用户名: 密码: 验证码:
6-BA处理对玉米胚乳发育及细胞程序性死亡调控效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以郑单958(Z)、农大108(N)、特爆2号(T)为材料,研究授粉后喷施6-苄基腺嘌呤(6-BA)对玉米胚乳发育及胚乳细胞程序性死亡(Programmed cell death,PCD)的影响。采用生理生化方法,从胚乳细胞数目、内源激素、籽粒营养物质等方面探讨了6-BA处理对玉米胚乳发育的影响;从显微构造、超微构造和分子生物学等方面观察了玉米胚乳PCD过程的特征及6-BA处理对胚乳细胞PCD过程的调控作用,主要研究结果如下:
     1 6-BA处理对胚乳细胞数目的影响
     对玉米籽粒胚乳细胞数目的观察发现,6-BA处理提高了3个品种的胚乳细胞数目,且胚乳细胞数目随6-BA浓度的提高而增加。但6-BA处理对3个品种胚乳细胞数目的影响程度不同,与对照相比,郑单958、特爆2号的胚乳细胞增殖达到显著水平,而农大108未达到显著水平。施用6-BA引起胚乳细胞数目的增多,可能是6-BA处理后玉米粒重提高的原因之一。
     2 6-BA处理对胚乳内源激素含量的影响
     6-BA处理后,郑单958、特爆2号的Z+ZR、GA含量较对照显著提高,随6-BA浓度的提高而增加。而农大108 Z+ZR、GA含量的提高,未达到显著水平。6-BA处理显著提高了3个品种灌浆前期的iPA含量,同时抑制了玉米灌浆后期胚乳内的ABA的积累,显著提高了郑单958灌浆前期和后期、特爆2号灌浆前中期、农大108灌浆后期的IAA含量。施用6-BA引起籽粒内源激素含量的改变,可能是导致籽粒产量和品质性状改变的原因之一。
     3 6-BA处理对籽粒营养物质的影响
     6-BA处理明显提高了3个品种灌浆前中期的蔗糖含量、整个灌浆期的蛋白质含量、籽粒灌浆后期的支链淀粉、总淀粉含量,为形成较高的粒重提供了基础。
     4玉米胚乳细胞PCD的特点
     超微结构观察发现,玉米胚乳细胞在发育过程中出现细胞核变形、解体,形成核残体和染色质凝集的现象;在核解体过程中,线粒体出现伴随变化,如线粒体嵴消失呈中央空泡化;琼脂糖凝胶电泳发现,胚乳DNA显示以180-200bp倍增的梯状带。这些现象表明玉米胚乳细胞的死亡是PCD过程。用Evans Blue对胚乳的染色图表明,玉米胚乳细胞死亡始于胚乳上端并高度有序地向下、向外扩展。超微结构与Evans Blue染色结果说明,细胞核消亡后,细胞仍存活,胞质中仍可正常合成和积累淀粉、蛋白质,在胚乳细胞完成了合成与积累营养物质的使命后,即细胞被淀粉充满后,胚乳细胞死亡并形成无生命的营养物质储藏库。
     5 6-BA处理对胚乳细胞PCD的影响
     6-BA处理的胚乳出现梯状DNA带的时间与对照一致,但DNA电泳带的亮度比对照明显弱,且随6-BA浓度的增大,减弱程度增强。经Evans Blue染色证明喷施6-BA使得蓝色反应区域面积减小,颜色变浅。超微结构观察亦发现,经6-BA处理的胚乳细胞核降解程度明显轻于对照,以上研究结果均说明,6-BA处理可在一定程度上减缓PCD的过程,从而改善籽粒品质,提高玉米粒重。
Three maize cultivars(Z,N,T),were used in the present study .The effects of 6-BA on the development of maize endosperm after pollination were investigated by the physiological and biochemical method with the characteristic of hormone, the number of endosperm, the kernel nutriment content. The characteristic of different maize of endosperm programmed cell death and the effects of 6-BA on the endosperm programmed cell death with the optical microscope, transmission electro microscope, molecular biology, respectively. The main results were follows:
     1 The effects of exogenous 6-BA on the number of endosperm cell
     The endosperm cell numbers were determined. The numbers of different maize endosperm were increased by the different 6-BA concentration. But the effects degree of 6-BA were different on three maize cultivars. Compared to the contrast, the endosperm cell numbers of Z and T. were prominently increased but N. It was probably one of the important causes to improve grain yield by spraying this regulator.
     2 The effects of exogenous 6-BA on endogenous hormones contents
     Endogenous hormones contents in endosperm were measured for each treatment. The results indicated that 6-BA had different effects on endogenous hormones at different grain filling stages. Compared to the control , discrepancy between the treatments of Z and T were prominent but N, the content of Z+ZR, GA were increased by the increased concentration; the iPA content in the early grain filling stage of three maize cultivars was prominently enhanced; notably restrained the accumulation of ABA; the IAA content was notably increased in the early and late stage grain filling of Z, in the late grain filling stage of N, in the early grain filling stage and decreased in the late grain filling stage of T. Under this experiment the changes of endogenous hormones were probably one of the important causes led to variations of yield and quality.
     3 The effects of exogenous 6-BA on the content of nutritious substance
     The content of nutritious substance were significantly increased in different grain filling stage, including the content of sucrose in the early and middle grain filling stage, the content of protein in the entire grain filling stage, the content of amylopection, total starch of a grain in the late filling stage.
     4 The characteristic of maize endosperm PCD
     Conventional ultrastructural observation showed that the starchy endosperm cells of maize underwent nucleus deformation, nucleus disintegration, nucleus residue formation and chromatin condensation. In the process of nucleus disintegration, mitochondrion also showed a series of structural changes, such as the cristae of mitochondrion disappeared, resulting in central hollowed mitochondrion. The above results proved that the cell death of starchy endosperm in maize was a PCD process. Evans Blue staining proved that death of endosperm cell started the top of endosperm and expanded toward adown and forth of endosperm. The results of ultrastructual observation and Evans Blue staining proved that nucleus disintegration, the starchy endosperm cell still remained alive, and the reserves including starch and storage proteins were still synthesized and accumulated in the cell as normal. It was the date of cell death until the cell was filled with starch endosperm cells in maize.
     5 The effects of exogenous 6-BA on the PCD of Endosperm
     Treatment with 6-BA reduced the extent of DNA fragmentation in developing starchy endosperm cells and the reduced degree increased with the concentration of 6-BA. Evans Blue staining proved that the blue area lessen compared to control. The results of ultrastructual observation proved the degree of nucleus disintegration lessen compared to control. It proved that the 6-BA may lessen the endosperm cell PCD, probably one of the important causes leading to variations of yield and quality.
引文
[1]柏新付,蔡永萍.脱落酸与稻麦籽粒灌浆的关系[J].植物生理学通讯, 1989, 25(3): 40-41
    [2]曾骧.植物激素和果树的生长发育[J].中国果树, 1980(增刊): 6-19
    [3]常二华,王朋,唐成,刘立军,王志琴,杨建昌.水稻根和籽粒细胞分裂素和脱落酸浓度与籽粒灌浆及蒸煮品质的关系[J].作物学报, 2006, 32(4): 540-547
    [4]段俊,田长恩.水稻结实过程中穗不同部位谷粒中内源激素的动态变化[J].植物学报, 1999, 42(l): 75-79
    [5]盖钧镒.试验统计方法[M].北京:中国农业出版社, 2000, 217-218
    [6]龚学臣,牛瑞明,王立秋.冬麦春播灌浆特性的研究.麦类作物[J]. 1999, 19(20): 24-27
    [7]黄行许,翟大勇.线粒体Ca2+转运和通透转变孔道的开放与能量[J].中国科学, 2000, 4: 385-393
    [8]李春喜,尚玉磊,姜丽娜.不同植物生长调节剂对小麦衰老及产量构成的调节效应[J].西北植物学报, 2001, 21(5): 931-936
    [9]李忌,郑荣良.活性氧诱导细胞凋亡[J].细胞生物学杂志, 1997, 19(3): 115-119
    [10]李科江,张西科,刘文菊等.不同栽培促使下冬小麦灌浆模拟研究[J].华北农学报, 2001, 16(2): 70-74
    [11]李季菊,职明星,卫秀英. BA与GA对小麦不同花位籽粒增重的影响[J].作物学报. 2001, 27(6): 1017-1020
    [12]李秀菊,职明星,鲁玉贞.不同粒型小麦籽粒发育过程中细胞分裂素含量的变化[J].麦类作物学报, 2005, 25(2): 42-45
    [13]李智念,王光明,曾之文.植物干旱胁迫中的ABA研究.干旱地区农业研究, 2003, 21(2): 99-104
    [14]梁建生,曹显祖. ABA对水分胁迫下水稻籽粒灌浆的调节[J].中国水稻科学, 1996, 10(1): 23-28
    [15]林久生,王根轩.活性氧与植物细胞编程性死亡[J].植物生理学通讯,2001, 37(6): 551-555
    [16]刘冀珑,卢青核.钙信号[J] .生命科学, 2001, 1(13): 41-44
    [17]刘向东,卢永根,徐雪宾,徐是雄.单多胚水稻珠心组织消长变化的比较研究[J].中国水稻科学, 1996, 10(4): 213-219
    [18]刘晓冰,刘娜,金刚,张秋英,杨怒平,王光华.蛋白质含量不同的春小麦开花后籽粒内源激素的变化[J] .麦类作物学报, 2000, 20(30): 25-28
    [19]刘萍,李春喜,姜丽娜.钾盐、植物生长调节剂和青霉素对小麦生理及产量的影响[J].河南职技师院学报. 1999, 27(l): l-3
    [20]潘瑞炽.植物生理学[M].北京:中国高等教育出版社. 2001, 182-203
    [21]彭业芳,傅家瑞.种子水分与脱落酸对种子发育的调节作用[J].植物生理学通讯, 1992, 28(5): 387-392
    [22]秦武发,董永华,张彩英.开花后喷施植物生长调节物质对小麦籽粒千粒重、蛋白质含量和沉降值的影响[J].植物生理学通讯, 1996, 32(2): 124-125
    [23]荣湘民,谢桂先,刘强,彭建伟,朱红梅.生长调节剂对玉米氮代谢的影响[J].植物营养与肥料学报, 2005, 11(5): 634-640
    [24]宋松泉,程红炎,龙春林,姜孝成.种子生物学研究指南[M].北京:科学出版社, 2005, 36-41
    [25]苏金为,王湘平.镉诱导的茶树苗膜脂过氧化和细胞程序性死亡[J].植物生理与分子生物学学报, 2002, 28(4): 292-298
    [26]孙庆泉,吴元奇,胡昌浩,董树亭,荣廷昭,张颖.不同产量潜力玉米籽粒胚乳细胞增殖与籽粒充实期的生理活性[J].作物学报, 2005, 31(1): 612-618
    [27]孙益.细胞核钙信号研究进展[J].细胞生物学杂志, 1998, 20(3): 133-137
    [28]孙英丽,赵允,刘春香,翟中和.细胞色素C能诱导植物细胞编程性死亡[J].植物学报, 1999, 41(4): 379-383
    [29]孙振元,韩碧文,刘淑兰.小麦籽粒充实期氮素的吸收和再分配及6-苄氨基腺嘌呤的调节作用[J].植物生理学报, 1996, 2(3): 258-264
    [30]孙振元,王华芳.小麦籽粒充实期氮素的吸收和再分配及6-BA的调节作用[J].植物生理学报, 1996, 22(3): 258-264
    [31]谭保才,梁厚果.激动素对绿豆子叶多聚糖体形成的促进作用及其RNA合成的关系[J].植物学报, 1992, 34(10): 764-770
    [32]王爱国,罗光华,邵从本.大豆种子超氧物歧化酶的研究[J].植物生理学报, 1983, 9(1): 77-84
    [33]汪矛,崔跃华,孙克莲.杜仲胚乳衰退过程中程序性细胞死亡的研究[J].木本植物研究, 1999, 19(4): 401-405
    [34]王晓燕.不同类型玉米胚乳产量与品质差异形成机理研究[D].山东农业大学硕士学位论文, 2006
    [35]王雅清,崔克明.杜仲次生木质部导管分子分化中的程序性死亡[J].植物学报, 1998, 40(12): 102-1107
    [36]王雅清,柴晶晶,崔克明.杜仲次生木质部分化和脱分化过程中酸性磷酸酶的超微细胞化学定位[J].植物学报, 2000, 42(5): 1155-1159
    [37]王艳芳,崔震海,阮燕晔,马兴林,关义新,张立军.不同类型春玉米灌浆期间籽粒中内源激素IAA、GA、ZR、ABA含量的变化[J].植物生理学通讯, 2006, 42(2): 225-228
    [38]王月福,于振文,潘庆民.水分胁迫对耐旱性不同小麦小花分化发育和氮磷及激素含量的影响[J].西北植物学报, 2000, 20(1): 38-43
    [39]王瑞英,于振文.稻麦及豆科作物籽粒发育过程中的内源激素水平变化[J].麦类作物, 1997, 17(3): 44-47
    [40]王瑞英,于振文. IBA与NAA混和液浸种和6-BA喷施对小麦旗叶衰老和产量的调控[J].山东农业大学学报, 1998, 9(4): 503-507
    [41]王瑞英,于振文,潘庆民,许玉敏.小麦籽粒发育过程中激素含量的变化[J].作物学报, 1999, 25(2): 227-231
    [42]王志敏,王树安,苏宝林.小麦穗粒数的调节.Ⅰ.开花前穗果聚糖代谢及其与小花解释的关系[J].中国农业大学学报, 1996, 5(1): 21-26
    [43]王志琴,杨建昌,朱庆森.水稻抽穗期茎鞘中储存的可用性糖与籽粒充实的关系[J].江苏农学院学报, 1997, 18(4): 13-17
    [44]王志琴,杨建昌,朱庆森.亚种间杂交稻籽粒充实不良的原因探讨[J].作物学报, 1998, 24(6): 782-787
    [45]王秀玲,高新起.西瓜胚乳衰退过程中的超微结构变化及其对胚发育的作用[J].广西植物, 2002, 22(3): 242-245
    [46]王忠,顾蕴洁,李卫芳,陈刚,石火英,陈秀花.小麦胚乳发育及其养分输入途径[J].作物学报, 1998, 24(5): 536-543
    [47]韦存虚,蓝盛银,徐珍秀.水稻花后衰退珠心和胚乳发育初期Ca2+的超微细胞化学定位[J].电子显微学报, 2002, 21(1): 34-38
    [48]韦存虚,蓝盛银,徐珍秀.水稻胚乳细胞发育中的蛋白体的形成[J].作物学报, 2002, 28(5): 591-594
    [49]韦存虚,蓝盛银,徐珍秀.水稻胚乳细胞淀粉质体被膜与其增殖的关系[J].电子显微学报,2002,21(2):123-128
    [50]韦存虚,蓝盛银,徐珍秀.水稻淀粉胚乳细胞编程性死亡中细胞核变化特征[J].植物学报, 2002, 44(12): 1396-1400
    [51]吴郭肃,李瑞秋,高小彦.乙烯利和6-BA对绿豆芽深化成分的影响[J].上海农业学报, 1995, 11(3): 37-42
    [52]吴远彬.紧凑型玉米高产理论与技术[M].科学技术文献出版社, 1999
    [53]杨建昌,王志琴,朱庆森.脱落酸对亚种间杂交稻籽粒充实的调节作用[J].江苏农学院学报, 1995, 16(4): 1-6
    [54]杨建昌,王志琴,朱庆森. ABA与GA对水稻籽粒灌浆的调控[J].作物学报, 1999, 25(3): 341-347
    [55]杨建昌,彭少兵,顾世梁,朱庆森, R M Visperas.水稻结实期籽粒和根系中玉米素和玉米素核苷含量的变化及其与籽粒充实的关系[J].作物学报, 2001, 27(1): 35-42
    [56]杨建昌,仇明,王志琴,刘立军,朱庆森.水稻发育胚乳中细胞增殖与细胞分裂素含量的关系[J].作物学报, 2004, 30(1): 11-17
    [57]尤瑞麟.小麦珠心细胞衰退过程的超微结构研究[J].植物学报, 1985, 27: 345-353
    [58]张蜀秋,戴玉玲,杨世杰.赤霉素对发育的大豆种子中同化物卸出和积累的影响[J].中国农业大学学报, 2000(5): 1-5
    [59]张治安,陈庆利,徐克章.灌浆期喷施6-BA对甜玉米一些生理指标的影响[J].植物生理学通讯, 2004, 40(6): 683-685
    [60]张祖建,朱庆森,王志琴.水稻胚乳细胞计数方法研究[J].江苏农学院学报, 1996, 17(2): 7-11
    [61]朱美君,王学臣.植物的编程性细胞死亡[J].植物生理学通讯, 1999, 5: 353-357
    [62]翟风林.作物品质育种[M].北京:农业出版社, 1991, 110-113
    [63]周军,朱海珍,姜晓芳.乙烯诱导胡萝卜原生质体凋亡[J].植物学报, 1999, 41(7): 747-750
    [64]周睿,杨洪强,束怀瑞.脱落酸对植物库强度的调节作用[J].植物生理学通讯, 1996, 32(3): 223-228
    [65]邹寿郴,陈良怡.胞内钙信号系统[J].生命的化学, 2000, 6: 254-256
    [66] Amalo K, Chen G X, Asade K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytostatic enzymes of ascorbate peroxidase implants[J]. Plant Cell Physiology, 1994, 35(3): 497-504
    [67] Allan G B, John S G. Characterization of programmed cell death in the endosperm cells of tomato seed: two distinct death programs[J]. Canadian Journal of Botany, 2006, 84: 791-804
    [68] Bhardwaj S N, Verma V. Hormonal regulation of assimilates translocation during grain growth in wheat[J]. Indian J Exp Biol, 1985, 23: 719-721
    [69] Bakhtenko E Y, Platonov A V. The effects of flooding and treatment with abscisic acid and cytokinin on the phytohormone dynamics and yield of wheat[J]. Agrokhimiya, 1999, (3): 48-51
    [70] Capers M P, Sinjorgo K M. Synthesis processing and export of cytoplasmic endo-?-1.4-xylanase from barley aleurone during germination [J]. The Plant Journal, 2001, 26(2): 191-204
    [71] Chen C, Anderson B R. Modulation of plant gene expression by cytokinins[J]. Aust J Plant Physiol, 1993, 20: 609-619
    [72] Cheikh N, Jones R J, Gengeenbach B G. The effect of heat stress oncarbohydrate metabolism from seed coats of phaseolus vulgarism[J]. Plant Physiology, 1993, 80: 635-638
    [73] Cheikh N, Jones R J. Disruption of maize kernel growth and development by heat stress Role of cytokinin/abscisic acid balance[J]. Plant Physiology, 1994, 106: 45-51
    [74] Cheikh N, Jones R J. Heat stress effects on sink activity of developing maize kernels grown[J]. Physiologic Piantarum, 1995, 95: 59-66
    [75] Commuri P D, Jones R J. High temperatures during endosperm cell division in maize: a genotypic comparison under in vitro and field conditions. Crop Science, 2001, 41: 1122-1130
    [76] Erland L, Toma B. DNA fragmentation in cereal roots indicative of programmed root cell death [J]. Physiology Plant, 2001, 111: 365-372
    [77] Fath A, Bethke P C, Jones R L. Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellin acid-induced programmed cell death in barley aleurone[J]. Plant Physiology, 2001, 126: 156-166
    [78] Fernando D, Javier M, Francisco J C. The nucellus degenerates by a process of programmed cell death during the early stages of wheat grain development[J]. Planta, 2001, 213: 352-360
    [79] Flors S, Tobin E M. Cytokinin modulation of LHCP Mrna level: The involvement of post-transcriptional regulation[J]. Plant Mol Biol, 1988, 11: 409-415
    [80] Gabali S A M, Bagga A K, Bhardwaj S N. Hormonal basis of grain growth and development in wheat[J]. Plant Physiology, 1986, 29(4): 387-396
    [81] Gisnnopolitis C, Nries S K. Superoxide dismutase occurrence inhibiter plants[J]. Plant Physiology, 1977, 59:309-314.
    [82] Greenberg J T, Guo A, Klessing D F, Ausubel M. Programmed cell death in plants: pathogen-triggered response activated coordinately with multiple defense functions[J]. Cell, 1994, 77: 551-563
    [83] He C J, Morgan P W, Drew M C. Transduction of an ethylene signals isrequired or cell death analysis in the root cortex of maize during aerenchyma formation induced by hypoxia[J]. Plant Physiology, 1996, 112(4): 463-472
    [84] Jones R J, Roessler J, Ouattar S. Thermal environment during endosperm cell division in maize: effects on number of endosperm cells and starch granules .Crop Science, 1981, 25: 830-834
    [85] Jones A M. Programmed cell death in development and defense. Plant Physiology, 2001, 125: 94-97
    [86] Kuo A, Cappelluti S, Cervantes M, Rodriguez M, Bush D S. Okadaic acid , a protein expression, phosphatase inhibitor blocks calcium changes, gene expression and cell death induced gibberellin in wheat aleurone cells[J]. Plant ce11, 1996, 8: 259-269
    [87] Key J L. Hormone and nucleic acid metabolism[J]. Annual Review of Plant Physiology, 1969(20): 449-474
    [88] Lur H S, Setter T L. Endosperm development of maize defective kernel (dek) mutants[J]. Auxin and cytokine in leaves. Ann Bot, 1993, 72: 1-6
    [89] Lur H S, Setter T L. Role of auxin in maize endosperm development: timing of nuclear DNA endoreduplication, zein expression and cytokinin[J]. Plant Physiology, 1993, 103: 273-280
    [90] Makiko T, Takao Y, Nobaru M. Fluctuation of endogenous cytokinin contents in rice during its life cycle-quantification of cytokinins by selected in monitoring using deuteium-labelled internal standards[J]. Agric Hiol Chem 1995, 49: 3271-3277
    [91] Mona C M. Active Oxygen Species in plant defend against pathogens[J]. Plant Physiology, 1994, 10: 467-472
    [92] Minami A, Fukuda H. Transient and specific expression of cysteine endopeptidase associated with autolysis during differentiation of Zinnia mesophyll cells into tracheary element[J]. Plant Cell Physiology, 1995, 36: 1599-1606
    [93] Mittler R, Lam E. In situ detection of DNA fragmentizes during thedifferentiation of tracheary elements in higher plants[J]. Plant Physiology, 1995, 108: 489-493
    [94] Morris R D, Blevins D G, Dietrich J T. Cytokinins in plant pathogenic bacteria and developing cereal grains[J]. Aust J Plant Physiology, 1993, 20: 621-637
    [95] Morris D A. Hormonal regulation of assimilate partition: Possible mediation by invertase[J]. New Bull Plant Growth Regel Group, 1983, 6: 23-25
    [96] Myers P N, Setter T L, Madison J T. Endosperm cell division in maize kernels cultured at three levels of water potential[J]. Plant Physiology, 1992, 99(3): 1051-1056
    [97] Nancy A E. Programmed cell death in plants: A role for mitochondrial- associated the hexokinases[J]. Plant cell, 2006, 18: 2097-2099
    [98] Olsen O A. Endosperm developments[J]. The Plant Cell, 1998, 10: 485-488
    [99] Ouattar S, Jones K J, Crookston R K. Effect of water deficit during grain filling on the pattern of maize kernel growth and development[J]. Crop Science, 1987, 27: 26-730
    [100] Panavas T, Rubenstein B. Oxidative events during programmed cell death in daylily petals[J]. Plant Physiology, 1997, 114(3): 278
    [101] Pennel1 R I, Lamb C. Programmed cell death in plant [J]. Plant Cell, 1997, 9: 1157-1168
    [102] Peterson D G, Fulcher R G. Variation in Minnesota HRS wheats: Genotype and environment effects on quality characteristics of hard red winter[J]. Wheat Crop Science, 1992, 32: 98-103
    [103] Radley M. The effect on wheat growth of the removal or ABA treatment of glumes and lemmas[J]. J Exp Bot, 1981, 32(126): 1129-1140
    [104] Ryerson D E, Heath M C. Cleavage of nuclear DNA into oligo nucleosomal fragments during cell death induced by fungal infection or by abiotic treatments[J]. Plant Cell, 1996, 8: 393-402
    [105] Suzuki K, Yano A, Shinshi H. Slow and prolonged activation of the P47 protein kinase during hypertensive cell death in a culture of tobacco cells[J]. Plant Physiology, 1999, 119: 1465-1472
    [106] Wang H, Li J, Bostock R M, Gilchrist D G.. Apoptosis: A functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development[J]. Plant Cell, 1996, 8: 375-391
    [107] Wang M, Oppedijk B J, Lu X, Schiperoort R A. Apoptosis in barley aleurone during germination and inhibition by abscisic acid[J]. Plant Mol Bio, 1996, 32: 1125-1134
    [108] Wei C X, Lan S Y, Xu Z X. Ultrastructural features of nucleus degradation during programmed cell death of starchy endosperm cells in rice[J]. Acta Botansca Sznica, 2002, 44(12): 1396-1402
    [109] Woffenden B J, Frecman T B, Beers E P. Proteasone inhibitors prevent tracheary element differentiation in Zinnia mesophyll cell cultures[J]. Plant Physiology, 1998, 118: 419-430
    [110] Wu H, Che A Y. Programmed cell death in plant reproduction[J]. Plant Mol Bio, 2000, 44(3): 267-281
    [111] Xu Y, Hanson M R. Programmed cell death during pollination–induced petal senescence in Petunia[J]. Plant Physiology, 2000, 122: 1323-1333
    [112] Yoshitake D, Ayako M. Bacterial lipoproly saccharides induce defense response associated with programmed cell death in rice cells[J]. Plant cell physiology, 2006, 47: 1530-1540
    [113] Young T E, Gallie D R. Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals[J]. Plant Mol Bio, 1999, 39: 915-926
    [114] Young T E, Gal1ie D R. Programmed cell death during endosperm development[J]. Plant Mol Bio, 2000, 44: 283-301
    [115] Young T E, Gallie D R, Mason D A. Ethylene-mediated programmed cell death during maize endosperm development of wild-type andshrunken 2 genotype[J]. Plant Physiology, 1997, 115(2): 737-751
    [116] Young T E, Gallie D R. Regulation of programmed cell death in maize endosperm by abscisic acid[J]. Plant Mol Bio, 2000, 42: 397-414

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700