用户名: 密码: 验证码:
扬声器驱动热声制冷机的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扬声器驱动热声制冷机是以声能作为动力源,利用热声效应获得制冷的装置。该制冷机具有结构简单、运行可靠、寿命长、对环境无污染等突出优点,在航天、航空,低温电子、超导、低温生物等众多领域具有十分广阔的应用前景。该制冷机中的声源主要包括连接在充满气体的共振管一端的扬声器、共振管适当位置放置着许多平行流道组成的板叠和冷、热端两个换热器。扬声器的作用在于使气体驻波频率维持在共振管的基频附近,声波使气体在板叠通道里压缩和膨胀形成振荡。振荡气体与板叠表面热交换进行声功泵热,系统通过板叠的冷、热端换热器与外界交换热量。
     本文首先介绍了扬声器驱动热声制冷机的课题背景和研究意义,回顾了热声制冷的发展历史和研究现状,并对扬声器驱动热声制冷机的原理进行了说明,较为详细地介绍了热声制冷的基本理论。在原有的扬声器驱动热声制冷机的基础上,通过改进获得了27℃的温降,这是目前国内所报道的最好结果,并从理论上对此结果进行了解释。
     最后,针对原有试验台自身存在的缺陷,本文设计搭建了一台热声制冷机,并对其结构进行了详细介绍,用专业软件DeltaE对其性能进行了预测,计算结果表明:该制冷机性能均符合设计要求。针对当前扬声器驱动热声制冷机COP值较低的现状,提出了采用稀有气体的混合气体作为制冷工质。理论计算表明,使用混合工质有望大幅提高扬声器驱动热声制冷机的COP值。
The thermoacoustic refrigerator driven by the loudspeaker takes advantage of thermoacoustic effect to obtain refrigeration. The refrigerator is easy to construct, reliable, long-life and friendly to environment. It is expected to be widely applied in aerospace, cryo-electronics, superconductivity, cryobiology and so on. The acoustic driver consists of a loudspeaker attached to one end of gas filled resonance, stacks of parallel channels placed in proper position of the resonance, cold and hot heat exchangers. The loudspeaker keeps the frequency of the standing wave around the basic frequency. The gas experiences compression and expansion in the stack channels, and so the gas oscillation is formed. The heat is transferred between the oscillating gas and the surface of the stack and is pumped from the cold to the hot end. The hot and cold heat exchangers transfer heat between the refrigerator and the environment.
    Firstly, the background and significance of the research of the thermoacoustic refrigerator are given. The history and the present state are summarized in brief. And the principle of the thermoacoustic refrigerator is also introduced for further discussion. Secondly, important modification have been done on the previous refrigerator and a temperature drop of 27C has been obtained, which is the best result reported in China. Finally, to further improve the performance of the refrigerator, a new thermoacoustic refrigerator is designed. The performance of the refrigerator is calculated by the DeltaE program. And the simulation results agree with the requirement of the design. To increase the COP of present thermoacoustic refrigerator, the idea to use the mixture of noble gases is proposed. The theoretical calculation shows that the COP of refrigerator can be significantly increased by using appropriate gas mixture.
引文
[1] S.L.Garrett and T.J.Hofler, Thermoacoustic refrigeration ASHRAE Journal, 34, 28-36 1992
    [2] G.W.Swift. Thermoacoustic engines and refrigerators, Physics Today, 48,22 1995
    [3] 郭方中,热声制冷理论和工程研究的进展,全国低温制冷机学术会议,北京,1996,3-9
    [4] K.M.Godshalk, C.Jin, Y.K.Kwong, E.L.Hershberg, G.W.Swift, R.Radebaugh, Characte-rization of 350 Hz thermoacoustic driven orifice pulse tube refrigerator with measurements of the phase of the mass flow and pressure, Advances in Cryogenic Engineering, 41,1411-1418, 1996
    [5] G.W.Swift, Thermoacoustic Natural Gas Liquefier, DOE Natural Gas Conference, Houston, March 1997
    [6] S.L.Garrett and T.J.Hofler, Thermoacoustic refrigeration, ASHRAE Journal, 34, 28-36 1992
    [7] M E H Tijani, J Zeegers, A de Waele. Prandtl number and thermoacoustic refrigerators J. Acoust. Soc.Am. 112, 134-143 2002
    [8] 肖家华,热声效应和回热式低温制冷机(热机)的热声理论,博士论文,中科院物理研究所,12,1990
    [9] 邓晓辉,回热器的热声机理和热声热机的设计理论,博士论文,华中理工大学,5,1994
    [10] 陈国邦,热声振荡及其在制冷中的应用,低温与特气,4,55-60,1996
    [11] 韩鸿兴,寿卫东,徐平,何洪,称斌,肖永华,热声制冷的研究,上海轻工业,2,31-35,1995
    [12] 邓晓辉、李青等,热声谐振管的实验研究,全国低温制冷机学术会议,北京,230-234,1996
    [13] 袁鹏,寿卫东,热声制冷效应的实验研究,同济大学学报,23(6),687-690,1995
    [14] 陈国邦,赵莉,金滔,方良,用于脉管制冷机的热声压缩机的实验研究,低温工程,3,6-11,1997
    [15] G.B.Chen, T.Jin, et al. Experimental study on a thermoacoustic engine with brass screen stack matrix, CEC A.C.E..42, 1997
    [16] 白烜,扬林,张雪涛,陈国邦,热声效应、热声机械及其在空间的应用,国防科工委空间制冷技术会议,浙江建德,1997
    [17] X.Bai, T.Jin, G.B.Chen, Experimental study on a thermoacoustic driver, Proceedings of the 5th Japan-Sino Joint Seminar on Cryocooler and its Application(JSJS-5),Osaka, Japan, 205-209, 1997
    [18] 白烜,金滔,陈国邦,热声压缩机的实验研究,低温与超导,25(4),10-17,1997
    [19] X.Bai, T.Jin, G.B.Chen, Experimental study on a thermoacoustic prime mover, Proceedings of ICCR'98, Hangzhou, China,, 522-525 1998
    [20] 白烜,脉管制冷用热声压缩机的实验研究,硕士论文,浙江大学,12,1997
    [21] 张肇剡,热声制冷的理论与实验研究,硕士论文,浙江大学,10,1998
    [22] 应哲强,热声制冷机的理论研究与设计方法,硕士论文,浙江大学,1,2000
    [23] K.T.Feldman. Review of the literature on Sondhauss thermoacoustic phenomena. J Sound Vib,
    
    1968; 7(1): 71-82
    [24] C.Sondhauss. Ueber die Schallschwingungen der Luft in erhitzten Glasrhren und in gedeckten Pfeifen von ungleicher Weite. Ann Phys (Leipzig); 79: 1, 1850
    [25] P L.Rijke Notiz über eine neue Art, die in einer an beiden Enden of fenen Rhre enthaltene Luft in Schwingungen zu versetzen. Ann Phys (Leipzig), 107: 339, 1859
    [26] K W.Taconis Vapor-liquid equilibrium of solutions of ~3He in ~4He. Physica, 15: 738, 1949
    [27] G.F.Carrier The mechanics of the Rijke tube Quarterly Applied Math 12(4) 383-395 1955
    [28] K T.Feldman A study of heat driven pressure oscillations in a gas. J Heat Transfer (Transaction of the ASME), 92:536-540,1970
    [29] G.Kirchhoff Ueber den Einfluss der Wrmeleitung in einem Gas auf die Schallbewegung. Ann Phys(Leipzig), 79:1,1850
    [30] P.H.Ceperley, A pistonless Stirling engine -the traveling wave heat engine, J. Acoust. Soc. Am. 66(5), 1508-1513,1979
    [31] N.Rott Thermoacoustics. Adv Appl Mech, 20:135,1980
    [32] N.Rott Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z Angew Math Phys, 20:230,1969
    [33] N.Rott Thermally driven acoustic oscillations, part Ⅱ: Stability limit for helium. Z Angew Math Phys, 24:54,1973
    [34] N. Rott Thermally driven acoustic oscillations, part Ⅲ: Second-order heat flux. Z Angew Math Phys, 26: 43, 1975
    [35] N.Rott Zouzoulas G. Thermally driven acoustic oscillations, part Ⅳ: Tubes with variable cross-section. Z Angew Math Phys, 27: 197, 1976
    [36] G.Zouzoulas, N.Rott Thermally driven acoustic oscillations, part Ⅴ: Gas-liquid oscillations. Z Angew Math Phys, 27:325,1976
    [37] N.Rott The influence of heat conduction on acoustic streaming. Z Angew Math Phys, 25:417,1974
    [38] N. Rott Linear thermoacoustics. First Workshop on Thermoacoustics, the Netherlands, 8, April 2001
    [39] P H.Ceperley A pistonless Stirling engine -the traveling wave heat engine. J Acoust Soc Am, 66 (5):1508-1513,1979
    [40] G W.Swift Thermoacoustic engines. J Acoust Soc Am, 1988; 84:1145-1180
    [41] W C Ward, G W.Swift Design environment for low-amplitude thermoacoustic engines. J Acoust Soc Am, 95 (6): 3671,1994
    [42] A A Atchley, H E Bass, T J Hofler, H T.Lin Study of a thermoacoustie prime mover below onset of self-oscillation. J Acoust Soc Am, 91: 734,1992
    [43] A S. Worlikar O M.and Knio Numerical simulation of a thermoacoustic refrigerator. J Computational Physics, 127:424-451,1996
    
    
    [44] M.Wetzel, C.Herman Design optimization of thermoacoustic refrigerators. Int J Refrigeration, 20 (1): 3-21,1997
    [45] Y F Gu, K D Timmerhaus. Mass--spring analyses of thermal acoustic oscillations in a helium system. Proceedings of 19th Int'l Congress of Refrigeration,Ⅲb: 1115~1122,1995
    [46] G.Mozurkewich A model for transverse heat transfer in thermoacoustics. J Acoust Soc Am, 103 (6): 3318-3326,1998
    [47] A.Tominaga Thermodynamic aspects of thermoacoustic theory. Cryogenics, 35:427-440,1995
    [48] A.Tominaga The second step of thermoacoustic theory. Cryogenic Engineering, 27:43 (in Japanese), 1992
    [49] A.Tominaga Thermoacoustic theory of viscous fluid part 1—Energy conversion and energy flux of small cycles. Cryogenic Engineering, 27 (7): 543-548 (in Japanese), 1992
    [50] A.Tominaga Thermoacoustic theory of viscous fluid part 2—Average over the cross-sectional area of flow channel. Cryogenic Engineering, 27 (7): 549-554 (in Japanese), 1992
    [51] A.Tominaga Thermoacoustic theory of viscous fluid part 3—Radial distribution of velocity and entropy. Cryogenic Engineering, 28 (2): 99-107 (in Japanese), 1993
    [52] A.Tominaga Thermoacoustic theory of viscous fluid part 4—Axial variations. Cryogenic Engineering, 28 (2): 108-113 (in Japanese), 1993
    [53] A.Tominaga Thermoacoustic theory and its applications to refrigerators. Proceedings of 3rd JSJS, Okayama, 141-146, 1989
    [54] A.Tominaga Thermoacoustic theory of regenerator in refrigerator. Cryogenic Engineering, 26 (1): 30-36 (in Japanese), 1992;
    [55] A.Tominaga Phase dependance of energy flows in a regenerator. Cryogenic Engineering, 27 (1): 63-69 (in Japanese), 1993
    [56] A.Tominaga Phase dependence of pulse tube refrigerators. Cryogenic Engineering, 27 (1): 134-141(in Japanese), 1993
    [57] 富永昭.热音响工学(Fundamental Thermoacoustics).日本:内田鹤圃,1998(日语)
    [58] S W Zhu, Y Kakimi et ai. Active-buffer pulse tube refrigerator. Proceedings of the ICEC16/ICMC, Japan,:291,1996
    [59] S Backhaus and G W.Swift A thermoacoustic-Stirling engine: detailed study. J Acoust Soc Am, 107 (6): 3148-3166,2000
    [60] J A Adeff, T J.Hofler Design and construction of a solar powered, thermoacoustically driven thermoacoustic refrigerator. At web site: http://www.physics.nps.navy.mil/hofler, 2000
    [61] M E H Tijani, J Zeegers, A de Waele. Design, development, and operation of a thermo-acoustic refrigerator cooling to below-60℃, Cryocooler, 11:309-316, 2001
    [62] T J Hofler, Thermoacoustic refrigerator design and performance, Ph.D.dissertation,Physics
    
    Department, University of California at San Diego, 1986
    [63] S L Garrett et al. Thermoacoustic refrigerator for space application. Journal of Thermophysics and Heat Transfer (AIAA), 7(4): 1993;
    [64] S L.Garrett Thermoacoustic life sciences refrigerator. NASA Tech. Report No. LS-10114. Houston, Texas: Johnson Space Center, Space and Life Sciences Directorate. 10,1991
    [65] A Grant et al. Extended performance measurements for SETAC. J Acoust Soc Am, 103 (5) Pt 2:2841,1998
    [66] M.E.H.Tijani, J.C.H. Zeegers, and A.T.A.M. de Waele A gas-spring system for optimising loudspeakers in thermoacoustic refrigerators J. Appl. Phys. 92, 2159-2165 2002
    [67] J H. Xiao Thermoacoustic heat transportation and energy transformation part 1: formulation of the problem. Cryogenics, 35:15-19,1995
    [68] J H.Xiao Thermoacoustic heat transportation and energy transformation part 2: isothermal wall thermoacoustic effects. Cryogenics, 35:21-26,1995
    [69] J H.Xiao Thermoacoustic heat transportation and energy transformation part 3: adiabatic wall thermoacoustic effects. Cryogenics, 35: 27-29,1995
    [70] 邓晓辉.回热器的热声机理及热声热机的设计理论.华中理工大学博士学位论文,1994
    [71] 邓晓辉,胡晓,郭方中.回热器的热声网络模型.低温工程,90(2):6-13,1996
    [72] 戴根华,李沛滋.电动声源热声制冷声学和计算实例.应用声学 14(4)6-13,1995
    [73] 王本仁,缪国庆.热声热机场方程的改进计算.应用声学,13(4):38-43,1994
    [74] 韩飞,沙家正.Rijke管热声非线性地不稳定增长过程的研究.声学学报,21(4):362-367,1996
    [75] 韩飞,岳国森,沙家正.Rijke热声振荡的非线性效应.声学学报,22(3):5,1997
    [76] 韩飞,杨军,沙家正.Rijke热声振荡的有源控制.声学学报,22(5):9,1997
    [77] 韩鸿兴,寿卫东,徐平等,热声制冷的研究.上海轻工业,2:31-35,1995
    [78] 袁鹏,寿卫东,热声制冷效应的实验研究.同济大学学报,23(6):687-690,1995
    [79] 冯仰浦,张肇剡,热声制冷的实验研究.低温工程,110(4):33-36,1999
    [80] Hiller R A, Swift G W. Continuous-flow thermoacoustic dehumidifier. J Acoust Soc Am, 104 (3) Pt 2:1772, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700