用户名: 密码: 验证码:
GNSS信号设计与评估若干理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球导航卫星系统(GNSS)已经成为了重要的基础设施之一。继GPS和GLONASS之后,欧洲和中国已经开始了自主的全球导航卫星系统Galileo、COMPASS的建设。同时,为了巩固GPS在全球导航领域中的领先地位,美国也逐步对传统GPS进行升级,即GPS的现代化。导航信号决定了导航系统的先天性能,对于单个导航系统的性能以及多个系统之间的兼容性和互操作性都有着决定性的影响。因此,无论在新系统的建设还是GPS的现代化过程中,导航信号设计都是全球所关注的焦点。
     论文分两个部分:第一部分针对导航信号性能评估中的两个关键性问题——码跟踪精度和多径误差进行理论分析和论述,从中提取出信号设计的基本指导原则;第二部分综合论述信号设计的理论和方法,讨论信号设计过程中应该考虑那些因素以及如何考虑这些因素,并对GPS和Galileo信号体制进行对比分析,挖掘其设计思想。主要成果有:
     1)伪码跟踪精度评估理论。目前,导航领域应用最广泛的伪码跟踪精度评估理论由Betz创建。但是,Betz对该理论进行详细论证的原始论文并未发表。为了放心地将它应用于导航信号设计过程,有必要进行严格的论证和全面的分析。出于这一目的,本文建立了伪码跟踪精度分析模型,严格推导了基于相干EML、非相干EMLP码跟踪环路的伪码跟踪精度,得到了通用的码跟踪精度评估模型。进一步的分析表明,若信号功率谱关于载波频率对称且传播过程中无相位失真,本文的理论模型可转换为Betz所公开的形式。基于该理论模型,对高斯白噪声环境中的码跟踪精度进行了分析,并从导航信号特征和接收机参数两个方面对码跟踪精度进行了深入讨论。给出了非白色干扰环境中的码跟踪精度理论评估方法,并讨论了干扰频点、干扰带宽及接收机相关器间隔对码跟踪精度的影响。分析的方法和结论可以对导航信号设计起到理论指导作用。
     2)码多径误差评估理论。针对现有多径误差分析主要基于数值分析方法,无法为导航信号设计提供直接理论指导的弊端,本论文建立了码多径误差理论分析模型,推导了可用于带限导航信号分析的多径误差包络理论表达式。基于该理论,给出了多径误差包络下界,对导航信号抗多径性能具有指示作用。理论分析表明,增加导航信号功率谱的高频分量、增大信号的发射带宽,可以提高导航信号的抗多径能力。
     3)导航信号功率谱分析。针对可能出现的伪码周期大于、等于、小于数据位宽的三种情况,分别推导了导航信号功率谱的精确表达式,弥补了传统分析中未考虑子码影响和伪码跨数据位影响的缺陷。在此基础之上,定量分析了码片波形、伪码(主码、子码)、数据速率对导航信号功率谱的影响。
     4)伪码选择的理论和方法。深入探讨了伪码序列对伪码跟踪性能的影响程度,分析了信号间干扰、信号功率谱、码自相关特性、码互相关特性之间的定量关系。分析表明,导航信号性能主要取决于导航信号功率谱包络;由于数据位的影响,伪码线性相关特性比循环相关特性更能反映导航信号性能,并由此定义了伪码线性自相关品质因数、线性互相关品质因数来评估伪码性能,可用于导航信号设计中的伪码选择过程。
     5)系统地给出了导航信号设计的方法。论文将信号性能划分为独立性能和适应能力两个方面。其中,独立性能包括捕获性能、码跟踪性能、载波跟踪性能、解调性能,适应能力包括抗多径能力、抗干扰能力、兼容性和互操作性。在详细讨论上述信号性能与导航信号的码速率、码片波形、码长、码型、信息速率、信道编码、频率参数之间的联系之后,针对如何选择这些参数提出了相应的建议。
     6)GPS和Galileo信号体制分析。将GPS和Galileo信号体制进行详细对比,结合其信号体制发展历程论述它们的设计思想,以起到借鉴作用。
Global Navigation Satellite System(GNSS) is one of the most important infrastructures for nations. Following the GPS and GLONASS, European and china started building their own global navigation satellite system named Galileo and COMPASS. At the same time, in order to consolidate the GPS navigation as the global leader in the field, the United States also gradually upgrades the traditional GPS, that is, the modernization of GPS. GNSS signal determines the inherent performance of the system. It has a decisive impact on both the single system performance and the compatibility and interoperability between multiple systems. Therefore, whether in the construction of new systems, or in the GPS modernization process, signal designing are the focus of global concern.
     The thesis is divided into two parts. The first part analyzes in detail two key problems in navigation signal performance evaluation, code tracking accuracy and code multipath error evaluation, in which the theoretical direction will be extracted. The second part discusses the signal design theory and methods, including what factors should be considered during signal design process and how to take these factors into account. After that, the signal structures of GPS and Galileo are compared, and their design ideas are analyzed. Main contents are as follows:
     1) Research on the PN (Pseudo Noise) code tracking performance evaluation theory is completed. Up to now, the most widely used code tracking performance evaluation theory is presented by Betz. However. Betz's original paper which contains the detail proof of the theory hasn't been published. In order to applies the theory in the navigation signal process, it is necessary to recovery this important work. This thesis sets up a code tracking accuracy analysis model in the 2nd chapter, derives the code tracking accuracy expressions for coherent EML (Early Minus Late) and non-coherent EMLP (Early Minus Late Power) tracking loops. Based on the theory, the effects of GNSS signal characters and receiver parameters on code tracking performance in white noise environment are discussed in detail. Next, the theoretical analysis method of code tracking performance in non-white interference environment is presented, which is followed by the discussion on the effects of interference frequency, bandwidth and receiver correlator spacing on code tracking accuracy. These analysis methods and conclusions are instructive for signal design.
     2) The code tracking Error caused by multipath effect is studied theoretically, and the methods to improve multipath rejection ability in signal design phase are given out. After presents a novel theoretical code tracking multipath error model under band limited conditions, the theoretical expression for multipath error envelope is derived, Using this theoretical expression, we get the theoretical lower bound, which indicates the relationship between signal bandwidth, power spectrum density (PSD) and multipath error envelope. Theoretical analysis and simulation results prove that increase signal bandwidth and the high frequence component of PSD will lead to superior multipath rejection.
     3) This thesis presents three kinds of GNSS signal PSD expression, which are respectively fit for the conditions of PN code period is bigger, equal or smaller than the data bit width. What different from the traditional navigation signal PSD analysis is it considered the effect of second code and effect of data bit transition during one code period. After that, the effects of code shape, PN code and data rate on GNSS signal PSD is detailed discussed.
     4) After discussing the code effects on code tracking performance, the quantitative relation between signal mutual interference, PSD, PN code autocorrelation character and PN code crosscorrelation character is analyzed in detail. Analysis results shows, GNSS signal performance is main decided by PSD envelope. Furthermore, as the influence of data bits, linear correlation characters of PN code are more suited to characterize the code effects on GNSS signal performance than circle correlation characters. Therefore, two new indexes which are called linear autocorrelation merit factor and linear crosscorrelation merit factor are defined to evaluate the correlation performance of PN codes, and they could be used in the code selection process.
     5) GNSS signal design method is given out systematically. We divided the signal performance into independent performance and adaptability of it. Independent performance includes the performance of acquisition, code tracking, carrier tracking performance and demodulation. Adaptability of signal includes multipath rejection ability, anti-jamming ability, compatibility and interoperability. After discussing the relation between these signal performance and signal parameters including chip rate, chip waveform, code length, code type, data rate, FEC coding and carrier frequency, we present the advices on how to select these parameters.
     6) GPS and Galileo signal structures are discussed in detail. We compared the signal structures of GPS and Galileo, discussed their design ideas with the evolution process, analyzed their consideration in signal design, which would be instructive for future signal design works.
引文
[1]谭述森.论卫星导航体制设计.测绘科学技术学报,2006,23(5):3 13-3 16
    [2]Kaplan E D,Hegarty C J.GPS原理与应用.寇艳红.北京:电子工业出版社,2007
    [3]Misra P,Enge P.全球定位系统,信号、测量与性能.罗鸣、曹冲和肖雄兵.北京:电子工业出版社,2008
    [4]Lucas R,Ludwig D.Galileo- System Requirements and Architectures.1999.2097-2101
    [5]Schweikert R,Woerz T,De Gaudenzi R.Technical Assessment of Signal Structures for the Galileo Satellite Navigation System.in:ION GPS-99.1999.2139-2148
    [6]Eissfeller B,Hein G W,Winkel J,et al..Requirements on the Galileo Signal Structure.in:ION GPS 2000.Salt Lake City,UT,2000
    [7]Tytgat L,Campagne P.Galileo:A New GNSS Designed with and for the Benefit of All Kind of Civil User.in:ION GPS 2000.Salt Lake City,UT,2000.1362-1365
    [8]曹冲.Galileo与GNSS的现状和发展前景.数字图书馆论坛,2007(7):6-10
    [9]Martens D,Latterman D.Stewardship and GPS Modernization One Step on the Road to the Future.in:ION GPS '99.Nashville,TN,1999.1747-1754
    [10]Betz J W.The Offset Carrier Modulation for GPS Modernization.1999.639-648
    [11]Van Dierendonck A J.Gnss User Assessment of the Plans and the Benefits of GNSS Modernized Signals and Services.in:Proceedings of the Annual Meeting - Institute of Navigation.Cambridge,MA,United States:Institute of Navigation,Fairfax,VA 22030,United States,2005.201-209
    [12]United States and the European Union Announce Final Design for GPS-Galileo Common Civil Signal.2007 July 26,2007,Available from:http://europa.eu/rapid/ pressReleasesAction.do?reference=IP/07/1180&format=HTML&aged=0&langnage=EN&guiLanguage=fr.
    [13]U.S.,EU Announce Final Design for GPS-Galileo Civil Signal.2007 July 26,2007,Available from:http://useu.usmission.gov/ Dossiers/Galileo_ GPS/Ju12607_Civil_Signal_Accord.asp.
    [14]Parkinson B W,Spilker Jr J J.Global Positioning System:Theory and Applications Volume I Washington,DC:American Institute of Aeronautics and Astronautics Inc.,1996
    [15]Enge P.GPS Modernization:Capabilities of the New Civil Signals.2003
    [16] Betz J W. Cahn C R, Dafesh P A. et al. . L1C Signal Design Options. in:ION NTM 2006. Monterey. CA: ION, 2006.685-697
    [17] Barker B C, Betz J W. Clark J E, et al. . Overview of the GPS M Code Signal. 2000.MITRE CORP BEDFORD MA
    [18] Betz J W. Binary Offset Carrier Modulations for Radionavigation. Navigation (Washington. DC). 2001, 48(4):227-246
    [19] Barker B C. Betz J W. Clark J E. et al. . Overview of the GPS M Code Signal. 2006.MITRE CORP BEDFORD MA
    [20] Betz J W. Design and Performance of Code Tracking for the GPS M Code Signal.in:ION GPS 2000. Salt Lake City. UT. 2000.2140-2150
    [21] McDonald K D. The Modernization of GPS: Plans. New Capabilities and the Future Relationship to Galileo. Journal of Global Positioning Systems, 2002. 1(1):1-17
    [22] Fontana R D, Cheung W, Novak P M, et al. . The New L2 Civil Signal.in:Proceedings of ION GPS-2001. Salt Lake City, Utah. 2001.11-14
    [23] Fontana R D. Cheung W. Stansell T. The Modernized L2 Civil Signal. GPS WORLD,2001, 12(9):28-35
    [24] Hegarty C. Ericson S, Van Dierendonck A J, et al. . Status of RTCA Activities for the Future GPS at L5. in:ION GPS 2000. 2000.2130-2139
    [25] Van Dierendonck A J. L5 Signal Requirements Revision 2. 1999
    [26] Hudnut K W, Titus B, Captain U, GPS LI Civil Signal Modernization (L1C). in Final Report of Interagency GPS Executive Board Stewardship Project
    [27] Wallner S. Avila-Rodriguez J. Hein G W. Galileo El OS and GPS L1C Pseudo Random Codes Requirements, Generation, Optimization and Comparison. in:Proc.of First CNES Workshop on Galileo Signals and Signal Processing. Toulouse,France. Oct. 2006
    [28] Wallner S. Avila-Rodriguez J A, Hein G W. et al. . Galileo El OS and GPS L1C Pseudo Random Noise Codes-Requirements, Generation, Optimization and Comparison. in:ION GNSS 20th International Technical Meeting of the Satellite Division. Fort Worth, TX, 2007.1549-1563
    [29] Hein G W. Godet J, Issler J L. et al. . The Galileo Frequency Structure and Signal Design. in:ION GPS 2001. Salt Lake City. UT. 2001.1273-1282
    [30] Hein G W. Godet J. Issler J L. et al. . Status of Galileo Frequency and Signal Design.in:ION GPS 2002 Portland, OR, 2002.266-277
    [31] 2004-Us-Ecagreement.2004. Available from: http://pnt.gov//public' docs/2004-US-ECagreement. pdf
    [32] Wallner S, Avila-Rodriguez J A, Won J H, et al. . 2008 Revised Prn Code Structures for Glileo Elos. in:ION GNSS 21st. International Technical Meeting of the Satellite Division. Savannah,GA. 2008.887-899
    [33] Simon M. Noncoherent Pseudonoise Code Tracking Performance of Spread Spectrum Receivers. Communications. IEEE Transactions on, 1977. 25(3):327-345
    [34] Van Dierendonck A J, Fenton P, Ford T. Theory and Performance of Narrow Correlator Spacing in a GPS Receiver. Navigation. 1992, 39(3):265-283
    [35] Cannon M E. Lachapelle G, Qiu W. et al. . Performance Analysis of a Narrow Correlator Spacing Receiver for Precise Static GPS Positioning. Las Vegas. NV.USA: Publ by IEEE, Piscataway, NJ. USA, 1994.355-360
    [36] Betz J W, Kolodziejski K R. Extended Theory of Early-Late Code Tracking for a Bandlimited GPS Receiver. Navigation. Journal of the Institute of Navigation. 2000,47(3):211-226
    [37] Betz J W. Effect of Narrowband Interference on GPS Code Tracking Accuracy.in:ION NTM 2000. Anaheim. CA, 2000.16-27
    [38] Betz J W, Kolodziejski K R. Effect of Non-White Gaussian Interference on GPS Code Tracking Accuracy. Navigation, 1999
    [39] Hegarty C, Tran M, Lee Y. Simplified Techniques for Analyzing the Effects of Non-White Interference on GPS Receivers. in:I0N GPS 2002: 15 th International Technical Meeting of the Satellite Division of The Institute of Navigation. Portland. OR. 2002.620-629
    [40] Bello P A, Fante R L. Code Tracking Performance for Novel Unambiguous M-Code Time Discriminators. in:Proceedings of the National Technical Meeting of the Institute of Navigation (ION-NTM'05). 2005.293-298
    [41] Morrissey T N. Shallberg K W. Townsend B. Code Tracking Errors for Double Delta Discriminators with Narrow Correlator Spacings and Bandlimited Receivers.Monterey, CA, United States: Institute of Navigation, Fairfax. VA 22030, United States, 2006.914-926
    [42] Soellner M. Kohl R. Luetke W, et al. . The Impact of Linear and Non-Linear Signal Distortions on Galileo Code Tracking Accuracy. in:ION GPS 2002: 15 th International Technical Meeting of the Satellite Division of The Institute of Navigation. 2002.1270-1285
    [43] Quirk K J, Srinivasan M. Analysis of Sampling and Quantization Effects on the Performance of PN Code Tracking Loops. New York, NY. USA: IEEE,2002.1480-1484
    [44] Quirk K J. Srinivasan M. PN Code Tracking Using Noncommensurate Sampling. Ieee Transactions on Communications, 2006, 54(10): 1845-1856
    [45] Townsend B. Fenton P. Van Dierendonck K. et al. . L1 Carrier Phase Multipath Error
    ??Reduction Using Medll Technology. Palm Springs. CA. USA: Inst of Navigation,Alexandria. VA, USA, 1995.1539-1544
    [46] Phelts R E. Enge P. Multipath Mitigation for Narrowband Receivers. in:Position Location and Navigation Symposium. IEEE 2000. 2000.30-36
    [47] Fernandez A, Diez J, Marradi L, et al. . Galileo Receiver Performance under GPS Interference and Multipath with the Granada Software Receiver. in:ION GNSS 17th International Technical Meeting of the Satellite Division. Long Beach. CA.2004.1027-1034
    [48] Mien O, Lachapelle G Cannon M E. A New Multipath and Noise Mitigation Technique Using Data/Data-Less Navigation Signals. in:ION GNSS 17th International Technical Meeting of the Satellite Division. Long Beach. CA.2004.8-19
    [49] Sousa F M. Nunes F D, Leitao J M. Strobe Pulse Design for Multipath Mitigation in BOC GNSS Receivers. 2006 IEEE/ION Position. Location and Navigation Symposium, Vols 1-3, 2006:348-355
    [50] Nunes F D, Sousa F M G Leitao J M N. Gating Functions for Multipath Mitigation in GNSS BOC Signals. Ieee Transactions on Aerospace and Electronic Systems.2007, 43(3):951-964
    [51] Fantino M. Marucco G Mulassano P. et al. . Performance Analysis of MBOC, AltBOC and BOC Modulations in Terms of Multipath Effects on the Carrier Tracking Loop within GNSS Receivers. 2008 Ieee/Ion Position. Location and Navigation Symposium. Vols 1-3. 2008:1075-1082
    [52] Van Dierendonck A J, Braasch M S. Evaluation of GNSS Receiver Correlation Processing Techniques for Multipath and Noise Mitigation. in:Proceedings of the National Technical Meeting, Institute of Navigation. Santa Monica. CA, USA: Inst of Navigation. Alexandria, VA. USA. 1997.207-215
    [53] 李强,张兴军,刘兵等.基于 Galileo 的 LOC 信号多径误差研究.宇航学报.2008. 29(2):556-559
    [54] Irsigler M. Rodriguez J. Hein G. Criteria for GNSS Multipath Performance Assessment. in:ION GNSS 18th International Technical Meeting of the Satellite Division. Long Beach. CA. 2005.2166-2177
    [55] Hein G W. Avila-Rodriguez J A. Wallner S. et al. . MBOC: The New Optimized Spreading Modulation Recommended for Galileo LI OS and GPS L1C. 2006 IEEE/ION Position. Location and Navigation Symposium. Vols 1-3, 2006:883-892
    [56] Avila-Rodriguez J. Hein G W. Wallner S. et al. . The MBOC Modulation: The Final Touch to the Galileo Frequency and Signal Plan. in:ION GNSS 20th International Technical Meeting of the Satellite Division.Fort Worth,TX,2007.1515-1529
    [57]张孟阳,吕保维,宋文森.GPS系统中的多径效应分析.电子学报,1998,36(3):10-14
    [58]刘荟萃,许晓勇,王飞雪.扩频测距系统中多径信号伪码跟踪误差分析及消除技术.全球定位系统,2005,6:34-38
    [59]Gao G X.DME/TACAN Interference and Its Mitigation in L5/E5 Bands.in:ION GNSS 20th International Technical Meeting of the Satellite Division.Fort Worth.TX,2007
    [60]Powe M,Owen J I R.The European GNSS L5/E5 Interference Environment and the Performance of Pulsed Interference Mitigation Techniques.in:ION GNSS 17th International Technical Meeting of the Satellite Division.Long Beach,CA.2004.122-131
    [61]Kay S M.统计信号处理基础——估计与检测理论北京:电子工业出版社,2006
    [62]Betz J W.Effect of Partial-Band Interference on Receiver Estimation of C/NO:Theory:Defense Technical Information Center,2001
    [63]Van Dierendonck A J,Hegarty C.Methodologies for Assessing Intrasystem and Intersystem Interference to Satellite Navigation Systems.in:ION GPS 2002:15 th International Technical Meeting of the Satellite Division of The Institute of Navigation.2002.1241 - 1250
    [64]Titus B M,Betz J W,Hegarty C J,et al..Intersystem and Intrasystem Interference Analysis Methodology.in:Proceedings of IONGNSS-2003.Portland.OR,2003.2061-2069
    [65]Van Dierendonck A J,Hegarty C,Pullen S.A More Complete and Updated Methodology for Assessing Intrasystem and Intersystem Interference for GPS and Galileo.in:ION GPS/GNSS 2003 Portland,OR,2003.1484-1493
    [66]Wallner S,Hein G,Pany T,et al..Interference Computations between GPS and Galileo.in:ION GNSS 18th International Technical Meeting of the Satellite Division Long Beach,CA,2005.861-876
    [67]Soualle K Burger T.Radio Frequency Compatibility Criterion for Code Tracking Performance.in:ION GNSS 20th International Technical Meeting of the Satellite Division.Fort Worth,TX,2007.1201-1210
    [68]Jade Morton Y T,Liou L L,Lin D M,et al..Broadband Interference Cancellation Using Digital Beam Forming and a Software Receiver.in:ION GNSS 18th International Technical Meeting of the Satellite Division.Long Beach,CA,2005.1275-1284
    [69]McDonald K F,Costa P J.Fante R L.Insights into Jammer Mitigation Via Space-Time Adaptive Processing.2006 IEEE/ION Position.Location and Navigation Symposium,Vols 1-3,2006:213-217
    [70]Jiang Z,Ma C,Lachapelle G.Mitigation of Narrow Band Interference on Software Receivers Based on Spectrum Analysis.in:ION GNSS 17th International Technical Meeting of the Satellite Division Long Beach,CA,2004.144-155
    [71]Hegarty C.Suppression of Pulsed Interference through Blanking.in:proc,of the international association of insititutes of navigation 25th world congress/the insitute of Navigation 56th annual meeting.San Diego,CA,2000
    [72]刘基余.Gps卫星导航定位原理与方法北京:科学出版社,2005
    [73]Soualle F,Burger T B.Impact of Galileo Spreading Code Selection and Data Rate onto Navigation Signal.in:ION GPS/GNSS 2003.Portland,OR,2003.1035-1043
    [74]Hein G W,Avila-Rodriguez J A,Ries L.et al..A Candidate for the Galileo L1 OS Optimized Signal.in:ION GNSS 18th International Technical Meeting of the Satellite Division.Long Beach,CA,2005.833-845
    [75]《数学手册》编写组.数学手册北京:高等教育出版社,2006
    [76]RIES L,Lestarquit L,Armengou-Miret E,et al..A Software Simulation Tool for GNSS2 BOC Signal Analysis.in:Proceedings of ION GPS2002.2002.2225-2239
    [77]Rebeyrol E.Julien O,Macabiau C,et al..Galileo Civil Signal Modulations.GPS Solutions,2007,11(3):159-171
    [78]Hegarty C J.Binary Coded Symbol Modulations for GNSS.in:Proceedings of ION-AM-2004.
    [79]Burger T,Kuhlen H,Barnes B,et al..Selected Signal Analysis Results for Gaiileo.in:14 th International Technical Meeting of the Satellite Division of the Institute of Navigation(ION GPS 2001).Salt Lake City,UT,2001.1291-1303
    [80]Pratt A R.Owen J I R.Hein G W.Tracking Complex Modulation Waveforms- How to Avoid Receiver Bias.in:IEEE/ION PLANS 2006.Loews Coronado Resort Hotel San Diego,CA.852-864

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700