用户名: 密码: 验证码:
压电自适应微细电火花加工技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细电火花加工是一种非接触式的、宏观切削力很小的加工过程,大大减轻了工具与工件之间的力学负担,并且微细电火花加工可控性好、能加工任何强度和硬度的导电材料,使其在微细轴、微小孔及微三维结构等微细制造方面具有独特的技术优势和广阔的应用前景。但微细电火花加工过程也存在因放电能量及放电间隙微小而导致的放电状态不稳定、加工效率低、电极损耗大的缺点,严重制约着该技术在微细加工领域的广泛应用。因此,迫切需要研究开发高效率、高稳定性、低电极损耗的新型微细电火花加工技术,以适应微细制造领域的发展需要。
     本文查阅了大量的微细电火花加工的相关文献资料,系统分析了当前微细电火花加工技术研究现状及未来发展趋势。在此基础上,基于压电陶瓷的逆压电效应提出了一种新型微细电火花加工方法——压电自适应微细电火花加工。该加工方法通过压电致动器将放电间隙调节装置与放电能量发生装置有机集成在一起,实现了加工过程中放电问隙与放电状态的自适应调节。该方法原理及结构简单,控制方便,能有效提高微细电火花的加工效率、降低其电极损耗,为高深径比的微小孔及异型孔的加工提供了很好的解决方案,是一种有着广阔前景的微细电火花加工技术。
     压电自适应微细电火花加工的加工原理、加工过程及加工特性与常规电火花加工相比有一定的特殊性,为了进一步揭示其本质,本文对压电自适应微细电火花的加工机理进行了深入研究。通过单脉冲放电凹坑的分析,建立了压电自适应微细电火花单脉冲放电凹坑直径的回归模型,并在此基础上建立了压电自适应微细电火花微小孔加工的材料去除率模型。分别从介质击穿、放电通道形成、放电能量的转换与分配、电蚀产物的抛出、介质消电离等方面对压电自适应微细电火花的放电机理进行了深入研究。研究结果表明在压电自适应微细电火花加工过程中电蚀产物的抛出主要是由热爆炸力、磁流体动力等综合作用的结果;压电自适应微细电火花加工能够实现短路自消除,提高了系统的控制效率,降低系统对微细电火花伺服控制的灵敏度要求;工件与电极之间的周期性自适应伸缩运动能够在一定程度上促进电蚀产物的抛出及工作液的消电离,改善放电环境,从而提高放电状态的稳定性,并且能够增加工具电极与工件之间的火花放电频率,进而提高加工效率。
     本文针对压电自适应微细电火花的独特特点,设计并研制了一套压电自适应微细电火花加工系统。该系统由机械与电气两大部分组成。机械部分主要由花岗岩基座、宏微伺服系统、精密旋转主轴、微细电极的在线反拷及检测系统等部分组成。电气部分主要包括微能脉冲电源、电路检测与反馈回路、接触感知回路等组成部分。
     伺服控制系统是微细电火花加工系统中不可或缺的组成部分,性能优良的伺服控制系统是实现微细电火花加工过程稳定进行的可靠保证。本文研究的伺服控制系统采用压电致动器与直流伺服电机驱动的滚珠丝杠宏微结合的方式,既能实现较大行程的进给,又能实现很高的进给分辨率和定位精度。在加工过程中压电致动器利用其高频特性根据放电状态对放电间隙进行自适应调节,使放电间隙始终保持在最佳范围之内,保证电火花高效稳定加工。
     微细电极的在线制作与检测是制约微细电火花加工技术发展的瓶颈。本文在分析各种电极在线制作的优缺点的基础上,采用切向反拷法实现电极的在线制作。并充分利用机床本身的接触感知功能及数控系统来实现电极直径的在线精确测量。
     较高的材料去除率、较低的电极损耗及良好的表面质量一直是微细电火花加工追求的目标。本文围绕微小孔电火花加工过程中各项工艺目标的实现途径,基于正交试验利用信噪比分析法研究了开路电压、电容值、限流电阻、主轴转速、初始进给速度等加工参数对加工时间、电极损耗、表面粗糙度等各项工艺目标的影响规律,并在此基础上对单目标工艺参数进行了优化。研究结果表明对工艺目标的要求不同,所得到的工艺参数的优化组合也有所不同,甚至有时是相互矛盾的。针对这一问题本文引入了灰关联分析法。在正交试验的基础上,利用信噪比分析法对试验结果进行分析,然后利用灰关联度对计算结果进行优化分析,将多目标工艺参数的优化问题转化为单目标灰关联度的工艺参数的优化,得到压电自适应微细电火花微小孔加工的多项工艺目标下的参数优化组合。验证试验结果表明,基于信噪比及灰关联度的优化方法可以在一定程度上提高加工效率、加工表面质量,降低工具电极损耗。
     系统的试验研究是评价所研制的微细电火花加工系统性能的最佳方法,本文最后针对所研制的压电自适应微细电火花加工系统进行了加工实验研究。验证了该系统加工微细轴、微小孔及简单微三维结构的能力,充分说明了本加工系统的广泛实用性。
Micro-electrical discharge machining (micro-EDM) is a non-contact machining process; the macro cutting force is small, which eliminates the mechanical stresses between workpiece and electrode. And micro-EDM can machine any hardness conductive materials even nonconductive materials; it has great advantages and broad applications in micro machining fields for fabricating micro axis, micro holes and micro three-dimensional structures. Micro discharge energy and micro discharge gap cause the un-stable discharge state during micro-EDM process, which leads to the low machining efficiency and high electrode wear ratio. Such shortcomings restrict the application of micro-EDM in micro machining fields. Thus, new micro EDM techniques with high efficiency, high stabibility and low electrode wear are urgent need to be developed.
     On the basis of great lots of relevant literatures and data, micro-EDM techniques are reviewed to point out the latest research and future development tendency, a new piezoelectric self-adaptive micro-EDM(PSMEDM), based on inverse piezoelectric effect, was developed in this paper. The discharge gap regulation fitting and discharge energy fitting are integrated by piezoelectric actuator, realizing the self-regulation of discharge gap depending on the discharge state. The working principle and structures are simple. The system can improve the machining efficiency and reduce the electrode wear and provides a good method for fabricating high-aspect-ratio micro holes and allotypic holes, the technique has a broad prospect.
     The working principle, process and characteristics of PSMEDM are different from the conventional discharge machining. In order to comprehend the machining nature, the physical mechanism of PSMEDM was researched in this paper. Based on the single discharge crater, the diameter regression model of single discharge crater was set up, and the model of MRR was deduced. The mechanism of PSMEDM was further studied from the aspects of the breakdown of the dielectric, the spread of the discharging channel, the conversion and distribution of the discharging energy, the removal of the machining debris, the deionization as well as the integrated effect of the impulsive discharges. The results indicate that the removal of the machining debris during PSMEDM is concurrent results of the thermal expansion and magnetic fluid dynamic force. The PSMEDM can realize self-elimination of short circuits, which can improve the control efficiency and decrease the response requirements of servo control system. And the self-adaptive adjustable motion of the electrode during machining process is favor of removing of machining debris and deionization of working fluid, improving the discharge environment and stability of discharge state, and the discharge frequency is increased, the material removal rate is improved.
     Based on the analysis of special characteristics about PSMEDM, a set of PSMEDM system is designed and developed. The system includes mechanical part and electrical part. The mechanical part consists of granite basement, macro and micro servo system, precise rotary spindle, in-process fabrication and detection of micro electrode. The electrical part consists of micro generator, detecting circuit for discharge process and contact sensing circuit.
     The servo control system is an important part in micro-EDM system. An excellent servo control system stabilizes the machining process. A combined device with piezoelectric ceramic and DC servo motor has been developed as a servo system in this study. The PSMEDM system not only can realize EDM with long trip but also has high resolution and positioning accuracy. The piezoelectric actuator regulates the discharge gap depending on the discharge state, and insures the discharge gap retain within the best range.
     The fabrication and measurement in process of micro electrode is a bottleneck problem which restricts the development of micro-EDM technology at long time. After analyzing the merits and drawbacks of a variety of fabrication methods of micro-electrode, the block electrical discharge grinding with tangent feeding was adopted to fabricate micro-electrode in process. The measurement of electrode in process is completed through the combination of the contact perception function and numerical control function in this machine system.
     Higher MRR. lower EWR and better surface quality are the goals that micro-EDM pursues. Based on orthogonal experiment, S/N analysis method was adopted to investigate the effects of parameters such as open voltage, capacitance, resistance, rotate speed, and initial speed, upon the individual performance characteristic. Through the arrangement of such kind of experiment, a full knowledge of the implementations on each of the performance characteristics like machine time, electrode wear and surface roughness can be obtained. Further the parameters for single performance characteristic are optimized. It is found that different optimization objective results in a quite different combination of process parameters, and sometimes even lead to a quite poor performance for the other characteristic. In such cases, the theory of grey relational analysis was used in this study. S/N analysis method was adopted to dispose the experiment data, then the grey relational analysis was used to evaluate the performance with multiple characteristics; that is, the optimization of the parameter settings with multiple performance characteristics can be transformed into the maximization of the grey relational grades and the biggest grade for each parameter dictates the best arrangement of parameters corresponding to it. Thus, the optimization with multiple performance characteristics for PSMEDM system can be gained. And the validating experiment results dictate that this method can improve the machine efficiency and surface quality, decrease the electrode wear.
     Experimental researches are the best methods to evaluate the micro-EDM system. The performance of this PSMEDM system has been evaluated through micro EDM tests in this study. The performance of machining the micro-shafts, micro-holes and micro3D structures is validated. The experiments show its excellent machining performance and wide practicability of the machining system.
引文
1. 李明辉.电火花加工理论基础[M].国防工业出版社,1989.
    2. 赵万生.先进电火花加工技术[M].国防工业出版社,2003.
    3. Khan AA. Electrode wear and material removal rate during EDM of aluminum and mild steel using copper and brass electrodes [J]. International Journal of Advanced Manufacturing Technology,2008,39(5-6):482-487.
    4. Mohd Abbas N, Solomon DG and Fuad Bahari M. A review on current research trends in electrical discharge machining (EDM) [J]. International Journal of Machine Tools and Manufacture,2007,47(7-8):1214-1228.
    5. Lee SH and Li X. Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide [J]. Journal of Materials Processing Technology,2003,139(1-3 SPEC): 315-321.
    6. Sanchez JA, Lopez de Lacalle LN, Lamikiz A. et al. Study on gap variation in multi-stage planetary EDM [J]. International Journal of Machine Tools and Manufacture,2006, 46(12-13):1598-1603.
    7. Yan BH, Wu KL, Huang FY, et al. A study on the mirror surface machining by using a micro-energy EDM and the electrophoretic deposition polishing [J]. International Journal of Advanced Manufacturing Technology,2007,34(1-2):96-103.
    8. Krajnik P and Kopac J. Modern machining of die and mold tools [J],2004,157-158: 543-552.
    9. 李立青,郭艳玲,白基成等.电火花加工技术研究的发展趋势预测[J].机床与液压,2008,36(2):5174-178
    10. Newton TR, Melkote SN, Watkins TR, et al. Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718 [J]. Materials Science and Engineering A,2009.513-514(C):208-215.
    11. Rajurkar KP and Yu ZY.3D micro-EDM using CAD/CAM [J]. CIRP Annals-Manufacturing Technology,2000,49(1):127-130.
    12. Peng Z, Wang Z, Dong Y. et al. Development of a reversible machining method for fabrication of microstructures by using micro-EDM [J]. Journal of Materials Processing Technology,2010,210(1):129-136.
    13. Yu ZY, Masuzawa T and Fujino M. Micro-EDM for three-dimensional cavities-development of uniform wear method [J]. CIRP Annals-Manufacturing Technology,1998, 47(1):169-172.
    14.宋博岩,赵万生.张宏.绿色电火花加工的概念[J].电加工与模具,2000(6):4-6.
    15. Leao FN and Pashby IR. A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining [J],2004,149:341-346.
    16.王玉魁,宋博岩,王振龙等.节能式电火花加工脉冲电源的系统设计[J].中国机械工程,2006,17(17):1783-1786.
    17.李楚锋,郭钟宁,李远波.节能型电火花加工脉冲电源的研究现状及其分析[J].电加工与模具.2010(4):16-20.
    18. Joshi S, Govindan P, Malshe A, et al. Experimental characterization of dry EDM performed in a pulsating magnetic field [J]. CIRP Annals-Manufacturing Technology, 2011,60(1):239-242.
    19. Kunieda M, Miyoshi Y, Takaya T, et al. High speed 3D milling by dry EDM [J]. CIRP Annals-Manufacturing Technology,2003,52(1):147-150.
    20. Nguyen MD, Rahman M and Wong YS. Simultaneous micro-EDM and micro-ECM in low-resistivity deionized water [J], International Journal of Machine Tools and Manufacture.2012,54-55:55-65
    21. Chow H-M, Yang L-D, Lin C-T, et al. The use of SiC powder in water as dielectric for micro-slit EDM machining [J]. Journal of Materials Processing Technology,2008, 195(1-3):160-170.
    22.李楚锋.节能型电火花加工脉冲电源的研究[D].广东工业大学硕士学位论文.2010.
    23.桂小波,曹凤国.一种新型高效节能电火花加工脉冲电源的研究[J].电加工与模具,2007(增刊):37-39.
    24.刘永红,李小朋,杜建华等.电火花加工脉冲电源电磁兼容技术研究[J].电加工与模具,2006(2):5-7.
    25.杜建华.非导电工程陶瓷高效电火花磨削节能脉冲电源的研究[D].中国石油大学(华东)硕士学位论文.2005.
    26.吴蓉,刘石安,田耀杰.基于Neurosolutions人工神经网络的电火花加工工艺专家系统[J].制造技术与机床,2008(11):46-48.
    27. G KMR, G R. D HR. et al. Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm [J]. Journal of Materials Processing Technology,2009,209(3):1512-1520.
    28. Mandal D, Pal SK and Saha P. Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II [J]. Journal of Materials Processing Technology,2007, 186(1-3):154-162.
    29.吴蓉,刘石安,田耀杰.基于人工神经网络的电火花加工工艺专家系统[J].机电产品开发与创新,2008.21(4):174-176.
    30.娄建和,熊瑞文,朱洪涛等.电火花加工电源中模糊控制的应用[J].南吕大学学报(工科版).2002,24(1):23-26.
    31.韦东波.电火花加工过程模糊控制技术的研究[D],哈尔滨工业大学硕士学位论文.2001.
    32.苏宏志.模糊控制微细孔电火花加工研究[J].机械与电子,2010(4):74-77.
    33. Kaneko T and Onodera T. Improvement in machining performance of die-sinking EDM by using self-adjusting fuzzy control [J],2004.149:204-211.
    34. A.Behrens JG. Neuro-Fuzzy Process Control System for Sinking EDM [J]. Journal of Manufacturing Processes.2003,5(1):33-39.
    35. Fenggou C and Dayong Y. The study of high efficiency and intelligent optimization system in EDM sinking process [J],2004,149:83-87.
    36.赵万生,刘晓芳,迟关心等.智能化电火花加工CAPP系统的研究[J].机械工程学报,2002.38(12):70-74.
    37.曹凤国,张勤俭,翟力军等.国际电火花加工技术发展的五大趋势[J].机械工人(冷加工),2005(2):33-37.
    38. Zhao WS, Meng QG and Wang ZL. The application of research on powder mixed EDM in rough machining [J].10th International Manufacturing Conference in China (IMCC 2002), October 11,2002-October 11,2002,2002,129:30-33.
    39. Pecas P and Henriques E. Influence of silicon powder-mixed dielectric on conventional electrical discharge machining [J]. International Journal of Machine Tools and Manufacture,2003,43(14):1465-1471.
    40. Kansal HK, Singh S and Kumar P. Technology and research developments in powder mixed electric discharge machining (PMEDM) [J]. Journal of Materials Processing Technology,2007,184(1-3):32-41.
    41.高绪宝,顾琳,赵万生等.混粉电火花加工工件表面质量影响因素分析[J].制造业自动化,2009.31(3):1-4.
    42.吕战竹,赵福令,杨义勇.混粉电火花加工介质击穿及放电通道位形研究[J].大连理工大学学报,2008,48(3):373-377.
    43. Mohri N, Fukuzawa Y, Tani T, et al. Assisting electrode method for machining insulating ceramics [J]. CIRP Annals-Manufacturing Technology,1996,45(1):201-204.
    44. Praneetpongrung C, Fukuzawa Y, Nagasawa S, et al. Effects of the EDM combined ultrasonic vibration on the machining properties of Si3N4 [J]. Materials Transactions,2010, 51(11):2113-2120.
    45. Tani T, Fukuzawa Y, Furutani K, et al. Machining process of insulating ceramics by electrical discharge machining [J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering,1997,63(9):1310-1314.
    46. Muttamara A, Fukuzawa Y, Mohri N, et al. Probability of precision micro-machining of insulating Si3N 4 ceramics by EDM [J],2003,140:243-247.
    47. Fukuzawa Y, Mohri N, Gotoh H, et al. Three-dimensional machining of insulating ceramics materials with electrical discharge machining [J]. Transactions of Nonferrous Metals Society of China (English Edition),2009,19(SUPPL.1):150-156.
    48.徐小兵.绝缘陶瓷材料电火花加工技术及仿真研究[D],武汉理工大学博士学位论文.2009.
    49.徐小兵.绝缘性陶瓷材料Si3N4的电火花加工特性研究[J].江汉石油学院学报,2003,25(1):117-118.
    50.徐小兵.绝缘性陶瓷电火花加工原理和辅助电极膜制备探讨[J].新技术新工艺,2003(5):17-18.
    51.周兰凤.绝缘陶瓷辅助电极法电火花加工的研究[D].哈尔滨工业大学硕士学位论文2002.
    52.郭永丰,邓冠群,白基成等.绝缘陶瓷氮化硅高速走丝线切割加工技术研究[J].电加工与模具,2008(1):10-13.
    53. Liu YH, Li XP. Ji RJ, et al. Effect of technological parameter on the process performance for electric discharge milling of insulating Al2O3 ceramic [J]. Journal of Materials Processing Technology,2008,208(1-3):245-250.
    54. Liu YH, Ji RJ, Li XP. et al. Electric discharge milling of insulating ceramics [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2008,222(2):361-366.
    55.李小朋,刘永红,纪仁杰等.绝缘工程陶瓷的特种加工技术[J].电加工与模具.2006(5):6-9.
    56. Marafona J. Black layer characterisation and electrode wear ratio in electrical discharge machining (EDM) [J]. Journal of Materials Processing Technology,2007,184(1-3):27-31.
    57. Iwai M. Sharma A, Pan WL, et al. EDM properties of a low wear electrically conductive CVD diamond electrode [J].2007.339:168-176.
    58. Uhlmann E and Roehner M. Investigations on reduction of tool electrode wear in micro-EDM using novel electrode materials [J]. CIRP Journal of Manufacturing Science and Technology,2008,1(2):92-96.
    59. Suzuki K, Iwai M, Sharma A, et al. Low-wear diamond electrode for micro-EDM of die-steel [J]. International Journal of Manufacturing Technology and Management,2006, 9(1-2):94-108.
    60. Suzuki K, Sharma A, Sano S, et al. A new application of PCD as a very low wear electrode material for EDM [J]. Key Engineering Materials.2005,291-292:549-554.
    61. Yuangang W, Fuling Z and Jin W. Wear-resist Electrodes for Micro-EDM [J]. Chinese Journal of Aeronautics,2009,22(3):339-342.
    62.张晓燕,魏引焕,田普建.电火花加工中降低电极损耗的措施[J].模具工业,2004(9):49-51.
    63.李冬林.电铸铜电火花工具电极损耗的研究[D],南京航空航天大学硕士学位论文2005.
    64.况火根.高效低损耗电火花成形中精加工脉冲电源的研究[D],哈尔滨工业大学硕士学位论文.2004.
    65.李立青.气体介质中电火花成形加工工艺技术研究[D],哈尔滨工业大学博士学位论文.2005.
    66. Dauw D. On the Derivation Aand Application of a Real-time Tool Wear Sensor in EDM [J]. CIRP Annals 1986:Manufacturing Technology, Annals of the International Institution for Production Engineering Research.,1986,35:111-116.
    67.周勇,刘正埙.电火花放电加工中工具电极损耗理论研究[J].电加工,1998(4):1-3.
    68.郭彩芬,赵国光.电流斜率控制电火花加工中的电极损耗[J].电加工,1995(5):6-8.
    69.王振龙,赵万生.基于电极等损耗原理的微细电火花加工技术[J].中国机械工程学会第三届全国青年学术会议论文集,1998:808-811.
    70.赵万生,郭永丰,耿春明.国外电火花加工最新技术[J].2001年中国机械工程学会年会暨第九届全国特种加工学术年会论文集.2001:6-13.
    71. Ishida T, Kogure S, Miyake Y, et al. Creation of long curved hole by means of electrical discharge machining using an in-pipe movable mechanism [J],2004.149:157-164.
    72.刘永红,杨毅,贾宝贤.曲线孔电火花加工技术[J].电加工与模具,2000(4):41-43.
    73.刘永红,杨毅,贾宝贤等.曲线孔电火花加工SMA机器人的研究[J].中国机械工程,2001.12(8):946-948.
    74.高上品.钛合金表面的电火花着色加工技术[J].电加工与模具,2004(6):54.56.
    75.王振龙,曹国辉,张永生等.空气中微细电火花沉积与去除可逆加工技术研究[J].机械工程学报,2004,40(11):88.92.
    76. Wang Y-K, Xie B-C, Wang Z-L, et al. Micro EDM deposition in air by single discharge thermo simulation [J]. Transactions of Nonferrous Metals Society of China (English Edition),2011,21 (SUPPL.2):450-455.
    77. Hung J-C, Lien S-C, Lin J-K, et al. Fabrication of a micro-spherical tool in EDM combined with Ni-diamond co-deposition [J]. Journal of Micromechanics and Microengineering,2008,18(4).
    78. Jin B, Zhao W, Cao G, et al. Fabrication of micro structure using EDM deposition [J]. Advances in Materials Manufacturing Science and Technology Ⅱ.2006,532-533:305-308.
    79. Wang YK, Xie BC, Wang ZL, et al. Micro EDM deposition in air by single discharge thermo simulation.[J]. Transaction of Nonferrous Metals Society of China. 2011(21):450-455.
    80.王振龙,金柏冬,曹国辉等.空气中电火花沉积微螺旋结构的研究[J].哈尔滨工业大学学报,2008,40(5):717-721.
    81. Mohri N, Takezawa H, Furutani K, et al. New process of additive and removal machining by EDM with a thin electrode [J]. CIRP Annals-Manufacturing Technology,2000,49(1): 123-126.
    82.曹国辉,王振龙,迟关心等.基于单脉冲放电的钨微细电极快速成形方法及其应用研究[J].机械工程学报,2003,39(7):43-47.
    83.曹国辉.脉冲放电微细加工方法及试验研究[D],哈尔滨工业大学博士学位论文.2004.
    84. Katz Z and TibbIes CJ. Analysis of micro-scale EDM process [J]. International Journal of Advanced Manufacturing Technology,2005,25(9-10):923-928.
    85. Liu HS, Yan BH, Chen CL, et al. Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining [J]. International Journal of Machine Tools and Manufacture.2006,46(1):80-87.
    86. Diver C, Atkinson J, Helml HJ. et al. Micro-EDM drilling of tapered holes for industrial applications [J].2004.149:296-303.
    87. Fleischer J, Masuzawa T, Schmidt J, et al. New applications for micro-EDM [J],2004,149: 246-249.
    88. Pham DT, Dimov SS, Bigot S, et al. Micro-EDM-Recent developments and research issues [J],2004,149:50-57.
    89.余祖元,郭东明,贾振元.微细电火花加工技术[J].中国科技论文在线,2007,2(3):214-220.
    90.王振龙,赵万生,狄十春等.微细电火花加工技术的研究进展[J].中国机械工程,2002.13(10):93-97.
    91.尹占民.微细电火花加工技术及其应用[J].模具制造,2003(3):47-48.
    92.张勇.微细电火花加工系统及其工艺技术研究[D],哈尔滨工业大学博士学位论文.2004.
    93. Kawakami T and Kunieda M. Study on factors determining limits of minimum machinable size in micro EDM [J]. CIRP Annals-Manufacturing Technology,2005,54(1):167-170.
    94. Egashira KMk. EDM at low open-circuit voltage [J]. International Journal of Electrical Machining,2005(10):21-26.
    95. Egashira K, Morita Y and Hattori Y. Electrical discharge machining of submicron holes using ultrasmall-diameter electrodes [J]. Precision Engineering,2010,34(1):139-144.
    96.甘雪松.新型蠕动式微细电火花加工装置开发及实现研究[D],上海交通大学硕士学位论文.2007.
    97.唐勇军,胡富强,王振龙等.微细电火花加工技术的最新进展[J].电加工与模具,2005(增刊):36-39.
    98.冯晓光.蠕动式压电驱动微小型电火花加工装置及加工工艺的研究[D],哈尔滨工业大学博士学位论文.1997.
    99.李勇.蠕动式压电/电致伸缩微进给定位机构的研究进展[J].中国机械工程,1999,10(12):1410-1412.
    100.李勇,胡敏,周兆英等.采用蠕动式微进给机构的微细电火花加工装置[J].电加工,1998(2):16-19.
    101.颜国正,赵国光,余承业.微小型任意行程电磁冲击式纳米级步距驱动装置及其控制技术的研究[J].仪器仪表学报,1996,17(4):391-395.
    102.赵万生,刘维东,王振龙.差动往复式微型电火花加工装置的研究[J].机械工程学报,2000,36(9):65-68.
    103.Furutani K. Shibatani K, Itoh N, et al. Parallel link end effector for scanning electrical discharge machining process [J]. Precision Engineering,1998,22(3):131-140.
    104.宋小中,刘正埙,高长水.电致伸缩型电火花微细加工伺服系统的研究[J].电火花,1995(3):7-11.
    105.王振龙,王玉魁,詹涵菁等.一种集成式压电驱动微型电火花加工装置[J].压电与声光,2002,24(4):7-11.
    106.赵伟.电火花加工中电极蚀除及其理论基础的研究[D] 西北工业大学博士学位论文.2003
    107. Singh A and Ghosh A. Thermo-electric model of material removal during electric discharge machining [J]. International Journal of Machine Tools and Manufacture,1999, 39(4):669-682.
    108.Masuzawa T. State of the art of micromachining [J]. CIRP Annals-Manufacturing Technology,2000,49(2):473-488.
    109.任忠辉,宋博岩,韩荣第等.电火花微能脉冲电源研究现状[J].电加工与模具,2006(3):29-32
    110.全勇.电火花微细加工微能脉冲电源模块的研究[D].南吕大学硕士学位论文.2006
    111.贾宝贤,赵万生.王振龙等.微细电火花机床及其关键技术研究[J].哈尔滨工业大学学报.2006,38(3):402-405.
    112.王振龙.微细电火花加工关键技术研究[D],哈尔滨工业大学博士学位论文.2000.
    113.李文卓.微细电火花加工系统及其相关技术的研究[D],哈尔滨工业大学博士学位论文.2002.
    114.Pham D-T, Dimov S, Bigot S, et al. Micro EDM Drilling:Accuracy Study.[J] Advances in Integrated Design and Manufacturing in Mechanical Engineering.2005:281-295.
    115.韦红雨.应用线电极磨削法的电火花精微轴孔加工机理与工艺研究.哈尔滨工业大学博士学位论文.1999.
    116.贾宝贤,胡富强,张勇等.花岗石构件的应用与设计[J].机械,2002.29(5):58-61.
    117.彭书志.花岗石在精密仪器上的应用[J].光学精密工程,1998.6(5):53-56.
    118.高中涛.数控机床基材——花岗石应用探讨和改进[J].制造技术与机床,2007(10):74-76.
    119.Kunieda M, Takaya T and Nakano S. Improvement of dry EDM characteristics using piezoelectric actuator [J]. CIRP Annals-Manufacturing Technology,2004,53(1): 183-186.
    120.Prihandana GS, Mahardika M. Hamdi M, et al. Effect of low-frequency vibration on workpiece in EDM processes [J]. Journal of Mechanical Science and Technology,2011, 25(5):1231-1234.
    121.Yu ZY, Zhang Y, Li J, et al. High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM [J]. CIRP Annals-Manufacturing Technology,2009.58(1):213-216.
    122.Hirao A, Tani T, Mohri N, et al. Some effects of ultrasonic vibration on combined electrical discharge machining and its practical use [J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering,2007,73(7):781-785.
    123. Yan BH, Wang AC, Huang CY, et al. Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining [J]. International Journal of Machine Tools and Manufacture.2002,42(10):1105-1112.
    124. Zhang QH, Zhang JH, Deng JX, et al. Ultrasonic vibration electrical discharge machining in gas [J].10th International Manufacturing Conference in China (IMCC 2002), October 11,2002-October 11,2002,2002,129:135-138.
    125. Hung J-C, Lin J-K, Yan B-H, et al. Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining [J]. Journal of Micromechanics and Microengineering,2006.16(12):2705-2713.
    126. Yeo SH and Tan LK. Effects of ultrasonic vibrations in micro electro-discharge machining of microholes [J]. Journal of Micromechanics and Microengineering.1999,9(4):345-352.
    127.朱保国,王振龙.微细轴的电加工技术[J].电加工与模具,2005(4):1-4.
    128.王立影,林建平,胡琦等.微细轴加工技术[J].现代制造工程,2007(5):127-130.
    129.Uhlmann E. Piltz S and Jerzembeck S. Micro-machining of cylindrical parts by electrical discharge grinding [J]. Journal of Materials Processing Technology.2005,160(1):15-23.
    130.Masuzawa T, Yamaguchi M and Fujino M. Surface finishing of micropins produced by WEDG [J]. CIRP Annals-Manufacturing Technology,2005,54(1):171-174.
    131. Hu F-Q, Wang Z-L, Zhao W-S, et al. Wire electro-discharge grinding (WEDG) and its application [J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2003,35(10):1171-1174.
    132.贾宝贤,·胡富强,王振龙等.线电极电火花磨削技术在微细加工中的应用[J].电加工与模具,2006(增刊):22.25.
    133.胡富强,王振龙,赵万生等.线电极放电磨削(WEDG)技术的研究与应用[J].哈尔滨工业大学学报,2003,35(10):1171-1174.
    134.Yamazaki M, Suzuki T, Mori N, et al. EDM of micro-rodes using self-drilled holes [J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering,2005, 71(5):545-548.
    135. Yamazaki M, Suzuki T, Mori N, et al. EDM of micro-rods by self-drilled holes [J],2004, 149:134-138.
    136.周林,王宝瑞.自成形微细电极制备技术研究[J].电加工与模具,2006(2):50-53.
    137.Shimada S, Tanaka H, Mohri N, et al. Molecular dynamics analysis of self-sharpening phenomenon of thin electrode in single discharge [J],2004,149:358-362.
    138. Zhao WS, Cao GH, Wang ZL, et al. Primary Study on Instantaneous Fabricating Mechanism of Tungsten Microelectrode Based on Single Discharge and Its Application [J]. Advances in Grinding and Abrasive Processes:Selected Papers from the 12th Grinding and Machining Conference, November 28,2003-November 30,2003,2004,258-259: 496-50].
    139.Cao G, Wang Z, Chi G, et al. Rapid fabrication of tungsten microelectrode based on a single discharge and its application [J]. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering,2003.39(7):43-47.
    140. Takezawa H, Mohri N, Ito Y, et al. Rapid production of a thin electrode by single discharge machining (2nd report)-Dynamic behavior observation of thinning phenomenon [J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering,2003, 69(5):716-720.
    141.金柏冬,王振龙,彭子龙等.电火花沉积加工微细结构的研究[J].华中科技大学学报(自然科学版),2007,35(增刊):89-91.
    142. Mohri N and Tani T. Micro-pin electrodes formation by micro-scanning EDM process [J]. CIRP Annals-Manufacturing Technology.2006,55(1):175-178.
    143.张天鹏,云乃彰,陈建宁.微细轴放电反拷成形方式的比较研究[J].电加工与模具.2006(4):29-31.
    144.Uhlmann E, Piltz S and Oberschmidt D. Machining of micro rotational parts by wire electrical discharge grinding [J]. Production Engineering,2008,2(3):227-233.
    145.Masuzawa T, Fujino M, Kobayashi K, et al. Wire Electro-discharge Grinding for Micro-Machining [J]. CIRP Annals 1985:Manufacturing Technology, Annals of the International Institution for Production Engineering Research.35th General Assembly of CIRP.,1985,34:431-434.
    146.T.Masuzawa, M.Yamaguachi, M.Fujino. Surface Finishing of Micropins Produced by WEDG. CIRP Annals.2005,54(1):171-174.
    147. George PM, Raghunath BK, Manocha LM, et al. EDM machining of carbon-carbon composite-A Taguchi approach [J]. Journal of Materials Processing Technology,2004, 145(1):66-71.
    148.杨德.试验设计与分析[M].北京:北京工业大学出版社.2002.
    149.峁诗松,周纪芗,陈颖.试验设计[M],北京:中国统计出版社.2004.
    150. Lee HT and Yur JP. Characteristic analysis of EDMed surfaces using the Taguchi approach [J]. Materials and Manufacturing Processes,2000,15(6):781-806.
    151. Prihandana GS, Mahardika M, Hamdi M, et al. Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes-Taguchi approach [J]. International Journal of Machine Tools and Manufacture,2009,49(12-13):1035-1041.
    152.Haddad MJ, Tajik M, Tehrani AF, et al. An experimental investigation of cylindrical wire electrical discharge turning process using Taguchi approach [J]. International Journal of Material Forming,2009,2(3):167-179.
    153.刘朝荣.试验设计与分析[M].武汉:湖北科学技术出版社.1988.
    154.蔡长韬,曾焕鑫.基于信噪比的线切割工艺参数优化分析[J].西华大学学报(自然科学版),20]],30(3):21.24.
    155.Sathiya P, Aravindan S and Noorul Haq A. Optimization for friction welding parameters with multiple performance characteristics [J]. International Journal of Mechanics and Materials in Design,2006,3(4):309-318.
    156.顾丰.电火花微小孔加工工艺参数优化及建模的研究[D].大连理工大学硕士学位论文.2006.
    157.Elsayed EA and Chen A. Optimal levels of process parameters for products with multiple characteristics [J]. International Journal of Production Research,1993.31(5):1117-1132.
    158.邓聚龙.灰色系统理论教程[M],武汉:华中理工大学出版社.1990.
    159.傅立.灰色系统理论及其应用[M].北京:科学技术文献出版社.1992.
    160. Somashekhar KP, Mathew J and Ramachandran N. Multi-objective optimization of micro wire electric discharge machining parameters using grey relational analysis with Taguchi method [J],2011,225:1742-1753.
    161. Lin CL. Lin JL and Ko TC. Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method [J]. International Journal of Advanced Manufacturing Technology,2002,19(4):271-277.
    162. Singh PN, Raghukandan K and Pai BC. Optimization by Grey relational analysis of EDM parameters on machining Al-10%SiCP composites [J]. Journal of Materials Processing Technology,2004,155-156(1-3):1658-1661.
    163. Xie Z, Zheng J and Quan B. Optimization by grey relational analysis of EDM parameters on machining Ti-6A1-4V [J].2010 International Conference on Manufacturing Engineering and Automation, ICMEA2010, December 7,2010-December 9,2010,2010. 139-141:540-544.
    164. Jung JH and Kwon WT. Optimization of EDM process for multiple performance characteristics using Taguchi method and Grey relational analysis [J]. Journal of Mechanical Science and Technology,2010,24(5):1083-1090.
    165.Beri N, Kumar A, Maheshwari S, et al. Optimisation of electrical discharge machining process with CuW powder metallurgy electrode using grey relation theory [J]. International Journal of Machining and Machinability of Materials,2011,9(1-2):103-115.
    166.Kao JY, Tsao CC, Wang SS, et al. Optimization of the EDM parameters on machining Ti-6A1-4V with multiple quality characteristics [J]. International Journal of Advanced Manufacturing Technology,2010,47(1-4):395-402.
    167. Jia Z, Gu F, Wang F, et al. Parameter optimization of EDM micro-and-small holes based on signal-to-noise and grey relational grade [J]. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering.2007,43(7):63-67.
    168.张岐山,梁亚东,吕作良等.灰关联度计算的新方法[J].大庆石油学院学报.1999.23(4):61-63.
    169.张颖超,周媛,刘雨华.基于范数灰关联度的指标权重确定方法[J].统计与决策.2006(1):20-22.
    170.陶志穗,魏航,林健良.基于信噪比与范数灰关联度的工艺参数设计[J].机械设计.2009,26(8):69-71.
    171.Masuzawa T and Toenshoff HK. Three-dimensional micromachining by machine tools [J]. CIRP Annals-Manufacturing Technology,1997,46(2):621-628.
    172. Reynaerts D and Van Brussel H. Three-dimensional silicon microcomponents manufactured by micro-electro discharge machining [J]. Micromachined Devices and Components Ⅲ, September 29.1997-September 29,1997,1997,3224:352-359.
    173. Li J-Z, Luan J-J, Yu H-L, et al. A new method of electrode wear compensation in 3D micro-EDM [J]. Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, 2011,51(4):525-528.
    174.Yan M-T and Lin S-S. Process planning and electrode wear compensation for 3D micro-EDM [J]. International Journal of Advanced Manufacturing Technology,2011, 53(1-4):209-219.
    175.王振龙,赵万生,刘光壮.基于分层制造原理的微细电火花加工技术研究[J].机械工程学报,2002,38(2):22.26.
    176.佟浩,李勇,崔晶等.微细电火花伺服扫描加工实验研究[J].电加工与模具,2006(3):33.36.
    177. Zhao W, Yang Y, Wang Z, et al. A CAD/CAM system for micro-ED-milling of small 3D freeform cavity [J].2004,149:573-578.
    178.赵万生,李志勇,王振龙等.微三维结构电火花铣削关键技术研究[J].微细加工技术,2003(3):49-55.
    179. Li Y, Tong H, Yu D-W. et al. Servo scanning process of 3D micro EDM [J]. Mami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering,2008,6(4):307-311.
    180.李勇,佟浩,郁鼎文等.三维微细电火花伺服扫描加工工艺[J].纳米技术与精密工程,2008,6(4):307-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700