用户名: 密码: 验证码:
非线性声谐振腔特性及气体动理学BGK格式模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在声或热声装置的开发与应用中,大振幅声谐振腔已日益成为改善功率密度和热声转换效应的关键。然而,谐振腔中大振幅的声振荡,同时会引起诸多的非线性耗散,这也是应用者需要关注并着力解决的关键问题。因此,深刻认识谐振腔中各种非线性耗散机制并能抑制或减少各种非线性耗散以提高声幅的研究,对实际的应用至关重要。目前,人们对这些问题的认识和研究还远远不够。无论是采用理论分析、传统的模拟方法、还是实验方法开展研究,都有相当的挑战性,因而需要开拓新的研究思路。
     本文的研究目的是应用开发一种适合研究谐振腔中非线性问题的有效数值算法,探索谐振管中各种非线性耗散的本质机理和重要的影响因素,寻找抑制或减少非线性耗散的有效方法,获得大幅声谐振腔的优良特性,满足实际的应用需要。考虑到气体动理学BGK (GKS-BGK)方法的优势特点,基于GKS-BGK方法开展了关于大幅声谐振腔的基本信息、特性规律、损失机理和设计理论的模拟研究,并辅以理论分析,对谐振腔内各种非线性耗散机理及其抑制方法进行了深入地探索。
     本文的研究内容包括GKS-BGK模型的扩展、数值模拟和理论分析三个部分。主要创新性的学术贡献在于以下方面的内容。具体地,建模方面,采用高维可压缩粘性流体模型N-S (Navier-Stokes)方程,取代一维模型;同时,为模拟研究变截面谐振腔中非线性声振荡特性及二维流场,开发了非结构三角形网格上的GKS-BGK算法策略,并建立了相应的数学模型;数值模拟方面,采用GKS-BGK方法对等截面及变截面谐振腔内受迫运动气体的非线性声振荡特性及耗散机理进行了深入的模拟研究,并自主开发了模拟程序及相应的计算软件。理论分析方面,发展了一种适合变截面谐振管内非线性声振荡特性研究的一维理论分析方法。
     本文主要研究内容概括如下。
     (1)采用二维矩形网格上的GKS-BGK模型及算法模拟研究了等截面热声谐振管内有限振幅非线性声振荡,获得了与早期的理论分析、数值模拟、以及实验研究一致的结果,验证了模型算法的正确性。同时,研究了谐频附近七个不同驱动频率下声压演化过程、流场的瞬态和稳态分布以及谐频下二维流场中各种非线性效应的详细信息,特别分析了诸如激波、高次谐波、非线性振幅饱和、谐波耦合和基波到谐波能量级联过程等问题的机理。
     (2)对等截面谐振腔内有限振幅和大振幅非线性声振荡的耗散和能量损失进行了分析。采用被验证了的二维GKS-BGK模型模拟研究了从线性、有限振幅到大振幅五个独立驱动幅值下的声场和流场特性,重点研究了大振幅振荡中的各种非线性效应,并分析了驱动位移幅值对压力、速度波形,瞬时流场和平均流场的影响,以及诸如激波、高次谐波、声流、涡流、边界层效应等非线性能量损失机制,为后面研究减少或抑制这些损失及提高声幅的相关措施积累数据基础。
     (3)理论分析了变截面声谐振腔中非线性声传播的机理。基于理想气体状态下的控制方程,利用渐近展开得到几种不同形状谐振管的谐振模态频率表达式。然后重点针对指数型谐振管获得各物理量的近似解析表达式,为大振幅声谐振管的优化设计提供了理论基础,也为数值模拟提供了可供比较的验证和依据。
     (4)构建了适合模拟变截面谐振腔中非线性效应的非结构三角形网格上的GKS-BCK模型,并采用该模型模拟研究了指数型谐振管内大振幅非线性声振荡特性和声流特性。首先揭示了指数型谐振管在抑制激波和高次谐波,提高基波幅值和压比方面的有效作用,并得到获得最大压比的最优管形参数,这个参数值和理论计算结果相吻合。然后对比研究了不同驱动下等截面谐振管和最优指数型管内的声场特性及声流场模式。这既是数值算法上的创新,也是对二维变截面大振幅声振荡这类国际学术前沿研究课题的推进。
With the development and application of acoustic or thermo-acoustic devices, the high amplitude acoustic resonator becomes a key component for increasing power density and improving thermoacoustic effects. Yet, the high amplitude acoustic oscillations in the resonator will always cause much undesired nonlinear dissipation, which is a dilemma for researchers and engineers to face and necessarily solve in thermoacoustic applications. Therefore, it is significantly of importance for researchers to have a good knowledge of the mechanisms and main factors inducing various nonlinear dissipations, as well as of some methods to suppress or decrease these dissipations in actual thermoacoustic applications. So far, some nonlinear phenomena and problems have not yet been well understood and solved, because of the relatively big challenges in theory analysis, traditional numerical modeling as well as experiment measurements. Thus new approaches are needed to explore, which is the motivation of this dissertation.
     The research objection of this thesis is to apply and develop an effective numerical algorithm suitable for modeling nonlinear problems in an acoustic or thermoacoustic resonator, to explore the intrinsic mechanisms and main factors inducing various nonlinear dissipation, to search effective measures for suppressing or decreasing these dissipation, as well as to obtain the good characteristic of a high amplitude acoustic resonator for practice applications. For this purpose, taking into account some advantages of the gas-kinetic scheme based on BGK (GKS-BGK), this thesis conducts some numerical simulations through GKS-BGK for acquiring relevant basic information, regular characteristic, mechanism of loss, as well as design theory about high amplitude acoustic resonators. In addition, the mechanism of nonlinear dissipation and relevant effective methods to suppress them are closely studied and analyzed numerically and theoretically.
     The content of this thesis is composed of three parts, including the extended GKS-BGK model, numerical simulation and theory analysis. The main creative academic contributions are in that the following aspects. Specifically, in establishing of a model, the multi-dimension N-S (Navier-Stokes) equations instead of the one-dimension model are used to describe the flow motions in the resonator. Moreover, a GKS-BGK on the unstructured triangle mesh is constructed to simulate the nonlinear oscillations and two- dimension flow fields in the resonator with variable cross-section, and relevant model is established; Numerically, these characteristics of nonlinear oscillations and the dissipation mechanisms are closely investigated by the developed GKS-BGK for both the constant and the variable cross sectional resonant tube. Moreover a self-owned program code and the simulation software are developed. Theoretically, a one dimensional analytic method is proposed for predicting the characteristics of nonlinear oscillations in a variable cross-section resonator.
     The following summarizes the main studied work of this thesis.
     (1) Nonlinear oscillations in a resonator with constant cross-section are simulated by the GKS-BGK based on a two-dimensional rectangle mesh. Simulated results are obtained in consistence with those of previous research from theoretical, numerical and experimental literature. And the model algorithm is thus verified. Additionally, the evolution process of acoustic pressure and transient as well as steady-states flow fields are closely investigated taking seven separate driving frequencies near the resonant frequence into accounts. Also obtained is the detailed information on various nonlinear effects in two-dimensional flow fields at resonance. Of these nonlinear effects, shock waves, high order harmonic waves, acoustic saturation, coupling of harmonic waves, as well as energy cascade process from fundamental wave to harmonic waves are especially analyzed for searching their nonlinear dissipation mechanisms.
     (2) For finite amplitudes and large amplitudes, the analyses are carried out on the nonlinear dissipation and energy losses in a constant cross section resonator. The characteristics of acoustic fields and flow fields are studied by the previously verified two-dimensional GKS-BGK model for five separate driving displacement amplitudes ranging from linear to high amplitude domain. Nonlinear effects in high amplitude of acoustic oscillations are closely investigated. The effect of the driving displacement amplitude is in detail numerically analyzed on waveforms of pressure and velocity waves, transient steady-state flow fields as well as average mass flow fields. Additionally, the mechanisms of nonlinear energy losses, such as shock wave, higher harmonic, acoustic streaming, vortex, as well as boundary layer effect are also explored. These researches above will provide some basic numerical data for enhancing acoustic amplitude by some measures to decrease or suppress these undesired losses.
     (3) The propagating mechanism of nonlinear acoustics in a varying cross-section resonator is analyzed theoretically. These frequence relations between resonant modes for several different shaped resonators are independently derived and obtained through the asymptotic expansion method for ideal gas. Especially, the approximate analytic solution is obtained for acoustic variables in an exponential resonator. These theoretically analytic results are significantly helpful for the optimal design of high amplitude acoustic resonators, as well as for a verification and comparison of numerical results.
     (4) A GKS-BGK model based on the unstructured triangle mesh is constructed for simulating nonlinear effects in the variable cross-section resonator. And, the characteristics of high amplitude acoustic oscillations and acoustic streaming in an exponential resonator are simulated using this self-designed GKS-BGK model. First, the effective function of an exponential resonator is revealed in suppressing the shock wave and higher harmonic, as well as in enhancing acoustic amplitude and pressure ratio. An optimal flare parameter value is obtained for an exponential resonator and is in consistence with the theoretical one. Then, the changes of the acoustic field characteristic and streaming pattern with the driving amplitude are compared between the constant and the varying cross-section resonator. These model algorithms belong to author's creative work, which will provide a new approach and prompt the advance in the research of varying cross-section resonator.
引文
[1]Majid Nabavi. Numerical and Experimental Investigations of the Acoustic Standing Wave Resonator, Pump, and Micropump [D]. Concordia University Montreal, Quebec, Canada.2008.
    [2]D. F. Gaitan and A. A. Atchley. Finite amplitude standing waves in harmonic and anharmonic tubes [J]. Journal of the Acoustical Society of America,1993,93: 2489-2495.
    [3]Y. A. Ilinskii, B. Lipkens, T. S. Lucas, T. W. Van Doren et al. Nonlinear standing waves in an acoustical resonator [J]. Journal of the Acoustical Society of America, 1998,104:2664-2674.
    [4]Timothy S. Lucas, Thomas W, Van Doren. Resonant macrosonic synthesis [P]. US. Patent No:5515684,1996.
    [5]Christopher C. Lawrenson, Bart Lipkens, Timothy S. Lucas et al. Measurements of macrosonic standing waves in oscillating closed cavities [J]. Journal of the Acoustical Society of America,1998,104 (2):623-636.
    [6]M. F. Hamilton, Y. A. Ilinskii, E. A. Zabolotskaya. Linear and nonlinear frequency shifts in acoustic resonators with varying cross sections [J]. Journal of the Acoustical Society of America,2001,110:109-118.
    [7]Michael P. Mortell, Brian R. Seymour. Nonlinear resonant oscillations in closed tubes of variable cross-section [J]. Journal of Fluid Mechanics,2004,519:183-199.
    [8]Nabavi M, Siddiqui MHK, Dargahi J. A fourth-order accurate scheme for solving one-dimensional highly nonlinear standing wave equation in different thermoviscous fluids [J]. Journal of Computational Acoustics,2008,16(4):563-576.
    [9]Mark F. Hamilton, Yurii A. Ilinskii, Evgenia A. Zabolotskaya. Nonlinear frequency shifts in acoustical resonators with varying cross sections [J]. Journal of the Acoustical Society of America,2009,125(3):1310-1318.
    [10]V. Gusev, H. Bailliet, P. Lotton, M. Bruneau. Asymptotic theory of nonlinear acoustic waves in a thermoacoustic prime-mover [J]. Acustica,2000,86:25-38.
    [11]M.F. Hamilton, Y.A. Ilinskii and E.A. Zabolotskaya. Nonlinear two-dimensional model for thermoacoustics engines [J]. Journal of the Acoustical Society of America, 2002,111:2076-2086.
    [12]Ⅰ.S. Paek, L.G. Mongeau, J.E. Braun. A method for estimating the parameters of electrodynamic drivers in thermoacoustic coolers [J]. Journal of the Acoustical Society of America,2005,117:185-193.
    [13]M.A. Rotea, Y. Li, G.T.C. Chiu et al. Extremum seeking control of tunable thermoacoustic cooler [J]. IEEE Transactions on Control Systems Technology,2005, 13:527-536.
    [14]J.E. Braun, Ⅰ.S. Paek, L.G. Mongeau. Characterizing heat transfer coefficients for heat exchangers in standing wave thermoacoustic coolers [J]. Journal of the Acoustical Society of America,2005,118:2271-2280.
    [15]V. Gusev, H. Bailliet, P. Lotton et al. Enhancement of the Q of a nonlinear acoustic resonator by active suppression of harmonics [J]. Journal of the Acoustical Society of America,1998,103:3717-3720.
    [16]J. A. Gallego-Juarez. New technologies in high-power ultrasonic industrial applications [J]. Ultrasonics Symposium,1994,3:1343-1352.
    [17]Y. Roha, J. Kwon. Development of a new standing wave type ultrasonic linear motor [J]. Sensors and Actuators A,2004,112:196-202.
    [18]A. Bishop, R. Patten. Standing wave pump [J]. Journal of the Acoustical Society of America,2001,109:447-448.
    [19]G. W. Swift. Thermoacoustics:A Unifying Perspective for Some Engines and Refrigerators [M]. Acoustical Society of America, Sewickley, PA,2002.
    [20]Rott N. Thermally driven acoustic oscillations. Part I-V. [J]. Journal of Applied Mathematics and Physics (ZAMP),1969-1976, Vol.20, Vol.24, Vol.26, Vol.27.
    [21]胡剑英,罗二仓.非线性热声理论的研究进展[J].低温与超导.2005,33(3):13-18.
    [22]S. Backhaus, G. W. Swift. A thermoacoustic Stirling heat engine [J]. Nature,1999, 399:335-338.
    [23]S. Backhaus, G. W. Swift. A thermoacoustic Stirling heat engine:Detailed study [J]. Journal of the Acoustical Society of America,2000,107(6):3148-3166.
    [24]Y.D. Chun, Y.H. Kim. Numerical analysis for nonlinear resonant oscillations of gas in axisymmetric closed tubes [J]. Journal of the Acoustical Society of America,2000, 108:2765-2774.
    [25]Robert R. Erickson, Ben T. Zinn. Modeling of finite amplitude acoustic waves in closed cavities using the Galerkin method [J]. Journal of the Acoustical Society of America,2003,113 (4), Pt.1:1963-1870.
    [26]A. E. Sabbagh, A. Baz. Finite element modeling of the nonlinear oscillations in axisymmetric acoustic resonators [J]. Finite Elements in Analysis and Design,2006, 42:1281-1290.
    [27]Y.A. Ilinskii, B. Lipkens, E.A. Zabolotskaya. Energy losses in an acoustical resonator [J]. Journal of the Acoustic Society of America,2001,109(5):1859-1870.
    [28]C. Luo, X.Y. Huang, N.T. Nguyen. Generation of shock-free pressure waves in shaped resonators by boundary driving [J]. Journal of the Acoustic Society of America,2007,121(5):2515-2521.
    [29]C. Vanhille, C. Campos Pozeulo. Numerical model for nonlinear standing waves and weak shocks in thermoviscous fluids [J]. Journal of the Acoustic Society of America, 2001,109(6):2660-2667.
    [30]S. Karpov, A. Prosperetti. Nonlinear saturation of the thermoacoustic instability [J]. Journal of the Acoustic Society of America,2000,107:3130-3147.
    [31]A.B. Coppens, J.V. Sanders. Finite amplitude standing waves in rigid-walled tubes [J]. Journal of Acoustical Society of America,43:516-529,1968.
    [32]A.B. Coppens, J.V. Sanders. Finite amplitude standing waves within real cavities [J]. Journal of Acoustical Society of America,58:1133-1140,1975.
    [33]R. Betchov. Nonlinear oscillations of a column of a gas [J], Physics of Fluids,1958, 205:205-212.
    [34]W. Chester. Resonant oscillations in closed tubes [J]. Journal of Fluid Mechanics, 1964,18:44-64.
    [35]M. F. Hamilton, Y. A. Ilinskii, E. A. Zabolotskaya. Acoustic Streaming Generated by Standing Waves in Two-Dimensional Channels of Arbitrary Width [J]. Journal of Acoustical Society of America,2003,113:153-160.
    [36]Dah-You Maa, Ke Liu. Nonlinear standing waves:Theory and experiments [J]. Journal of Acoustical Society of America,1995,98:2753-2763.
    [37]M. Bednaffk, M.Cervenka. Nonlinear waves in resonators [J]. Nonlinear Acoustics at the tern of Millennium,2000,15:165-168.
    [38]M.A. Ilgamov, R.G. Zaripov, R.G. Galiullin et al. Nonlinear oscilltions of a gas in a tube [J]. Applied Mechanics Reviews,1996,49 (3):137-154.
    [39]李启兵,徐坤.气体动理学格式研究进展[J].理学进展,2012,42(5):522-537.
    [40]何雅玲,王勇,李庆.格^Boltzmann方法的理论研究及其应用[M].北京:科学出版社,2008.
    [41]郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社,2008.
    [42]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [43]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [44]K. Xu. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method [J]. Journal of Computational Physics,2001,171 (1):289-335.
    [45]D. Yu, R. Mei, L. S. Luo et al. Viscous flow computations with the method of lattice Boltzmann equation [J]. Progress in Aerospace Sciences,2003,39:329-367.
    [46]P. Lallemand, L. S. Luo. Theory of the lattice Boltzmann method:acoustic and thermal properties in two and three dimensions [J]. Physical Review E,2003,68: 036706.
    [47]K. Xu, S.H. Lui. Rayleigh-Be'nard simulation using the gas-kinetic Bhatnagar-Gross-Krook scheme in the incompressible limit [J]. Physical Review E,1999,60 (1): 464-470.
    [48]K. Xu. A well-balanced gas-kinetic scheme for the shallow-water equations with source terms, J. Comput. Phys.178 (2) (2002) 533-562.
    [49]X. Shan, H. Chen. Lattice Boltzmann model for simulating flows with multiple phases and components [J]. Physical Review E,1993,47:1815-1819.
    [50]Z.L. Guo, T.S. Zhao. Discrete velocity and lattice Boltzmann models for binary mixtures of nonideal fluids [J]. Physical Review E,2003,68:035302.
    [51]L. S. Luo, S.S. Girimaji. Lattice Boltzmann model for binary mixtures [J]. Physical Review E,2002,66:035301(R).
    [52]L. S. Luo, S.S. Girimaji. Theory of the lattice Boltzmann method:two-fluid model for binary mixtures [J]. Physical Review E,2003,67:036302.
    [53]P. Asinari. Viscous coupling based lattice Boltzmann model for binary mixtures [J]. Physics of Fluids,2005,17 (6):067102.
    [54]P. Asinari, L. S. Luo. A consistent lattice Boltzmann equation with baroclinic coupling for mixtures [J]. Journal of Computational Physics,2008,227 (8): 3878-3895.
    [55]Y.S. Lian, K. Xu. A gas-kinetic scheme for multimaterial flows and its application in chemical reactions [J]. Journal of Computational Physics,2000,163 (2):349-375.
    [56]Y.S. Lian, K. Xu. A gas-kinetic scheme for reactive flows [J]. Computers & Fluids Journal,2000,29 (7):725-748.
    [57]P. Dellar. Lattice kinetic schemes for magneto-hydro-dynamics [J]. Journal of Computational Physics,2002,163:95-126.
    [58]H.Z. Tang, K. Xu. A high-order gas-kinetic method for multidimensional ideal magneto-hydro-dynamics [J]. Journal of Computational Physics,2000,165 (1): 69-88.
    [59]K. Xu. Gas-kinetic theory-based flux splitting method for ideal magneto-hydro-dynamics [J]. Journal of Computational Physics,1999,153 (2):334-352.
    [60]K. Xu. Super-Burnett solutions for Poiseuille flow [J]. Physics of Fluids,2003,15: 2077-2080.
    [61]Z. L. Guo, T.S. Zhao, Y. Shi. Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows [J]. Journal of Applied Physics,2006,99:074903.
    [62]F. Verhaeghe, L.-S. Luo, B. Blanpain. Lattice Boltzmann modelling of microchannel flow in slip flow regime [J]. Journal of Computational Physics,2009,228(1): 147-157.
    [63]K. Xu, Z.H. Li. Microchannel flow in the slip regime:gas-kinetic BGK-Burnett solutions [J]. Journal of Fluid Mechanics,2004,513:87-110.
    [64]C.Vanhille, C. Campos-Pozuelob. A High-Order Finite-Difference Algorithm for the Analysis of Standing Acoustic Waves of Finite but Moderate Amplitude [J]. Journal of Computational Physics,2000,165(2):334-353.
    [65]C. Vanhille, C. Campos Pozeulo. Numerical simulation of two-dimensional nonlinear standing acoustic waves [J]. Journal of the Acoustic Society of America, 2004,116(1):194-200.
    [66]C Vanhille, C Conde, C Campos-Pozuelo. Finite-difference and finite-volume methods for nonlinear standing ultrasonic waves in fluid media [J]. Ultrasonics 42(1), 2004,315-318.
    [67]L. Elvira-Segura and Riera-Franco de Sarabia. A finite element algorithm for the study of nonlinear standing waves [J]. Journal of the Acoustic Society of America, 1998,103:2312-2320.
    [68]C. Vanhille and C. Campos-Pozuelo. Three time-domain computational models for quasi-standing nonlinear acoustic waves, including heat production [J]. Journal of Computational Acoustics,2006,14:143-156.
    [69]C.Vanhille, C. Campos-Pozuelo. Numerical and experimental analysis of strongly nonlinear standing acoustic waves in axisymmetric cavities. Ultrasonics,2005,43(8): 652-660.
    [70]C. Campos-Pozuelo C. Vanhille. Nonlinear ultrasonic resonators:A numerical analysis in the time domain [J]. Ultrasonics,2006,44(Supplement):e777-e781.
    [71]I. Christov, P. M. Jordan, C. Ⅰ. Christov. Nonlinear acoustic propagation in homentropic perfect gases:A numerical study [J]. Physics Letters A,2006,353: 273-280.
    [72]M. Bednaffk and M.Cervenka. Description of finite-amplitude standing acoustic waves using convection-diffusion equations [J]. Czechoslovak Journal of Physics, 2005,55:673-680.
    [73]A. Kurganov, E. Tadmor. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations [J]. Journal of Computational Physics,2000,160:241-282.
    [74]M. Bednaffk and M. Cervenka. Nonlinear standing wave in 2D acoustic resonators [J]. Ultrasonics,2006,44:773-776.
    [75]A. Alexeev and C. Gutfingera. Resonance gas oscillations in closed tubes: Numerical study and experiments [J]. Physics of Fluids,2003,15:3397-3408.
    [76]Yuan H, Karpov S, Prosperetti A. A simplified model for linear and nonlinear processes in thermoacoustic movers II:Nonlinear oscillations [J]. Journal of the Acoustic Society of America,1997,202(6):3497-3506.
    [77]Prosperetti A, Watanabe W, Yuan H. A simplified model for linear and nonlinear processes in thermoacoustic movers I:Model and linear theory [J]. Journal of the Acoustic Society of America,1997,102(6):3484-3496.
    [78]Karpov S, Prosperetti A. A simplified model for linear and nonlinear processes in thermoacoustic movers II:Nonlinear oscillations [J]. Journal of the Acoustic Society of America,2002,112(4):1434-1444.
    [79]Karpov S, Prosperetti A, Ostrovsky L. Nonlinear wave interactions in bubble layers [J]. Journal of the Acoustic Society of America,2003,113(3):1304-1316.
    [80]Karpov S, Prosperetti A. Linear thermoacoustic instability in the time domain [J]. Journal of the Acoustic Society of America,1998,103(6):3309-3317.
    [81]余国瑶,罗二仓,胡剑英等.热声发动机热动力学特性的CFD研究,第一部分:热声自激振荡演化过程[J].低温工程,2006,152(4):5-9.
    [82]余国瑶,罗二仓,戴巍等.热声斯特林发动机热力学特性的CFD研究,第二部分:热声转换特性及热声声流的研究[J].低温工程,2006,153(5):11-16.
    [83]吴迎文.热声热机声场的格子气分析[D].武汉:华中科技大学硕士学位论文,2008.
    [84]邓玉瑾.热声谐振管中声振荡的格子Boltzmann模拟[D].武汉:华中科技大学硕士学位论文,2009.
    [85]Chen Y, Liu X, Zhang X Q. Thermoacoustic simulation with lattice gas automata [J]. Journal of Applied Physics,1995,8:4497-4499.
    [86]刘旭,陈宇,张晓青.热声发动机的格子气模拟[J].计算物理,2004,6:501-504.
    [87]张晓青,蒋华,胡兴华.热声振荡的格子气模拟[J].华中科技大学学报(自然科学版),2007,35:85-88.
    [88]蒋华.热声振荡的格子气方法模拟[D].武汉:华中科技大学硕士学位论文, 2007.
    [89]张晓青,吴迎文,张稳,邓玉瑾.热声热机声场的格子气分析[J].工程热物理学报,31(2),185-188.
    [90]Y. Wang, Y. L. He, Q. Li et al. Numerical simulations of gas resonant oscillations in a closed tube using lattice Boltzmann method [J]. Heat and Mass Transfer,2008,51: 3082-3090.
    [91]Y. Wang, Yaling He, Jing Huang, et al. Implicit-explicit finite-difference lattice Boltzmann method with viscid compressible model for gas oscillating patterns in a resonator [J]. International Journal for Numerical Methods in Fluids,2009, 59(8): 853-872.
    [92]Y. Wang, Y. L. He, T.S. Zhao, et al, Implicit-explicit finite-difference lattice Boltzmann method for compressible flows [J]. International Journal of Modern Physics C,2007,18,(12):1961-1983.
    [93]孟繁孔,李志信.振荡流共轭换热格子-Boltzmann模拟[J].工程热物理学报,2007,28:1019-1021.
    [94]Meng F K, Wang M, Li Z X. Lattice Boltzmann simulations of conjugate heat transfer in high-frequency oscillating flows [J]. International Journal of Heat and Fluid Flow,2008,3:1-8.
    [95]孟繁孔,李志信.多孔介质振荡流格子-Boltzmann模拟.清华大学学报(自然科学版).2008,48(11):1817-1820.
    [96]孟繁孔.振荡流换热的格子-Boltzmann模拟[D].北京:清华大学博士学位论文,2008.
    [97]Heying Feng, Xiaoqing Zhang, and Yehui Peng. A lattice Boltzmann model for elliptic equations with variable coefficient [J]. Applied Mathematics and Computation,2012,219:2798-2807.
    [98]Zhaoli Guo, Hongwei Liu, L. S Luo, Kun Xu. A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows [J]. Journal of Computational Physics,2008,227:4955-4976.
    [99]Kun Xu, Xiaoyi He. Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations [J]. Journal of Computational Physics, 2003,190:100-117.
    [100]K. Xu. Gas-Kinetic Schemes for Unsteady Compressible Flow Simulations, VKI for Fluid Dynamics Lecture Series,1998.
    [101]B. Keen, S.Karni, A second order kinetic scheme for gas dynamics on arbitrary grids [J]. Journal of Computational Physics,2005,205:108-130.
    [102]Jiequan Li, Qibing Li, Kun Xu. Comparison of the Generalized Riemann Solver and the Gas-Kinetic Scheme for Inviscid Compressible Flow Simulations [J]. Journal of Computational Physics,2011,230:5080-5099.
    [103]Xu K, Huang JC. An improved unified gas-kinetic scheme and the study of shock structures [J]. IMA Journal of Applied Mathematics,2011,76(5):698-711.
    [104]Kun Xu, Xin He. Chunpei Cai. Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations [J]. Journal of Computational Physics,2008,227(14):6779-6794.
    [105]张晓青,冯和英,彭叶辉等.管内气体声振荡特性的气体动理学格式模拟[J].工程热物理学报,2011,32(3):403-406.
    [106]Heying Feng, Xiaoqing Zhang, Yehui Peng et al. Numerical simulation of nonlinear acoustic streaming in a resonator using gas-kinetic scheme [J]. Journal of Applied Physics,2012,112:083501.
    [107]T. Biwa, T. Yazaki. Observation of energy cascade creating periodic shock waves in a resonator [J]. Journal of the Acoustic Society of America,2010,127 (3):1189-1192.
    [108]N. Sugimoto and T. Horioka. Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators [J]. Journal of the Acoustic Society of America, 1995,97 (3):1446-1459.
    [109]N. Sugimoto, M. Masuda, T. Hashiguchi et al. Annihilation of shocks in forced oscillations of an air column in a closed tube [J]. Journal of the Acoustic Society of America,2001,110 (5):2263-2266.
    [110]N. Sugimoto, M. Masuda, T. Hashiguchi. Frequency response of nonlinear oscillations of air column in a tube with an array of Helmholtz resonators [J]. Journal of the Acoustic Society of America,2003,114(4):1772-1784.
    [111]V. E. Gusev, H. Bailliet, P. Lotton et al. Enhancement of the Q of a nonlinear acoustic resonator by active suppression of harmonics [J]. Journal of the Acoustic Society of America,1998,103:3717-3720.
    [112]P. T. Huang, J. G. Brisson. Active control of finite amplitude acoustic waves in a confined geometry [J]. Journal of the Acoustic Society of America,1997,102(6): 3256-3268.
    [113]X. Y. Huang, N. T. Nguyen, Z. J. Jiao. Nonlinear standing waves in a resonator with feedback control [J]. Journal of the Acoustic Society of America,2007,122(1): 38-41
    [114]M. C ervenka, M. Bednarik, P. Konicek. Adaptive algorithm for active control of high-amplitude acoustic field in resonator [C].18th International Symposium of Nonlinear Acoustics-Fundamentals and Applications, American,2008:91-94.
    [115]C. Desjouy, G. Penelet, P. Lotton. Active control of thermoacoustic amplification in an annular engine [J]. Journal of Applied Physics,2010,108:114904.
    [116]G Raman, C. Daniels, X. Li et al. Optimized shapes of oscillating resonators for generating high-amplitude pressure waves [J]. Journal of the Acoustic Society of America,2004,116:2814-2821.
    [117]M.A.Hossain, M. Kawahashi, T. Fujioka. Finite amplitude standing wave in closed ducts with crosses sectional area change [J]. Wave Motion,2005,42:226-237.
    [118]罗二仓,凌红,戴巍等.采用锥形谐振管的高压比聚能型热声发动机[J].科学通报,2005,50(6):605-607.
    [119]罗二仓,胡剑英,戴巍等.一种大幅度提高热声发动机压比的“声学泵”[J].2005,50(17):1926-1928.
    [120]GY. Yu, E.C. Luo, W. Dai et al. An energy-focused thermoacoustic-Stirling heat engine reaching a high pressure ratio above 1.40 [J]. Cryogenics,2007,47(2): 132-134.
    [121]李晓明.热声理论及热声驱动脉冲管制冷机实验研究[D].浙江:浙江大学博士学位论文,2005.
    [122]李晓明,凌虹,戴巍等.谐振管的几何形状对热声发动机工作性能的影响[J].低温工程,2005,145(3):12-16.
    [123]刘丹晓周城光刘克.谐振管形状对热声发动机内非线性声场的影响[J].声学学报,2012,37(1):36-44
    [124]刘丹晓,刘克.锥型热声谐振管内非线性声场的数值模拟[J].应用声学.2011,30(4):241-247.
    [125]刘丹晓,范瑜晛,刘克.指数型谐振管内非线性声场的数值模拟研究[J].声学技术.2010,29(6):54-55.
    [126]张富珍.热声系统声场分布及热力学循环研究[R].北京:中国科学院理化技术研究所博士后研究工作报告,2008.
    [127]冯和英,张晓青,彭叶辉等.活塞驱动的指数型谐振管内的非线性声振荡[J].工程热物理学报.2012,33(4):569-572.
    [128]满满,罗二仓,戴巍,吴张华.新型热声谐振机构的理论分析和实验验证[J].工程热物理学报.2010,31(6):906-908.
    [129]Yu GY, Luo EC, Dai W, et al. Study of nonlinear processes of a large experimental thermoacoustic-Stirling heat engine by using computational fluid dynamics [J]. Journal of Applied Physics,2007,102:074901.
    [130]张泳.热驱动热声斯特林制冷机的实验研究与数值模拟[D].北京:中国科学院研究生院博士学位论文,2008.
    [131]张晓东.聚能型热声发动机谐振管工作机理与性能研究[D].北京:中国科学院研究生院博士学位论文,2008.
    [132]王军,吴峰,杨志春等.热声谐振管压比影响因素的数值模拟[J].武汉工程大学学报.2010,32(12):80-83
    [133]范瑜晛,刘克,杨军.渐变截面热声波导管内的声流解析模型[J].声学学报.2012,37(3):252-262.
    [134]范瑜晛,刘克,杨军.渐变截面热声波导管内的声流影响因素分析[J].声学学报.2012,37(2):113-122.
    [135]Rayleigh L. On the circulation of air observed in Kundt's tubes. Philos Trans R Soc, London, Ser A 1884; 175:1-21.
    [136]P. J. Westervelt. The Theory of Steady Rotational Flow Generated by a Sound Field [J]. Journal of the Acoustic Society of America,1953,25:60-67.
    [137]W. L. Nyborg. Acoustic Streaming Near a Boundary [J]. Journal of the Acoustic Society of America,1958,30:329-339.
    [138]W. L. Nyborg. Acoustic Streaming due to Attenuated Plane Waves [J]. Journal of the Acoustic Society of America,1953,25:68-75
    [139]Thompson MW, Atchley AA. Simultaneous measurement of acoustic and streaming velocities in a standing wave using laser Doppler anemometry [J]. Journal of the Acoustic Society of America,2005,117(4):1828-1838.
    [140]P. Merkli, H. Thomann. Transition to turbulence in oscillating pipe flow [J]. Journal of Fluid Mechanics,1975,68:567-576.
    [141]P. Merkli, H. Thomann. Thermoacoustic effects in a resonant tube [J]. Journal of Fluid Mechanics,1975,70:161-177.
    [142]Menguy L, Gilbert J. Non-linear acoustic streaming accompanying a plane stationary wave in a guide [J]. Acta Acustica united with Acustica,2000,86:249-259.
    [143]Lighthill MJ. Acoustic streaming [J]. Journal of Sound and Vibration,1978, 61:391-418.
    [144]Kawahashi M, Arakawa M. Nonlinear phenomena induced by finite-amplitude oscillation of air column in closed duct [J]. JSME International Journal Series B,1996, 39:280-286.
    [145]Aktas MK, Farouk B. Numerical simulation of acoustic streaming generated by finite-amplitude resonant oscillations in an enclosure [J]. Journal of the Acoustic Society of America,2004,116(5):2822-2831.
    [146]M. Nabavi, K. Siddiqui, J. Dargahi. Analysis of Regular and Irregular Acoustic Streaming Patterns in a Rectangular Enclosure [J]. Wave Motion,2009,46:312-322.
    [147]Aktas, M.K., Farouk, B., Lin, Y. Heat transfer enhancement by acoustic streaming in an enclosure [J]. Journal of Heat Transfer,2005,127:1313-1321.
    [148]Lin, Y. Farouk, B. Heat transfer in a rectangular chamber with differentially heated horizontal walls:effects of a vibrating sidewall [J]. International Journal of Heat and Mass Transfer,2008,51:3179-3189.
    [149]Aktas, M.K. Irregular Acoustic Streaming Formation in Symmetrically Heated Enclosures [C]. Proceedings of the World Congress on Engineering, U. K.,2012: 169-174.
    [150]M K Aktas and T Ozgumus. A numerical investigation of the effects of a transverse temperature gradient on the formation of regular and irregular acoustic streaming in an enclosure [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2011,225:132-144.
    [151]M K Aktas and T Ozgumus. Nonzero Mean Oscillatory flow in Symmetrically-Heated Shallow Enclosures:An Analysis of Acoustic streaming [J]. Numerical Heat Transfer, Part A,2010,57:869-891.
    [152]M K Aktas and T Ozgumus. The effects of acoustic streaming on thermal convection in an enclosure with differentially heated horizontal walls [J]. International Journal of Heat and Mass Transfer,2010,53:5289-5297.
    [153]Nabavi, M., Siddiqui, K., Dargahi, J. Influence of differentially heated horizontal walls on the streaming shape and velocity in a standing wave resonator [J]. International Communications in Heat and Mass Transfer,2008,35:1061-1064.
    [154]Nabavi, M., Siddiqui, K., Dargahi, J. Effects of transverse temperature gradient on acoustic and streaming velocity fields in a resonant cavity [J]. Applied Physics Letter, 2008,93:051902.
    [155]M.W. Thompson, A.A. Atchley, M.J. Maccarone. Influences of a temperature gradient and fluid inertia on acoustic streaming in a standing wave [J]. Journal of the Acoustic Society of America,2005,117 (4):1839-1849.
    [156]Yano T. Turbulent acoustic streaming excited by resonance gas oscillation with periodic shock waves in a closed tube [J]. Journal of the Acoustic Society of America, 1999; 106(1):L7-L12.
    [157]Stansell P, Greated CA. Lattice gas automation simulation of acoustic streaming in a two-dimensional pipe [J]. Physics of Fluids,1997,9(11):3288-3299.
    [158]Hay dock D, Yeomans JM. Lattice Boltzmann simulations of acoustic streaming [J]. Journal of Physics A:Mathematical and General,2001,34:5201-5213.
    [159]Haydock D, Yeomans JM. Lattice Boltzmann simulations of attenuation-driven acoustic streaming [J]. Journal of Physics A:Mathematical and General,2003,36: 5683-5694.
    [160]C.P. Lee, T.G. Wang. Outer Acoustic Streaming [J]. Journal of the Acoustic Society of America,1990,88:2367-2375.
    [161]Q. Qi. The Effect of Compressibility on Acoustic Streaming Near a Rigid Boundary for a Plane Traveling Wave [J]. Journal of the Acoustic Society of America, 1993,94:1090-1098.
    [162]K. H. Prendergast and K. Xu. Numerical hydrodynamics from gas-kinetic theory [J]. Journal of Computational Physics,1993,109:53-66.
    [163]Kun Xu, Meiliang Mao, Lei Tang. A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow [J]. Journal of Computational Physics,2005,203(2): 405-421.
    [164]J. P. Boris and D. L. Book. Flux-corrected transport. Ⅰ. SHASTA, a fluid transport algorithm that works [J]. Journal of Computational Physics,1973,11:38-69.
    [165]B. van Leer. Towards the ultimate conservative difference scheme Ⅳ, A new approach to numerical convection [J]. Journal of Computational Physics,1977,23: 276-299.
    [166]Saenger RA, Hudson GE. Periodic shock waves in resonating gas columns [J]. Journal of the Acoustical Society of America,1960,32:961-971.
    [167]Aganin AA, Ilgamov MA, Smirnova ET. Development of longitudinal gas oscillations in a closed tube [J]. Journal of Sound and Vibration,1996,195(3): 359-374.
    [168]杜功焕,朱哲明,龚秀芬.声学基础[M].南京:南京大学出版社,2001.
    [169]刘克,马大猷.高强声——非线性声学[J].物理通报,1995,6:3-5.
    [170]K. U. Ingard. Fundamentals of waves and oscillations [M]. U.K.:Cambridge University Press,1988.
    [171]David T. Blackstock. Fundamentals of Physical Acoustics [M]. USA:A Wiley-Interscience Pubication John Wiley &Sons, Inc.,2000.
    [172]Mark F. Hamilton, David T. Blackstock. Nonlinear acoustics:Theory and Applications [M]. USA:Academic Press,1998.
    [173]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用.北京:清华大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700