial of gefitinib 250 mg daily in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Clin. Cancer Res.,2005. 11(23):p.8418-24.
    93. Zandi, R., et al., Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal.,2007.19(10):p.2013-23.
    94. Klijn, J.G., et al., The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer:a review on 5232 patients. Endocr. Rev.,1992.13(1):p. 3-17.
    95. Salomon, D.S., et al., Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol.,1995.19(3):p.183-232.
    96. Ciardiello, F., et al., Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res.,2000.6(5):p.2053-63.
    97. Ono, M., et al., Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. Mol. Cancer Ther.,2004.3(4):p.465-72.
    98. Lin, W.C., et al., Gefitinib as front-line treatment in Chinese patients with advanced non-small-cell lung cancer. Lung Cancer,2006.54(2):p.193-9.
    99. Chang, G.C., et al., Molecular mechanisms of ZD1839-induced Gl-cell cycle arrest and apoptosis in human lung adenocarcinoma A549 cells. Biochem. Pharmacol.,2004.68(7): p.1453-64.
    100. Giaccone, G., et al., Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer:a phase Ⅲ trial-INTACT 1. J. Clin. Oncol.,2004.22(5): p.777-84.
    101. Hirsch, F.R., et al., Molecular predictors of outcome with gefitinib in a phase Ⅲ placebo-controlled study in advanced non-small-cell lung cancer. J. Clin. Oncol.,2006.24(31): p.5034-42.
    102. Ding, J., Y. Feng, and H.Y. Wang, From cell signaling to cancer therapy. Acta Pharmacol. Sin.,2007.28(9):p.1494-8.
    103. Verweij, J. and M. de Jonge, Multitarget tyrosine kinase inhibition:[and the winner is...]. J. Clin. Oncol.,2007.25(17):p.2340-2.
    104. Drevs, J., et al., Receptor tyrosine kinases:the main targets for new anticancer therapy. Curr. Drug Targets,2003.4(2):p.113-21.
    105. Hollingshead, M.G., et al., In vivo cultivation of tumor cells in hollow fibers. Life Sci.,1995.57(2):p.131-41.
    106. Albanell, J., et al., Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients:histopathologic and molecular consequences of receptor inhibition. J. Clin. Oncol.,2002.20(1):p.110-24.
    107. Yim, D., et al., A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res.,2005.65(3):p.1035-44.
    108. Tomasini, R., T.W. Mak, and G. Melino, The impact ofp53 and p73 on aneuploidy and cancer. Trends Cell Biol.,2008.18(5):p.244-52.
    109. Chen, Y.N., et al., Effector mechanisms of norcantharidin-induced mitotic arrest and apoptosis in human hepatoma cells. Int. J. Cancer,2002.100(2):p.158-65.
    110. Nigg, E.A., Cyclin-dependent protein kinases:key regulators of the eukaryotic cell cycle. Bioessays,1995.17(6):p.471-80.
    111. Sherr, C.J. and J.M. Roberts, Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev.,1995.9(10):p.1149-63.
    112. Ichikawa, A., J. Ando, and K. Suda, G1 arrest and expression of cyclin-dependent kinase inhibitors in tamoxifen-treated MCF-7 human breast cancer cells. Hum. Cell,2008. 21(2):p.28-37.
    113. Dulic, V., E. Lees, and S.I. Reed, Association of human cyclin E with α periodic G1-S phase protein kinase. Science,1992.257(5078):p.1958-61.
    114. Lee, B., et al., Sanguinarine-induced G1-phase arrest of the cell cycle results from increased p27KIP1 expression mediated via activation of the Ras/ERK signaling pathway in vascular smooth muscle cells. Arch. Biochem. Biophys.,2008.471(2):p.224-31.
    115. Zhu, L., Tumour suppressor retinoblastoma protein Rb:a transcriptional regulator. Eur. J. Cancer,2005.41(16):p.2415-27.
    116. Paggi, M.G., et al., Retinoblastoma protein family in cell cycle and cancer:a review. J. Cell Biochem.,1996.62(3):p.418-30.
    117. Sidle, A., et al., Activity of the retinoblastoma family proteins, pRB, p107, and p130, during cellular proliferation and differentiation. Crit. Rev. Biochem. Mol. Biol.,1996.31(3):p. 237-71.
    118. Ye, M., et al., Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, induces cell-cycle arrest in Gl phase via the ERK1/2 pathway. Cancer Lett.,2007.258(2):p.199-207.
    119. Kuribayashi, K. and W.S. El-Deiry, Regulation of programmed cell death by the p53 pathway. Adv. Exp. Med. Biol.,2008.615:p.201-21.
    120. Rokudai, S., et al., MOZ interacts with p53 to induce p21 expression and cell-cycle arrest.J. Biol. Chem.,2008.
    121. Huang, L.C., K.C. Clarkin, and G.M. Wahl, Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent Gl arrest. Proc. Natl. Acad. Sci. U S A, 1996.93(10):p.4827-32.
    122. Cheng, M., et al., Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc. Natl. Acad. Sci. U S A, 1998.95(3):p.1091-6.
    123. Moyer, J.D., et al., Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res.,1997.57(21):p. 4838-48.
    124. Kawada, M., et al., Induction of p27Kip1 degradation and anchorage independence by Ras through the MAP kinase signaling pathway. Oncogene,1997.15(6):p. 629-37.
    125. Lavoie, J.N., et al., Cyclin Dl expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem.,1996.271(34): p.20608-16.
    126. Otsuki, Y., Z. Li, and M.A. Shibata, Apoptotic detection methods-from morphology to gene. Prog. Histochem. Cytochem.,2003.38(3):p.275-339.
    127. Tsuruo, T., et al., Molecular targeting therapy of cancer:drug resistance, apoptosis and survival signal. Cancer Sci.,2003.94(1):p.15-21.
    128. Takimoto, C.H., J. Wright, and S.G. Arbuck, Clinical applications of the camptothecins. Biochim. Biophys. Acta.,1998.1400(1-3):p.107-19.
    129. Chi, S.G., et al.,p53 in prostate cancer:frequent expressed transition mutations. J. Natl. Cancer Inst.,1994.86(12):p.926-33.
    130. Nicholson, D.W. and N.A. Thornberry, Caspases:killer proteases. Trends Biochem. Sci.,1997.22(8):p.299-306.
    131. Viswanath, V., et al., Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease. J. Neurosci.,2001.21(24):p.9519-28.
    132. Zhuang, S., M.C. Lynch, and I.E. Kochevar, Caspase-8 mediates caspase-3 activation and cytochrome c release during singlet oxygen-induced apoptosis of HL-60 cells. Exp. Cell Res.,1999.250(1):p.203-12.
    133. Li, H., et al., Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell,1998.94(4):p.491-501.
    134. Kuwana, T., et al., Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J. Biol. Chem.,1998.273(26):p.16589-94.
    135. Luo, X., et al., Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell,1998.94(4):p. 481-90.
    136. Schendel, S.L., et al., Ion channel activity of the BH3 only Bcl-2 family member, BID. J. Biol. Chem.,1999.274(31):p.21932-6.
    137. Wei, M.C., et al., Proapoptotic BAX and BAK:a requisite gateway to mitochondrial dysfunction and death. Science,2001.292(5517):p.727-30.
    138. Harris, M.H. and C.B. Thompson, The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ.,2000.7(12):p.1182-91.
    139. Schieke, S.M., J.P. McCoy, Jr., and T. Finkel, Coordination of mitochondrial bioenergetics with Gl phase cell cycle progression. Cell Cycle,2008.7(12):p.1782-7.
    140. Culy, C.R. and D. Faulds, Gefitinib. Drugs,2002.62(15):p.2237-48; discussion 2249-50.
    141. Normanno, N., M.R. Maiello, and A. De Luca, Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs):simple drugs with a complex mechanism of action? J. Cell Physiol.,2003.194(1):p.13-9.
    1. Zhang, Q., et al., Advances in preclinical small molecules for the treatment of NSCLC. Expert. Opin. Ther. Pat.,2009.19(6):p.731-51.
    2. Ramalingam, S. and C. Belani, Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist,2008.13 Suppl 1:p.5-13.
    3. Pisani, P., et al., Estimates of the worldwide mortality from 25 cancers in 1990. Int. J. Cancer,1999. 83(1):p.18-29.
    4. Elion, G.B., The purine path to chemotherapy. Science,1989.244(4900):p.41-7.
    5. Huang, P., et al., High molecular weight DNA fragmentation:a critical event in nucleoside analogue-induced apoptosis in leukemia cells. Clin. Cancer Res.,1995.1(9):p.1005-13.
    6. Genini, D., et al., Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood,2000.96(10):p. 3537-43.
    7. Faderl, S., et al., New nucleoside analogues in clinical development. Cancer Chemother. Biol. Response Modif.,2002.20:p.37-58.
    8. Montgomery, J.A., et al., Synthesis and biologic activity of 2'-fluoro-2-halo derivatives of 9-beta-D-arabinofuranosyladenine. J. Med. Chem.,1992.35(2):p.397-401.
    9. Parker, W.B., et al., Antitumor activity of 2-fluoro-2'-deoxyadenosine against tumors that express Escherichia coli purine nucleoside phosphorylase. Cancer Gene Ther.,2003.10(1):p.23-9.
    10. Sun, A.Y., A. Simonyi, and GY. Sun, The "French Paradox"and beyond:neuroprotective effects of polyphenols. Free Radic. Biol. Med.,2002.32(4):p.314-8.
    11. Kim, Y.A., et al., Involvement of p21 WAF1/CIP1, pRB, Bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells. Int. J. Oncol.,2003. 23(4):p.1143-9.
    12. Berghmans, T., et al., Activity of chemotherapy and immunotherapy on malignant mesothelioma: a systematic review of the literature with meta-analysis. Lung Cancer,2002.38(2):p.111-21.
    13. Durdux, C., [Cisplatin and derivatives with radiation therapy:for what clinical use?]. Cancer Radiother.,2004.8 Suppl 1:p. S88-94.
    14. Tonato, M., Consensus conference on medical treatment of non-small cell lung cancer:adjuvant treatment. Lung Cancer,2002.38 Suppl 3:p. S37-42.
    15. Todd, R.C.and S.J. Lippard, Inhibition of transcription by platinum antitumor compounds. Metallomics,2009.1(4):p.280-291.
    16. Olaussen, K.A., G. Mountzios, and J.C. Soria, ERCC1 as a risk stratifier in platinum-based chemotherapy for nonsmall-cell lung cancer. Curr. Opin. Pulm. Med.,2007.13(4):p.284-9.
    17. Rosell, R., et al., Usefulness of predictive tests for cancer treatment. Bull. Cancer,2006.93(8):p. E101-8.
    18. Fuertesa, M.A., et al., Cisplatin biochemical mechanism of action:from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr. Med. Chem., 2003.10(3):p.257-66.
    19. Jackman, A.L., R. Kimbell, and H.E. Ford, Combination of raltitrexed with other cytotoxic agents: rationale andpreclinical observations. Eur. J. Cancer,1999.35 Suppl 1:p. S3-8.
    20. Marechal, E., Chemogenomics:a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence. Comb. Chem. High Throughput Screen,2008.11(8):p.583-6.
    21. Diller, D.J., The synergy between combinatorial chemistry and high-throughput screening. Curr. Opin. Drug Discov. Devel.,2008.11(3):p.346-55.
    22. Kennedy, J.P., et al., Application of combinatorial chemistry science on modern drug discovery. J. Comb. Chem.,2008.10(3):p.345-54.
    23. Smukste, I. and B.R. Stockwell, Advances in chemical genetics. Annu. Rev. Genomics Hum. Genet.,2005.6:p.261-86.
    24. Ding, S. and P.G. Schultz, A role for chemistry in stem cell biology. Nat. Biotechnol.,2004.22(7):p. 833-40.
    25. Moos, W.H., C.R. Hurt, and G.A. Morales, Combinatorial chemistry:oh what a decade or two can do. Mol. Divers,2009.13(2):p.241-5.
    26. Starr, A., et al., ErbB4 increases the proliferation potential of human lung cancer cells and its blockage can be used as a target for anti-cancer therapy. Int. J. Cancer,2006.119(2):p.269-74.
    27. Kim, T.E. and J.R. Murren, Angiogenesis in non-small cell lung cancer. A new target for therapy. Am. J. Respir. Med.,2002.1(5):p.325-38.
    28. Tamura, K. and M. Fukuoka, Molecular target-based cancer therapy:tyrosine kinase inhibitors. Int. J. Clin. Oncol.,2003.8(4):p.207-11.
    29. Doebele, R.C., et al., New strategies to overcome limitations of reversible EGFR tyrosine kinase inhibitor therapy in non-small cell lung cancer. Lung Cancer.
    30. Joy, A.A. and C.A. Butts, Extending outcomes:epidermal growth factor receptor-targeted monoclonal antibodies in non-small-cell lung cancer. Clin. Lung Cancer,2009.10 Suppl 1:p. S24-9.
    31. Chi, A., et al., Systemic review of the patterns of failure following stereotactic body radiation therapy in early-stage non-small-cell lung cancer:Clinical implications. Radiother. Oncol..
    32. Reade, C.A. and A.K. Ganti, EGFR targeted therapy in non-small cell lung cancer:potential role of cetuximab. Biologics,2009.3:p.215-24.
    33. Pennell, N.A. and T. Mekhail, Investigational agents in the management of non-small cell lung cancer. Curr. Oncol. Rep.,2009.11(4):p.275-84.
    34. Linardou, H., et al., Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nat. Rev. Clin. Oncol.,2009.6(6):p.352-66.
    35. Gridelli, C., et al., Cetuximab and other anti-epidermal growth factor receptor monoclonal antibodies in the treatment of non-small cell lung cancer. Oncologist,2009.14(6):p.601-11.
    36. Horn, L. and A.B. Sandler, Emerging data with antiangiogenic therapies in early and advanced non-small-cell lung cancer. Clin. Lung Cancer,2009.10 Suppl 1:p. S7-16.
    37. Horn, L. and A.B. Sandler, Angiogenesis in the treatment of non-small cell lung cancer. Proc. Am. Thorac. Soc.,2009.6(2):p.206-17.
    38. Sakurada, A. and M.S. Tsao, Predictive biomarkers for EGFR therapy. IDrugs,2009.12(1):p. 34-8.
    39. Hida, T., et al., Gefitinib for the treatment of non-small-cell lung cancer. Expert. Rev. Anticancer Ther.,2009.9(1):p.17-35.
    40. Hayashi, Y., et al., Thymoma:tumour type related to expression of epidermal growth factor (EGF), EGF-receptor, p53, v-erb B and ras p21. Virchows Arch.,1995.426(1):p.43-50.
    41. Otsu, M., et al., Immunohistochemical study of p53, EGF, EGF-receptor, v-erb B and ras p21 in squamous cell carcinoma of hypopharynx. Kobe. J. Med. Sci.,1994.40(5-6):p.139-53.
    42. Hayashi, Y., et al., Expression of EGF, EGF-receptor, p53, v-erb B and ras p21 in colorectal neoplasms by immunostaining paraffin-embedded tissues. Pathol. Int.,1994.44(2):p.124-30.
    43. Bonaccorsi, L., et al., Non-genomic effects of the androgen receptor and vitamin D agonist are involved in suppressing invasive phenotype of prostate cancer cells. Steroids,2006.71(4):p.304-9.
    44. Lupulescu, A.P., Hormones, vitamins, and growth factors in cancer treatment and prevention. A critical appraisal. Cancer,1996.78(11):p.2264-80.
    45. Messing, E.M., Growth factors and bladder cancer:clinical implications of the interactions between growth factors and their urothelial receptors. Semin. Surg. Oncol.,1992.8(5):p.285-92.
    46. Fisher, D.A., E.C. Salido, and L. Barajas, Epidermal growth factor and the kidney. Annu. Rev. Physiol.,1989.51:p.67-80.
    47. Rao, C., et al., Comparison of the epidermal growth factor receptor protein expression between primary non-small cell lung cancer and paired lymph node metastases:implications for targeted nuclide radiotherapy. J. Exp. Clin. Cancer Res..29(1):p.7.
    48. Gomez-Roca, C., et al., Differential Expression of Biomarkers in Primary Non-small Cell Lung Cancer and Metastatic Sites. J. Thorac. Oncol.,2009.
    49. Barr, S., et al., Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions. Clin. Exp. Metastasis,2008.25(6):p.685-93.
    50. Fu, X.L., et al., Study of prognostic predictors for non-small cell lung cancer. Lung Cancer,1999. 23(2):p.143-52.
    51. Schnidar, H., et al., Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUNpathway. Cancer Res.,2009.69(4):p. 1284-92.
    52. Ziv, E., et al., Two modes of ERK activation by TNF in keratinocytes:different cellular outcomes and bi-directional modulation by vitamin D. J. Cell Biochem.,2008.104(2):p.606-19.
    53. Cabodi, S., et al., Convergence of integrins and EGF receptor signaling via PI3K/Akt/FoxO pathway in early gene Egr-1 expression. J. Cell Physiol.,2009.218(2):p.294-303.
    54. Murer, B., Targeted therapy in non-small cell lung cancer:α commentary. Arch. Pathol. Lab Med., 2008.132(10):p.1573-5.
    55. Kimple, R.J., et al., Radiosensitization of Epidermal Growth Factor Receptor/HER2-Positive Pancreatic Cancer Is Mediated by Inhibition of Akt Independent of Ras Mutational Status. Clin. Cancer Res..
    56. Zhang, Z., et al., Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK-signaling in lung cancer cells. Carcinogenesis.
    57. Sequist, L.V. and T.J. Lynch, EGFR tyrosine kinase inhibitors in lung cancer:an evolving story. Annu. Rev. Med.,2008.59:p.429-42.
    58. Bargmann, C.I., M.C. Hung, and R.A. Weinberg, The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature,1986.319(6050):p.226-30.
    59. Dua, R., et al., EGFR over-expression and activation in high HER2, ER negative breast cancer cell line induces trastuzumab resistance. Breast Cancer Res. Treat.,2009.
    60. Inukai, M., et al., Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res.,2006.66(16):p.7854-8.
    61.Li, Z., et al., Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J.,2005.19(14):p.1978-85.
    62. Sambade, M.J., et al., Mechanism of lapatinib-mediated radiosensitization of breast cancer cells is primarily by inhibition of the Raf>MEK>ERK mitogen-activated protein kinase cascade and radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK. Radiother. Oncol., 2009.93(3):p.639-44.
    63. Vivacqua, A., et al., G protein-coupled receptor 30 expression is up-regulated by EGF and TGF alpha in estrogen receptor alpha-positive cancer cells. Mol. Endocrinol.,2009.23(11):p.1815-26.
    64.Laux, I., et al., Epidermal growth factor receptor dimerization status determines skin toxicity to HER-kinase targeted therapies. Br. J. Cancer,2006.94(1):p.85-92.
    65. Campiglio, M., et al., Characteristics of EGFR family-mediated HRG signals in human ovarian cancer. J. Cell Biochem.,1999.73(4):p.522-32.
    66. Lei, W., J.E. Mayotte, and M.L. Levitt, Enhancement of chemosensitivity and programmed cell death by tyrosine kinase inhibitors correlates with EGFR expression in non-small cell lung cancer cells. Anticancer Res.,1999.19(1A):p.221-8.
    67. Norman, P., OSI-774 OSI Pharmaceuticals. Curr Opin Investig Drugs,2001.2(2):p.298-304.
    68. Herbst, R.S. and M.S. Kies, ZD1839 (Iressa) in non-small cell lung cancer. Oncologist,2002.7 Suppl 4:p.9-15.
    69. Bunn, P.A., Jr. and W. Franklin, Epidermal growth factor receptor expression, signal pathway, and inhibitors in non-small cell lung cancer. Semin. Oncol.,2002.29(5 Suppl 14):p.38-44.
    70. Pallis, A.G., et al., ZD1839, a novel, oral epidermal growth factor receptor-tyrosine kinase inhibitor, as salvage treatment in patients with advanced non-small cell lung cancer. Experience from a single center participating in a compassionate use program. Lung Cancer,2003.40(3):p.301-7.
    71. Gridelli, C., et al., Recent issues in first-line treatment of advanced non-small-cell lung cancer: Results of an International Expert Panel Meeting of the Italian Association of Thoracic Oncology. Lung Cancer,2009.
    72. Italiano, A., et al., EGFR and KRAS status of primary sarcomatoid carcinomas of the lung: implications for anti-EGFR treatment of a rare lung malignancy. Int. J. Cancer,2009.125(10):p. 2479-82.
    73. Hirsch, F.R., M. Varella-Garcia, and F. Cappuzzo, Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene,2009.28 Suppl 1:p. S32-7.
    74. Rivera, E., et al., Current situation of zalutumumab. Expert. Opin. Biol. Ther.,2009.9(5):p. 667-74.
    75. Kim, S.J., et al., Phosphorylated epidermal growth factor receptor and cyclooxygenase-2 expression in localized non-small cell lung cancer. Med. Oncol.,2009.
    76. Ciledag, A., et al., The prognostic value of serum epidermal growth factor receptor level in patients with non-small cell lung cancer. Tuberk Toraks,2008.56(4):p.390-5.
    77. Garcia, B., et al., Effective inhibition of the epidermal growth factor/epidermal growth factor receptor binding by anti-epidermal growth factor antibodies is related to better survival in advanced non-small-cell lung cancer patients treated with the epidermal growth factor cancer vaccine. Clin. Cancer Res.,2008.14(3):p.840-6.
    78. Shelton, J.G., et al., The epidermal growth factor receptor gene family as a target for therapeutic intervention in numerous cancers:what's genetics got to do with it? Expert. Opin. Ther. Targets,2005. 9(5):p.1009-30.
    79. Hao, H.F., et al., Progress in researches about focal adhesion kinase in gastrointestinal tract. World J. Gastroenterol,2009.15(47):p.5916-23.
    80. Mitsudomi, T. and Y. Yatabe, Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J.277(2):p.301-8.
    81. Takeuchi, K. and F. Ito, EGF receptor in relation to tumor development:molecular basis of responsiveness of cancer cells to EGFR-targeting tyrosine kinase inhibitors. FEBS J.277(2):p.316-26.
    82. Anido, J., et al., ZD1839, a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, induces the formation of inactive EGFR/HER2 and EGFR/HER3 heterodimers and prevents heregulin signaling in HER2-overexpressing breast cancer cells. Clin. Cancer Res.,2003.9(4):p. 1274-83.
    83. Xu, J.M., et al., Phase Ⅱ trial of sequential gefitinib after minor response or partial response to chemotherapy in Chinese patients with advanced non-small-cell lung cancer. BMC Cancer,2006.6:p. 288.
    84. Von Pawel, J., Gefitinib (Iressa, ZD1839):a novel targeted approach for the treatment of solid tumors. Bull Cancer,2004.91(5):p. E70-6.
    85. Orfi, L., et al., Improved, high yield synthesis of 3H-quinazolin-4-ones, the key intermediates of recently developed drugs. Curr. Med. Chem.,2004.11(19):p.2549-53.
    86. Baselga, J., et al., Phase Ⅰ safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J. Clin. Oncol.,2002.20(21):p.4292-302.
    87. Pautier, P., et al., Phase Ⅱ study ofgefitinib in combination with paclitaxel (P) and carboplatin (C) as second-line therapy for ovarian, tubal or peritoneal adenocarcinoma (1839IL/0074). Gynecol. Oncol.. 116(2):p.157-162.
    88. Goffin, J., et al., First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer:a systematic review. J. Thorac. Oncol..5(2):p.260-74.
    89. Amino, N., et al., YM-359445, an orally bioavailable vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor, has highly potent antitumor activity against established tumors. Clin. Cancer Res.,2006.12(5):p.1630-8.
    90. Ciardiello, F., et al., Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin. Cancer Res.,2001.7(5):p.1459-65.
    91. Morabito, A., et al., Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases:current status and future directions. Oncologist,2009.14(4):p.378-90.
    92. Hanrahan, E.O. and J.V. Heymach, Vascular endothelial growth factor receptor tyrosine kinase inhibitors vandetanib (ZD6474) and AZD2171 in lung cancer. Clin. Cancer Res.,2007.13(15 Pt 2):p. s4617-22.
    93. Minkovsky, N. and A. Berezov, BIB W-2992, a dual receptor tyrosine kinase inhibitor for the treatment of solid tumors. Curr. Opin. Investig. Drugs,2008.9(12):p.1336-46.
    94. Eskens, F.A., et al., Aphase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on,2-week off schedule in patients with advanced solid tumours. Br. J. Cancer,2008.98(1):p.80-5.
    95. Schutze, C., et al., Combination of EGFR/HER2 tyrosine kinase inhibition by BIB W 2992 and BIB W 2669 with irradiation in FaDu human squamous cell carcinoma. Strahlenther. Onkol.,2007. 183(5):p.256-64.
    96. Reid, A., et al., Dual inhibition of ErbBl (EGFR/HER1) and ErbB2 (HER2/neu). Eur. J. Cancer, 2007.43(3):p.481-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700