用户名: 密码: 验证码:
烧结混合料制备过程智能集成优化控制策略及其工业应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧结过程是炼铁工艺中的重要流程,其中的配料与混合制粒过程属于混合料制备过程。在实际工业生产中,混合料制备过程并未得到充分优化,在配料方面存在混合料成分准确率不高,烧结矿质量波动的问题;存在成本和硫含量偏高,经济效益和环境效益不高的问题;在混合制粒方面,存在混合料粒度分布欠合理,烧结工序能耗高的问题。针对上述问题,本文围绕混合料制备过程智能集成优化控制策略展开研究,主要的研究工作与创新点如下:
     (1)基于机理分析和数据驱动的烧结配料过程智能集成建模方法
     针对烧结矿质量预测复杂,配料准确率较低而导致烧结矿质量波动的问题,提出一种烧结矿质量级联集成预测模型。首先,分析烧结过程中化学反应物质质变和量变关系,建立烧结矿质量的机理模型;根据灰色关联度分析方法确定影响烧结矿质量的关键参数,并将其区分为已知的配料参数信息和未知的烧结过程状态参数;依据烧结生产稳定性要求,建立T-S模糊融合的GM(1,1)灰色模型和最小二乘支持向量机(LS-SVM)集成模型,获得烧结过程状态参数合理的预测值。在此基础上,分别建立具有全局逼近能力BP神经网络模型(BPNN)和局部泛化能力的LS-SVM模型以预测烧结矿质量,并从信息论的观点出发,提出一种根据预测误差序列的变异程度加权的信息熵融合方法,通过对机理模型、BPNN和LS-SVM模型的预测结果进行加权集成,获得准确的烧结矿质量预测值。仿真结果和实际运行表明级联集成模型的预测精度高于单级预测模型和级联单一预测模型,能够准确预测烧结矿质量,满足配料计算对预测精度和数据完备性的要求。
     通过研究焦粉配比与烧结矿质量之间的数值关系,建立以烧结矿质量为约束的焦粉配比优化模型;通过研究烧结过程的主要物理、化学变化,建立基于热平衡的焦粉配比下限模型,从而缩小焦粉配比优化模型的搜索范围,克服了传统经验配比难以实现焦粉用量优化的局限性,为实现烧结配料过程节能目标奠定了基础。
     (2)兼顾降低成本与减少硫含量的烧结配料多目标优化模型
     针对传统配料方法中存在成本和污染物元素含量偏高,而一般的配料优化模型既缺乏对烧结配料工艺过程的合理描述,也缺乏对能耗、环境效益的关注问题,结合烧结配料中一次配料与二次配料不同的工艺特点和指标要求,在分析烧结过程原料关键化学成分指标和经济性基础上,以库存量和烧结矿化学成分指标为约束条件,建立一种基于线性加权和的烧结配料多目标优化模型(包括一次配料和二次配料多目标优化模型),较传统的配料成本优化模型而言,实现兼顾降低配料成本与减少硫含量的烧结配料多目标优化。
     (3)烧结配料多目标综合优化方法
     在建立基于线性加权和的烧结配料多目标优化模型的基础上,本文设计基于线性规划(LP)和遗传-粒子群(GA-PSO)的烧结配料多目标综合优化算法,搜索一次配料与二次配料优化模型的最优配比。该算法首先采用LP方法求解基于线性加权和的烧结配料多目标优化模型的最优解,若LP方法计算失效,则采用GA-PSO算法进行搜索,算法搜索初期采用基本粒子群算法(PSO),当PSO收敛停滞,采用遗传算法(GA)的交叉、变异操作增加粒子群的多样性,避免了基本PSO算法收敛末期的振荡特点,实现快速收敛。本文将烧结配料多目标综合优化算法应用工业生产现场,实现烧结配料配比优化。
     (4)基于粒度分布评估的混合制粒智能集成优化控制策略
     混合料粒度分布影响因素众多,而工艺指标仅对混合料粒度分布进行定性描述。粒度分布优化控制缺乏准确的数学模型和明确的优化目标,采用传统优化方法与控制策略难以实现粒度分布优化控制。针对上述问题,本文提出一种基于粒度分布评估与优化的控制算法。首先,提出粒级参数的概念,将连续的粒度分布用离散的粒级参数表示;其次,分析筛分实验粒级参数与对应混合料的烧结状态,采用料层厚度和平均透气性指数建立模糊评估函数,建立粒级参数与对应评估值的样本集,采用基于BP神经网络方法建立粒级参数的评估模型;再次,以评估模型为目标函数,以粒级参数为决策变量,在生产边界条件的约束下采用PSO算法求解获得最优粒级参数;最后,建立水分设定模型,通过代入最优粒级参数求解得到制粒过程水分优化设定值,克服了传统水分控制难以实现粒度分布优化控制的局限性。仿真实验表明:算法有效改善了制粒效果。
     (5)混合料制备过程优化控制策略的工业应用
     结合工业现场实际,根据某360m2烧结生产线进行系统软件和数据流设计,建立烧结配料优化与决策支持系统,实现企业兼顾配料成本与减少焦粉用量、降低硫含量目标的综合优化,取得了明显的经济效益和环境效益。
Sintering is one of the important loops in the iron ores smelting process. The burden and mixing granulation belong to Iron Ores Mixture Preparation (IOMP). In actual industrial process, IOMP process has not been optimized enough. In the burden process, the proportions are with low accuracy leading the fluctuation of sintered ore quality, and the high sulfur content and cost cause a low economical and environmental benefit. In mixing granulation process, irrational granularity distribution may cause high energy consumption in sinttering. To deal with the problems, the thesis focuses on intelligent integrated optimization and control strategy in IOMP. Main researches and innovations of the thesis are given below:
     (1) An intelligent integrated modeling method for burden process based on mechanism analysis and data-driven method
     To deal with the quality fluctuation problem caused by the complexity of sintering quality prediction and low accuracy of ores proportions, a kind of intelligent integrated models with cascade structure for sinter qualities prediction is put forward. Firstly, after analyzing the qualitative and quantitative changes of chemicals in sintering process, the mechanism models of sinter qualities are worked out. On the basis of grey relational analysis, key parameters affecting the quality of sintered ore are found, and then they are separated into two parts:the known proportion information and the unkown sintering states parameters. According to the sintering stability requirements, Integrated T-S fuzzy fusion models, which are consisted by Gray Model (GM(1,1)) and Least Squares Support Vector Machine (LS-SVM), are worked out to give rational prediction values of sintering states papameters. On the above basis, BP Neural Network (BPNN) with global approximation capbility and LS-SVM with local generalization capability are seperatly worked out to predict the qualites of sintered ore. After that, from the viewpoint of information theory, an information entropy fusion method weitghting outputs by the variation degree of prediction error sequence is designed to integrate the outputs of mechanism model, BPNN and LS-SVM, so that the qualites of sintered ore can be predicted correctly. The simulation and industrial applications show that the accuracy of intelligent integrated model with cascade structure is higher than single-stage prediction model or single model with cascade structure. It can predict qualites of sintered ore correctly and satisfy data completeness requirements during burden optimization.
     After analyzing the numerical relationship between coke ratio and qualites of sintered ore, a coke proportion optimization model constrainted by qualites of sintered ore is proposed. Then according to the analysis of the main physical and chemical changes in sintering process, a computing model for lower limit of coke proportion based on heat balance is worked out to narrow the searching range of coke in the optimization model. The model can overcome the difficulty of conventional experience-based proportioning method that it is hard to realize coke proportion optimization, and establishes the foundation of energy saving optimization.
     (2) A multi-objective optimization model of burden process for cost and sulfur content reducing
     In the burdening process, the traditional proportion methods usually is with high cost and sulfur content, and the ordinary optimization models can neither appoarch to the burden process precisely nor consider the cost, energy consumption and environment benifit comprehensively. To deal with those problems, linear weighted multi-objective optimization models of burden process (including primary and secondary proportion optimization models) using inventory and sintered ore chemical constraints, which is based on the different characteristics of primary and secondary proportions as well as the economy and key chemical components analysises of different materials, are proposed in the thesis. The optimization models could realize the comprehensive optimization of reducing cost and sulfur content compared with conventional proportion cost optimization model.
     (3) Multi-objective comprehensive optimization algorithm of burden process
     Based on the linear weighted multi-object optimization models of burden process, a multi-objective comprehensive optimization algorithm, which is integrated Linear Program (LP) with Genetic Algorithm and Particle Swarm Optimization (GA-PSO), is proposed to search the optimal solutions of primary and secondary proportions in the thesis. Firstly, LP method is applied to solve the linear weighted multi-object optimization models. If it does not work, GA-PSO algorithm is implemented. In this algorithm, Particle Swarm Optimization (PSO) algorithm is used during the early period. When PSO stops converging, the operations of crossing and mutations from Genetic Algorithm (GA) are executed with a certain probability to increase diversity of particle group, which avoids the fluctuation in late convergence and increase the convergence rate. The multi-objective comprehensive optimization algorithm is realized in actual industrial application to optimize the burden process.
     (4) Intelligent integrated optimal control algorithm for mixing granulation based on evaluation of granularity distribution
     The factors effecting granularity distributions of iron ores mixture are various, while the process index of granularity distributions is quantitative. Hence, the granularity distribution optimal control lacks of accurate mathmatics models and clear targets, the process can hardly be optimized by using traditional optimal control strategies. Aimed at those problems, the thesis puts forward a control algorithm based on evaluation and optimization of granularity distribution. Firstly, the conception of granularity parameters is proposed to describe the continuous granularity distribution. Secondly, by analyzing the screening experiment datas and the corresponding sintering states, the height of material layer and the average permeability index are chosen to build the fuzzy evaluating functions, and then the sample set of granularity parameters and evaluation values can be obtained and BPNN can be trained to build the granularity parameters evaluating model. Thirdly, the optimal granularity parameters could be calculated using PSO algorithm, by taking the granularity parameters evaluating model, granularity parameters and process boundaries as objective function, decision variables and constraints, respectively. Finally, humidity setting model is built to covert the granularity parameters into real-time optimal humidity control setting value in mixing granulation process。The algorithm overcomes the limitation that the conventional humidity control is difficult to realize the granularity distribution optimal control. The simulation shows that the algorithm improves the effection of granulity distribution.
     (5) Industrial application of optimal control strategy in IOMP
     Based on industrial reality, software and data stream are designed, and then the burden optimization and decision support system is built for a360m2sintering production line to realize the comprehensive optimization of cost, energy consumption and sulfur content reducing, which bring obvious economical and environmental benefits.
引文
[1]黄天正,傅菊英.烧结球团厂设计[M].长沙:中南工业大学出版社,1995,1-390.
    [2]栾颖.烧结系统工艺分析[J].现代冶金,2010,38(2):29-30.
    [3]翟利军.烧结机布料的改进[J].烧结球团,2005,30(5):57-59.
    [4]贯增,刘文光,刘来福.首钢烧结提高生石灰配比的试验及改进[J].烧结球团,2006,31(3):45-48.
    [5]李静.圆筒混合机衬板安装方式的改进[J].烧结球团,2008,33(4):56-58.
    [6]周继程,郦秀萍,上官方钦等.我国烧结工序能耗现状及节能技术和措[J].冶金能源,2010,29(2):23-26.
    [7]郜学.中国烧结行业的发展现状和趋势分析[J].钢铁,2008,43(1):85-88.
    [8]汤程,李希胜.基于人工神经网络的烧结终点预报系统[J].微计算机信息,2007,23(6):245,256-257.
    [9]向婕,吴敏.一种基于改进遗传算法的模糊神经网络控制器及其在烧结终点控制中的应用[J].信息与控制,2008,37(2):235-241.
    [10]周传强,白晨光,吕学伟等.铁矿粉制粒特性模糊聚类分析[J].烧结球团,2009,34(3):16-20.
    [11]郭立新,李浩,黄秋野等.烧结机模糊控制规则设计及其仿真[J].东北大学学报(自然科学版),2006,27(10):1075-1078.
    [12]范晓慧,龙红明,袁晓丽,一种开发烧结过程专家系统的新方法及其应[J].计算机工程与应用,2006,(32):177-179.
    [13]李宗平,孙英,陈猛胜.烧结混合加水专家控制模型研究和实现[J].烧结球团,2010,35(2):26-29.
    [14]韩延祥,王未磊,徐立哲等.基于进化策略的二次配料优化[J].机械工程师,2009,(8):55-56.
    [15]商秀芹,卢建刚,孙优贤.基于遗传规划的铁矿烧结终点2级预测模型[J].浙江大学学报(工学版),2010,44(7):1266-1269,1281.
    [16]R. C. Eberhart, J. Kennedy. A new optimizer using particles swam theory [A]. Proc Sixth International Symposium on Micro Machine and Human Science [C]. Japan,1995:87-92.
    [17]S. N. Camponogarae, Talukdar. A genetic algorithm for constrained and multiobjective optimization [A].3rd Nordic Workshop on Genetic Algorithm and Their Application [C]. Finland,1997:49-62.
    [18]蔡自兴,徐光祐.人工智能及其应用[M].北京:清华大学出版社,2003,1-232.
    [19]吴敏,廖环宇,曹卫华等.烧结过程智能优化控制方法及应用(上)[J].冶金自动化,2010,34(2):6-9.
    [20]吴敏,廖环宇,曹卫华等.烧结过程智能优化控制方法及应用(下)[J].冶金自动化,2010,34(3):1-4.
    [21]M. Wu, J. H. She, M. Nakano. An expert control system using neural networks for the electrolytic process in Zinc hydrometallurgy [J]. Engineering Applications of Artificial Intelligence.2001,14 (5):589-598.
    [22]郝东,蒋昌俊,林琳.基于Petri网与GA算法的FMS调度优化[J].计算机学报,2005,28(2):201-208.
    [23]李明华,屈彦明,周孟戈,等.基于多Agent及Petri网的变压器故障诊断系统[J].西安交通大学学报,2006,40(2):223-227.
    [24]M. A. Awadallah, M. M. Morcos. Automatic diagnosis and location of open-switch fault in brushless DC motor drives using wavelets and neuro-fuzzy systems [J]. IEEE Transactions on Energy Conversion,2006,21 (1):104-111.
    [25]B. Lin, B. Recke, J. K.H. Knudsen, S. B. Jorgensen. A systematic approach for soft sensor development [J]. Computers and Chemical Engineering.2007, 31 (5):419-425.
    [26]Y. H. Kim, F. L. Lewis, D. M. Dawson. Intelligent optimal control of robotic manipulators using neural networks [J]. Automatica,2000,36 (9):1355-1364.
    [27]S. P. Moustakidis, G. A. Rovithakis, J. B. Theocharis. An adaptive neuro-fuzzy tracking control for multi-input nonlinear dynamic systems [J]. Automatica, 2008,44 (3):851-856.
    [28]T. Kawaguchi, M. Yoshinaga. Development and Application of an Integrate Simulation Model for Iron Ore Sintering [J]. Iron Making Proceeding,1987(46): 99-106.
    [29]F. Patission. Study of moister transfer during the strand sintering process [J]. Metal Transactions,1990,2 (21B):37-47.
    [30]G. S. Upadhyaya. Some issues in sintering science and technology [J]. Materials Chemistry and Physics,2001,67 (1):1-5.
    [31]Y. Hideyuki, K. Takazo. Development of a 3-D sinter process mathematical simulation model [J]. Iron and Steel Institute of Japan,2005,45(4):522-531.
    [32]E. Donskoi, J. R. Manuel, J. M. Clout. Mathematical modeling and optimization of iron ore sinter properties [J]. Israel Journal of Chemistry,2007,47(4): 373-379.
    [33]A. G Waters. A mathematical model for the prediction of granule size distribution for multi-component sinter feed [J]. Transactions of ISIJ,1989,29 (4):274-283.
    [34]J. Khosa, J. Manuel. Predicting granulating behaviour of iron ores based on size distribution and composition [J]. ISIJInternational,2007,47(7):965-972.
    [35]N. D. Corte, J. L. Gerbe. Automation and modelisation of the process at the usinor Dunkirk No.3 sintering plant [A]. Proceedings of the 4th International Symposium on Agglomeration [C], Toronto,1985,787-804.
    [36]N. Tamure, M. Konishi. Mathematical approach for the optimization of sintering process operation [A]. In IFAC Automation in Mining, Mineral and Metal Process [C], Tokyo,1986,203-208.
    [37]R. Venkataramana, S. S. Gupta, P. C. Kapur. A combined model for granule size distribution and cold bed permeability in the wet stage of iron ore sintering process [J]. International Journal of Mineral Processing,1999,57(1):43-58.
    [38]K. Hamada, Y. Matoba. Systeme de controle de la composition chemique de I'agglomere [J]. Revue de metallurgie-CIT,1987,5 (2):409-419.
    [39]P. P. Kanjilal, E. Rose. Application of adaptive prediction and control methods for Improved operation of the sintering process [J]. Ironmaking and Steelmaking, 1986,13(6):289-293.
    [40]张军红,沈峰满,谢安国.G-BP算法在烧结矿FeO指标预测中的应用[J].东北大学学报(自然科学版),2002,23(11),1074-1075.
    [41]向齐良,吴敏,侯奔等.基于成分预测模型的矿石二次配料专家优化方法[J].山东大学学报(工学版),2005,35(4):43-46.
    [42]M. Wu, D. Y. Shen. Expert control based on neural networks and mathematical models for the coal blending processs [J]. Control Theory and Applications, 2000,17(6):868-872.
    [43]阳春华,沈德耀,吴敏等.焦炉配煤专家系统的定性定量综合设计方法[J].自动化学报,2000,26(2):262-272.
    [44]胡方霞,蓝浩.基于RBFNN的烧结矿FeO含量预报系统研究[J].微计算机信息,2008,24(12):39-41.
    [45]王培珍,郑诗程,周芳.基于模糊推理与神经网络的烧结图像识别[J].烧结球团,2006,31(6):22-27,30.
    [46]吴晓峰.基于机尾断面红外特征构建烧结过程温度三维趋势图的方法研[J].冶金自动化,2007,31(2):14-17.
    [47]王春生.铅锌二次配料过程的智能集成建模与优化控制策略研究[D].长沙:中南大学,2008.
    [48]W. H. Gui, Y. L. Wang, C. H. Yang. Composition-prediction-model-based intelligent optimization for lead-zinc sintering blending process [J]. Measurement and Control,2007, (40):176-181.
    [49]夏征宇,张永中.提高焦粉破碎质量的攻关实践[J].烧结球团,2008,33(6):45-48.
    [50]张瑞堂,李真明,周长强.焦粉粒度对济钢烧结矿粒度的影响[J].烧结球团,2008,33(1):54-56.
    [51]J. Pan, D. Q. Zhu,X. L. Zhou. Theoretical studies of the emission rule of SO2 and NO, in iron ore sintering [A]. The 4th International Conference on Bioinformatics and Biomedical Engineering [C]. Chengdu,2010:1-5.
    [52]彭坤乾.烧结料层温度场模拟模型和烧结矿质量优化专家系统的研究[D].长沙:中南大学,2011.
    [53]S. K. Cao, J. Xu, L. Shi. Temperature field analysis of multi-segments continuously sintering furnace [A]. IEEE International Symposium on Knowledge Acquisition and Modeling Workshop [C], Wuhan,2008:976-978.
    [54]K. Harada, Y. Fujii, S. Takeuchi. Measurement of temperature distribution of a sintering process by magnetometer [J]. IEEE Transactions on Magnetics,1984, 20 (5):1726-1728.
    [55]C.Y. Chou, P. C. Kuo, Y. D.Yao. Magnetoresistance and microstructure of the sintered Ni doped Fe3O4 ferrites [J]. IEEE Transactions on Magnetics,2005, 41 (2):906-908.
    [56]W. X. Li, R. Zeng, Y. Zhang. Evolution of electromagnetic properties and microstructure with sintering temperature for MgB2/Fe wires made by combined In-Situ/Ex-Situ process [J]. IEEE Transactions on Applied Superconductivity, 2011,21 (3):2635-2638.
    [57]Y. Liu, Y. L. Ma, J. Li. Magnetic properties and microstructure studies of hot-deformed Nd-Fe-B magnets with Zr addition [J]. IEEE Transactions on Magnetics,2010,46 (7):2566-2569.
    [58]T. S. Zhao, Yoon B. Kim, and W. Y. Jeung. Magnetic properties and microstructure of NdFeB sintered magnets by the addition of Ag powder [J]. IEEE Transactions on Magnetics,2000,36 (5):3318-3320.
    [59]T. Horikawa, K. Miura, M. Itoh. Characterization and microwave absorbing properties of Nd-Fe-Ti intermetallic compounds derived from Nd-Fe-B sintered magnet scraps [J]. IEEE Transactions on Magnetics,2005,41 (6):2064-2070.
    [60]刘素丽.基于线性规划进行优化配矿[J].涟钢科技与管理,2002,6:19-22.
    [61]王道群.线性规划在烧结矿配料中的应用[J].冶金丛刊,2005,157(3):4-7.
    [62]D. L. Zheng, Z. L. Zhao. Application of gray linear programming in sintering mixing calculation [J]. Journal of University of Science and Technology Beijing, 2000,7 (4):273-276.
    [63]王炜,陈畏林,贾斌等.基于线性规划和神经网络的优化二次配料系统开发[J].烧结球团,2006,31(1):27-30.
    [64]赵晓煜,王福利.基于目标规划的多物料配比优化计算[J].烧结球团,1996,(3):16-20.
    [65]杨东进,陈继国,于忠念等.二次配料优化分析[J].烧结球团,2000,25(1):14-16.
    [66]欧阳奇,白晨光,何木光等.考虑性能指标的烧结机操作优化控制模型[J].烧结球团,2005,30(3):27-29.
    [67]K. I. Smith, R. M. Everson, J. E. Fieldsend. Dominance-based multiobjective simulated annealing [J]. IEEE Transactions on Evolutionary Computation,2008, 12 (3):323-342.
    [68]Y. Y. Shiu, K. C. Chi. A genetic algorithm that adaptively mutates and never revisits [J]. IEEE Transactions on Evolutionary Computation,2009,13 (2): 454-472.
    [69]M. S. Alam, M. M. Islam, X. Yao. Recurring two-stage evolutionary programming:A novel approach for numeric optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2011, 41 (5):1352-1365.
    [70]S. T. Li, M. K. Tan, I.W. Tsang. A hybrid PSO-BFGS strategy for global optimization of multimodal functions [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2011,41 (4):1003-1014.
    [71]C. F. Juang, P. H. Chang. Designing fuzzy-rule-based systems using continuous Ant Colony Optimization [J]. IEEE Transactions on Fuzzy Systems,2010, 18 (1):138-149.
    [72]Y. M. Cheng, M. Y. Jiang, D. F. Yuan. Novel clustering algorithms based on improved Artificial Fish Swarm Algorithm [A]. The 6th International Conference on Fuzzy Systems and Knowledge Discovery [C], Tianjin,2009: 141-145.
    [73]T. J. Hsieh, W. C. Yeh. Knowledge discovery employing grid scheme least squares support vector machines based on orthogonal design Bee Colony Algorithm [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2011,41(5):1198-1212.
    [74]吕学伟.基于遗传算法的二次配料综合优化研究[J].钢铁,2007,42(4):12-15.
    [75]李智.免疫遗传算法在烧结矿配料优化中的应用[J].上海金属,2004,26(6):23-28.
    [76]白锐,柴天佑.基于PSO算法的生料浆配料过程的优化控制[J].控制工程,2009,16(1):76-79.
    [77]李智,姚驻斌.粒子群算法在烧结矿配料优化中的应用[J].有色金属,2005,57(3):51-54.
    [78]徐伟等.蚁群算法在烧结混匀矿配料中的应用[J].冶金自动化,2007,6:12-15.
    [79]李智,谢兆鸿.蚁群算法在原料矿粉混匀优化中的应用[J].矿冶,2004,13(2):75-78.
    [80]李智,卢兰光.模拟退火优化算法在混匀配料中的应用[J].钢铁研究,2001,(3):38-40.
    [81]李凯斌,卢建刚等.基于改进差分进化算法的烧结矿配料优化[J].仪器仪表学报,2008,29(4):245-249.
    [82]吴敏,丁雷,曹卫华.基于混合粒子群算法的二次配料优化[J].信息与控制,2008,37(2):242-246.
    [83]贺建峰,蔡漳平.烧结混合料制粒装置[P].中国专利:CN99247139.7,2000.
    [84]甘勤,向绍宏,何群,文永才等.铁精矿烧结混合料制粒方法[P].中国专利:CN200810302466.1,2008.
    [85]毛晓明,薛平.宝钢烧结自动控制的发展[J].烧结球团,2004,29(5):23-26.
    [86]欧珍红,罗贞建,田发超.涟钢130m2烧结机的技术改造[J].烧结球团,2004,29(1):31-33.
    [87]王静波,吴凤霞,李发展.降低烧结返矿率的途径与实践[J].烧结球团, 2003,28(4):53-55.
    [88]吴力华,陈雪峰.攀钢烧结混合料制粒因素的研究与优化[J].烧结球团,2006,31(1):19-22.
    [89]孙丽芬,吕庆,刘连继,李晓云等.唐钢1#烧结机混合料制粒效果[J].河北理工大学学报(自然科学版).2007,29(3):11-15.
    [90]李强.太钢高精粉率原料条件下制粒参数优化的探索[J].烧结球团,2008,33(4):24-28.
    [91]刘芬,申群太.烧结制粒工艺模糊PID湿度控制[J].可编程控制器与工厂自动化,2006,(12):103-106.
    [92]刘芬,申群太.制粒湿度模糊自整定PID串级控制[J].电气传动,2006,36(10):37-55.
    [93]刘芬.铅锌烧结制粒湿度控制系统研究与设计[D].长沙:中南大学,2006.
    [94]蔡文超,申群太.基于组合Smith的模糊PID控制在湿度控制中的应用[J].科学技术与工程,2007,7(8):1617-1620.
    [95]蔡文超.烧结制粒湿度系统优化控制研究[D].长沙:中南大学,2007.
    [96]唐亚平,杨利军.基于前馈补偿策略的制粒湿度控制系统设计与实现[J].电气传动,2007,37(6):42-44.
    [97]唐亚平.基于前馈补偿策略的制粒湿度控制方法及其应用[D].长沙:中南大学,2006.
    [98]李果.以透气性为中心的铅锌矿烧结混合料水分智能集成控制[D].长沙:中南大学,2002.
    [99]李果,张广明,凌祥等.基于自适应变步长BP神经网络的烧结混合料水分智能控制[A].7th World Congress on Intelligenct control and Automation [C]. Changsha,2008:8676-8679.
    [100]Y. Yu, W. G Liu. Optimum design of conducting sensor for on-line moisture measurement [A].5th World Congress on Intelligent Control and Automation [C]. Hangzhou,2004:3757-3760.
    [101]Y. Yu, T. Zhao, Y. H. Wang. Research on process detecting instrumentation for sinter mixture moisture on-line measurement [A].2007 IEEE International Conference on Control and Automation [C]. Guangzhou,2007:2576-2580.
    [102]Y. Yu, X. Zhang, X. D Yang. Research on moisture measurement of sinter mixture with standing wave method [A].8th International Conference on Electronic Measurement and Instruments [C]. Xi'an,2007:3838-3842.
    [103]冯焕林,贺淑珍.原料合理利用的研究与实践[J].钢铁,2006,41(7):17-20.
    [104]周明顺.鞍钢炼铁原料准备技术应用基础研究[D].沈阳:东北大学,2004.
    [105]张枥.高炉合理炉料结构的研究[D].沈阳:东北大学,2009.
    [106]周取定,孔令坛.铁矿石造块理论及工艺[M].北京:冶金工业出版社,76-79.
    [107]王达,荣冈.时间序列的模式距离[J].浙江大学学报(工学版).2004,38(7):795-798.
    [108]杨永强.基于相似性分析的时间序列数据挖掘研究[D].成都:西南交通大学,2007.
    [109]王建玲,刘思峰,邱广华.基于信息集结的新型灰色关联度构建及应用[J].系统工程与电子技术,2010,32(1):77-81.
    [110]W. M. Lin, C. H. Huang, C. H. Lin. Restoration strategy for secondary power network with grey relational analysis [J]. IET Generation, Transmission and Distribution,2008,2 (2):167-174.
    [111]M. Lu, K. Wevers. Application of grey relational analysis for evaluating road traffic safety measures:advanced driver assistance systems against infrastructure redesign [J]. IET Intelligent Transport Systems,2007,1 (1):3-14.
    [112]王伟,吴敏,曹卫华.基于组合灰色预测模型的焦炉火道温度模糊专家控制[J].控制与决策,2010,25(2):185-190.
    [113]Y. M. Atwa, E. F. El-Saadany. Annual wind speed estimation utilizing constrained grey predictor [J]. IEEE Transactions on Energy Conversion,2009, 24 (2):548-550.
    [114]M. Lu, K. Wevers. Forecasting and evaluation of traffic safety impacts:driving assistance systems against road infrastructure measures [J]. IET Intelligent Transport Systems,2007,1 (2):117-123.
    [115]迟国泰,王际科,杜娟.基于灰色系统理论的商业银行竞争力评价模型[J].控制与决策,2006,21(3):347-350.
    [116]伏玉笋,田作华,施颂椒.灰色系统理论、数据预处理及其应用[J].上海交通大学学报,2001,35(2):258-271.
    [117]熊和金,陈德军.基于灰色系统理论的数据挖掘技术[J].系统工程与电子技术,2004,26(2):184-186.
    [118]罗三定,张中良.自动分布阈值图像多目标分割算法[J].计算技术与自动化,2008,27(2):77-80.
    [119]K. P. Lin, M. S. Chen. On the design and analysis of the privacy-preserving SVM classifier [J]. IEEE Transactions on Knowledge and Data Engineering, 2011,23 (11):1704-1717.
    [120]B. Demir, S. Erturk. Clustering-based extraction of border training patterns for accurate SVM classification of hyperspectral images [J]. IEEE Geoscience and Remote Sensing Letters,2009,6 (4):840-844.
    [121]吕业,邓玉俊,杨慧中.基于类别特征提取的组合支持向量机模型[J].化工学报,2011,62(8):2164-2169.
    [122]阎威武,邵惠鹤.支持向量机和最小二乘支持向量机的比较及应用研究[J].控制与决策,2003,18(3):356-360.
    [123]L. Yu, H. H. Chen, S. Y. Wang. Evolving least squares support vector machines for stock market trend mining [J]. IEEE Transactions on Evolutionary Computation,2009,23 (1):87-102.
    [124]T. Hacib, Y. Le Bihan, M. K. Smail. Microwave characterization using ridge polynomial neural networks and least-square support vector machines [J]. IEEE Transactions on Magnetics,2011,47 (5):990-993.
    [125]蒋英杰,孙志强,谢红卫.基于Bayes信息融合的人为差错概率计算方法[J].系统工程与电子技术,2011,33(4):949-953.
    [126]安剑奇,吴敏,何勇.基于信息融合的高炉料面红外图像分割方法[J].中南大学学报(自然科学版),2011,42(2):391-397.
    [127]Y. M. Zhang, Q. Ji. Efficient sensor selection for active information fusion [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2010,40 (3):719-728.
    [128]马俊峰,张庆灵.T-S模糊广义系统的逼近性[J].控制理论与应用,2008,25(5):837-844.
    [129]R. J. Wai, Z. W. Yang. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2008, 38 (5):1326-1346.
    [130]姚成玉,张荧驿,陈东宁.T-S模糊重要度分析方法研究[J].机械工程学报,2011,47(12):163-169.
    [131]曹卫华,段平,吴敏.基于分级递阶结构的铁矿石烧结过程智能控制[J].仪器仪表学报,2010,31(3):553-557.
    [132]吴晓峰.基于支持向量机的烧结终点预报与控制研究[D].杭州:浙江大学,2008.
    [133]黄建国,罗航,王厚军.运用GA-BP神经网络研究时间序列的预测[J].电子 科技大学学报,2009,38(5):689-692.
    [134]J. J. Rubio, P. Angelov, J. Pacheco. Uniformly stable backpropagation algorithm to train a feedforward neural network [J]. IEEE Transactions on Neural Networks,2011,22 (3):356-366.
    [135]J. H. Xia, Rusli, A. S. Kumta. Feedforward neural network trained by BFGS algorithm for modeling plasma etching of silicon carbide [J]. IEEE Transactions on Plasma Science,2010,38 (2):142-148.
    [136]赵昀,陈庆伟,胡维礼.一种基于信息熵的强化学习算法[J].系统工程与电子技术,2010,32(5):1043-1046.
    [137]黄以锋,景博,茹常剑.基于信息熵的多值属性系统诊断策略优化方法[J].仪器仪表学报,32(5):1003-1008.
    [138]R. J. Romero-Troncoso, R. Saucedo-Gallaga, E. Cabal-Yepez. FPGA-based online detection of multiple combined faults in induction motors through information entropy and fuzzy inference [J]. IEEE Transactions on Industrial Electronics,2011,58 (11):5263-5270.
    [139]胡中华,赵敏.基于人工蜂群算法的TSP仿真[J].北京理工大学学报,2009,29(11):978-982.
    [140]丁海军,冯庆娴.基于boltzmann选择策略的人工蜂群算法[J].计算机工程与应用,2009,45(31):53-55.
    [141]高卫峰,刘三阳,姜飞.混合人工蜂群算法[J].系统工程与电子技术,2011,33(5):1167-1170.
    [142]周亦敏,曾静.基于专家协调控制的智能伺服攻丝系统设计方案研究[J].微计算机信息,2008,24(3):17-18.
    [143]胡建中,许飞云,贾民平.故障诊断系统中专家评价技术的研究[J].中国电机工程学报,2002,22(12):21-25.
    [144]S. H. Won, F. Golnaraghi, W. W. Melek. A fastening tool tracking system using an IMU and a position sensor with Kalman Filters and a Fuzzy Expert System [J]. IEEE Transactions on Industrial Electronics,2009,56 (5):1782-1792.
    [145]刘小华,林杰,邓可.基于遗传粒子群混合的可重入生产调度优化[J].同济大学学报(自然科学版),2011,39(5):726-730,772.
    [146]於世为,魏一鸣,诸克军.基于粒子群-遗传的混合优化算法[J].系统工程与电子技术,2011,33(7):1647-1652.
    [147]J. Shinkyu, S. Hasegawa, K. Shimoyama. Development and investigation of efficient GA/PSO-HYBRID algorithm applicable to real-world design optimization [J]. IEEE Computational Intelligence Magazine,2009,4 (3): 36-44.
    [148]郑培,黎建强.基于模糊评估和马尔可夫预测的供应链动态平衡记分卡[J].系统工程理论与实践,2008,(4):57-64,80.
    [149]王德意,闫伟,杨国清.基于模糊评估的同步发电机混合励磁控制策略研究[J].水力发电学报,2007,26(5):143-148.
    [150]王峻峰,周家启,谢开贵.中压配电网可靠性的模糊评估[J].重庆大学学报(自然科学版),2006,29(2):45-49.
    [151]刘建昌,陈莹莹,张瑞友.基于PSO-BP网络的板形智能控制器[J].控制理论与应用,2007,24(4):674-678.
    [152]王亮,张宏伟,岳琳.PSO-BP模型在城市用水量短期预测中的应用[J].系统工程理论与实践,2007,(9):165-170.
    [153]Z. A. Bashir, M.E. Hawary. Applying wavelets to short-term load forecasting using PSO-based neural networks [J]. IEEE Transactions on Power Systems, 2009,24 (1):20-27.
    [154]胡俊,李宏光.工业分层递阶控制中Petri网协调器的设计与实现[J].计算机集成制造系统,2007,13(12):2316-2321,2330.
    [155]沈志华,赵英凯,王晓荣.全自主移动机器人分层递阶控制研究[J].微计算机信息,2006,22(2):190-191.
    [156]杨海威,詹永麒,施光林.用递阶控制思想改进基于结构的神经网络模型[J].上海交通大学学报,2004,38(8):1369-1372.
    [157]胡文,包伯成,张弓.基于混沌同步的线性卷积系统辨识[J].东南大学学报(自然科学版),2010,40(6):1140-1145.
    [158]窦立谦,宗群,刘文静.面向控制的系统辨识研究进展[J].系统工程与电子技术,2009,31(1):158-164.
    [159]李银国,汤卓群,黄镭.非持续激励条件下系统辨识递推最小二乘最小范数算法[J].控制理论与应用,2009,26(4):365-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700