用户名: 密码: 验证码:
面向微创手术机器人系统的缝合打结行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决受限空间下微创手术机器人辅助缝合打结难以操作等问题,本文针对支撑喉镜下的微创喉部手术,开展机器人辅助缝合打结行为研究。本文的主要内容和成果如下:
     1.机器人辅助微创外科手术中缝合打结的动作分析及其抽象。
     本文分解了微创手术中的缝合打结动作,并将其抽象为“移动到某位置“旋转/调整姿态”、“夹持”、“推/压”、“拉/牵引”和“松开”六种基本动作的组合。本文分析了微创手术缝合打结操作中所用基本动作的频率,作用有效时间,和对力、操作空间及手术工具等的要求。
     2.手术纽结的数字化表示:数字编码矩阵。
     根据打结操作的动作分析和纽结理论,建立了有向纽结模型,将手术纽结看作不同次序和方向的结扣组合。将单个结扣中交叉点类型、缠绕数、两个缝合线段的相互位置和几何拓扑关系等信息,按照一定规则组成结扣的数字编码矩阵。手术纽结编码矩阵是所组成结扣的编码矩阵的并。本文提出的数字化手术纽结表示方法有利于机器人识别所打纽结的状态。
     3.受限手术空间下的缝合路径规划和弯曲扭转打结算法。
     针对缝合中影响操作空间的最主要因素,对缝针在组织内的路径进行了规划。对于打结操作,提出通过工具沿其轴向的移动和自转,引起缝合线弯曲、扭转变形而形成线圈的弯曲扭转打结方法。基于缝合线曲带模型和相关纽结理论分析证明该方法可行而稳定。在此基础上提出弯曲扭转打结算法,利用工具两颚弯曲和工具自转自由度完成形成简单结和纽结张紧。该缝合路径规划和打结算法能够应用于机器人辅助支撑喉镜喉部微创手术,具有重要的临床价值。
     4.微创手术机器人辅助的缝合打结仿真和实验研究。
     基于“妙手”系列手术机器人,系统进行了相关仿真和实验研究,对弯曲扭转打结方法的影响因素进行了分析和评价,验证了缝合路径规划、纽结的数字编码矩阵和弯曲扭转打结算法的可行性和有效性。
It is difficult to perform robot-assisted suturing and knot-tying tasks although minimally invasive surgery (MIS) robotic systems have been developed greatly. The qualities of the suture and knots formed in robot-assisted MIS are worse than that in MIS performed directly by surgeons. In order to solve the problems of robot-assisted suturing and knot-tying in MIS, the research in this dissertation focuses on the behaviors of MIS robot-assisted suturing and knot-tying tasks. The contents of this dissertation are introduced briefly.
     1. Analysis and abstract of the motions of robot-assisted suturing and knot-tying tasks in MIS.
     The motions of the suturing and knot-tying tasks are decomposed and abstracted into six basic types of motions, which are“Reach”(m1),“Rotate & Orient”(m2),“Grasp & Hold”(m3),“Push”(m4),“Pull”(m5), and“Release”(m6). Frequency and effective acting time of each type of the motions in the suturing and knot-tying tasks are analyzed. And the workspace and the end-effectors required by the motions are introduced.
     2. The presentation of surgical knots: digital code matrix of a knot.
     According to the analysis of the motions of the suturing and knot-tying tasks and different throws formed in the knot-tying process, based on knot theory, the orientation surgical knot is modeled. The crossing points, the writhe of a throw, the position of the two strands which consist of the throw and other topological information of the throw compose the digital code matrix of a throw. The usual throws of knots are collected into the throw set. Each of the elements of the throw set is named a throw element, which maps to a code matrix of a throw. The code matrix of a knot which comprises of throw elements is the union of the code matrices of the throw elements. The digital representation of surgical knots proposed in this dissertation benefits the surgical robotic systems to identify the configuration of a knot in the knot-tying task.
     3. The suturing path planning and the Bending-Twisting Knot-Tying (BTKT)algorithm in a confined workspace
     In the suturing task, the most important factor of the operating workspace is the trajectory of the needle inside the tissue. The path inside the tissue is planned for an 8mm 3/8 needle according to the principles of the suturing task. The BTKT method is a novel method of forming a stable loop. With this method, the suture is grasped by the end-effectors which move along their axes and rotate themselves. Then the suture is bent and twisted with the tendency to reduce its energy. The suture forms a stable loop when its energy reduces to zero. After one end-effector forms a stable loop with BTKT method, the jaws of the other end-effector bending and the whole end-effector rotating, the end-effector adjusts its posture. Then the end-effector grasps the free strand of the suture and pulls the strand through the loop. Thus the preparatory simple knot is formed. Grasping the strands of the suture vertically, the end-effectors both rotate themselves until it makes the strands of the suture enlace the axes of the end-effectors and tighten the knot. The whole knot-tying process is named by BTKT algorithm. The suturing path planning and the BTKT algorithm, which facilitate surgeons to perform the robot-assisted suturing and knot-tying tasks in laryngeal MIS under a thin and long self-retaining laryngoscope, are of the clinical importance.
     4. Suturing and knot-tying simulation and experiments assisted by MIS surgery robotic systems.
     Suturing and knot-tying simulation and experiments assisted by“MicroHand”series surgery robotic systems are performed. The factors on the Bending-Twisting Knot-Tying (BTKT) method are analyzed. The simulation and experiments validate the code matrix of a knot, the suturing path planning and the Bending- Twisting Knot-Tying (BTKT) algorithm.
引文
[1]Wolfgang Wayand. The history of minimally invasive surgery, Endoscopy, 2004, 37-38.
    [2]http://www.surgery.usc.edu/divisions/nontrauma/default.htm
    [3]Y. S. Kwoh, J. Hou, E. A. Jonckheere, and S. Hayati, A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery, IEEE Transactions on Biomedical Engineering, 1988, 35: 153-160.
    [4]B.Davies, A review of robotics in surgery. Proc Inst Mech Eng, 2000, 214(1): 129-140.
    [5]R.H. Taylor, D. Stoianovici, Medical robotics in computer-integrated surgery. Robotics and Automation, IEEE Transactions on, 2003, 19(5): 765-781.
    [6]Ruurda JP, van Vroonhoven T, Broeders I. Robot-assisted Surgical Systems: A New Era in Laparoscopic Surgery. Ann R Coll Surg Engl, 2002, 84: 223-226.
    [7]Meadows M. Computer-Assisted Surgery: An Update. FDA Consumer Magazine 2005, 39(4): 16-17..
    [8]Varma TR, Eldridge PR, Forster A, Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery, Stereotactic and Functional Neurosurgery, 2003, 80(1-4): 132-135.
    [9]Taylor R. H., Jenson P., Whitcomb L. et al, A steady-hand robotic system for microsurgical augmentation, The International Journal of Robotics Research, 1999, 18: 1201-1210.
    [10]R. H. Taylor, B. D. Mittelstadt, H. A. Paul, et al., An Image-Directed Robotic System for Precise Orthopaedic Surgery, IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1994, 10(3): 261-275.
    [11]R. H. Taylor and D. Stoianovici, Medical Robotics in Computer-Integrated Surgery, IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2003, 19(5): 765-781.
    [12]裴葆青,周力,吕坤,王田苗,股骨颈骨折空心钉内固定手术参数的优化分析,中国生物医学工程学报,2007,26(3):431-440。
    [13]Cleary K., Melzer A., Watson V., et al., Interventional robotic systems: applications and technology state-ofthe-art, Minimally Invasive Therapy andAllied Technologies, 2006, 15(2): 101–113.
    [14]http://www.accuray.com/
    [15]Hakimi A, Feder M, Ghavamian R., Minimally invasive approaches to prostate cancer: a review of the current literature, Urology Journal, 2007, 4(3): 130-137.
    [16]Kang H, Wen J T, EndoBot: A robotic assistant in minimally invasive surgeries, Proceedings of IEEE International Conference on Robotics and Automation, 2001, 2: 2031-2036.
    [17]Hermann Mayer, Faustino Gomz, Daan Wierstra, et al., A System for Robotic Heart Surgery that Learns to Tie Knots Using Recurrent Neural Networks. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, October 2006.
    [18]谭基明,基本外科技术,科学技术文献出版社:北京,2000。
    [19]G.哈姆森,王衍发译,简明外科手术手册,中国科学技术出版社:北京,2003。
    [20]Donald L. Murphy, Endoscopic Suturing and Knot Tying: Theory Into Practice, Ann Surg. 2001, 234(5): 607–612.
    [21]Basim A. Fleega, Sherif H. Sokkar, The Giant Knot: A New One-Way Self-Locking Secured Arthroscopic Slip Knot, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 1999, 15(4): 451–452.
    [22]Christos K. Yiannakopoulos, Ioannis Hiotis, Emmanuel Antonogiannakis, The Triad Knot: A New Sliding Self-Locking Knot, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 2005, 21(7): 899.e1-899.e3.
    [23]Kim, S. H., Yoo, J. C., Wang, J. H., et al., Arthroscopic Sliding Knot: How Many Additional Half-Hitches Are Really Needed?, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 2005, 21(4): 405-411.
    [24]Hage, J. J., How Capsizing, Flipping, and Flyping of Traditional Knots Can Result in New Endoscopic Knots: A Geometric Review, the American College of Surgeons, 2007, 205(5): 717-723.
    [25]Chris H. Jo, Ji-Ho Lee, Seung-Baik Kang, et al., Optimal configuration of arthroscopic sliding knots backed up with multiple half-hitches, Knee Surg Sports Traumatol Arthrosc, 2008, 16:787–793.
    [26]Ustuner ET. Automatic surgical suturing instrument and method. US Patent No. 7048748B1, 23 May 2006.
    [27]Dawson SL, A critical approach to medical simulation. Bull Am Coll Surg, 2002, 87(11):12–18
    [28]Terzopoulos D, Platt J C, Barr H, Fleischer K,Elastically deformable models,Proceedings of the Annual ACM SIGGRAPH '87 Conference,ACM Press, 1987, 21: 205-214
    [29]Terzopoulos D, Witkin A, Physically based models with rigid and deformable components, IEEE Computer Graphics and Applications, 1988: 41-51.
    [30]James D, Pai D, Artdefo: Accurate real time deformable objects, Computer Graphics (SIGGRAPH’90), 1999: 65-72.
    [31]Picinbono J, Delingette H, Ayache N, Non-linear and anisotropic elastic soft tissue models for medical simulation, In IEEE Int. Conf Robot. & Autom, 2001: 1370-1375
    [32]Larsson A, Intracorporeal suturing and knot tying in surgical simulation. In: Proceedings of the Medicine Meets Virtual Reality conference, Newport Beach, CA 24–27 January 2001, 266–271.
    [33]Lenoir J, Meseure P, Grisoni L, et al., Surgical thread simulation. In: Proceedings of the workshop on modelling and simulation for computer-aided medicine and surgery (MS4CMS), INRIA, Rocquencourt, France, November 2002.
    [34]Phillips J, Ladd A, Kavraki LE. Simulated knot-tying. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, USA, 2002.
    [35]Pai DK, STRANDS: interactive simulation of thin solids using cosserat models. In: Proceedings of Eurographics 2002, Saarbrücken, Germany, 2–6 September 2002, 347–352.
    [36]Barzel R, Faking dynamics of ropes and springs. IEEE Comput Graph Appl, 1997, 17(3): 31– 39.
    [37]Ward K, LinMC, Lee J, Fisher S, et al., Modeling hair using level-of-detail representations. In: Proceedings of the 16th international conference on computer animation and social agents (CASA 2003), New Brunswick, NJ, 2003.
    [38]Kim T-Y, Neumann U, Interactive multiresolution hair modeling and editing. ACM Trans Graph, 2002, 21(3): 620–629.
    [39]Brown J, Latombe JC, Montgomery K. Real-time knot-tying simulation. Visual Computer 2004; 20: 165–179.
    [40]Wang F, Burdet E, Dhanik A, et al., Dynamic thread for real-time knot-tying, Proc. Haptic Symposium, Proc Joint Eurohaptics and Symposium on Haptic and Teleoperation, IEEE Int. Conf on Virtual Reality (IEEEVR) , 2005: 507-508
    [41]Baraff D, Witkin A, Large steps in cloth simulation. In: Proceedings of ACM SIGGRAPH 1998, Orlando, FL, 19–24 July 1998, 43–54.
    [42]Bridson R, Fedkiw R, Anderson J, Robust treatment of collisions, contact and friction for cloth animation. ACM Trans Graph, 2002, 21(3): 594–603.
    [43]House DH, Breen DE (eds), Cloth modeling and animation. Peters, Natick, MA, 2000.
    [44]Provot X, Deformation constraints in a mass-spring model to describe rigid cloth behavior. In: Proceedings of Graphics Interface, Quebec City, Quebec, Canada, 17–19 May 1995, 147–154.
    [45]Volino P, Magnenat-Thalmann N, Collision and selfcollision detection: efficient and robust solutions for highly deformable surfaces. In: Proceedings of the 6th Eurographics workshop on computer animation and simulation, Maastricht, The Netherlands, 2–3 September 1995, 55–65.
    [46]Ladd AM, Kavraki LE, Motion planning for knot untangling. In: Proceedings of the 5th international workshop on algorithmic foundations of robotics (WAFR 2002), Nice, France, 2002, 6–22.
    [47]Kusner RB, Sullivan JM, M?bius-invariant knot energies. In: Stasiak A, Katritch V, Kauffman LH (eds) Ideal knots. World Scientific, Singapore, 1998, 315–352.
    [48]Jun Takamatsu, Takuma Morita, Koichi Ogawara, Hiroshi Kimura, and Katsushi Ikeuchi, Representation for Knot-Tying Tasks, IEEE TRANSACTIONS ON ROBOTICS, 2006, 22(1): 65-78.
    [49]Kang H, Wen J T,Robotic knot Ttying for minimally invasive surgeries,International Robotics and Systems (IRoS) Conference, Lausanne, Sept 2002,1421-1426.
    [50]Masaya K, Okamura A M, Bethea B T, et al.,Analysis of suture manipulation forces for teleoperation with force feedback Proceedings of the Fifth International Conference on Medical Image Computing and Computer Assisted Intervention --MICCAI 2002, Lecture Notes in Computer Science, Dohi T and Kikinis R, Eds., 2002, 2488, 155-162. ,
    [51]Goss V G A, Experiments on snap buckling, hysteresis and loop formation in twisted rods, 2005 Society for Experimental Mechanics, 2005, 45 (2): 100-111.
    [52]Steve C, Hari D, Dexterity-enhanced Telerobotic Microsurgery, ICAR97, Monterey, Canada, July 7-9, 1997: 1-6.
    [53]Mitsuishi M, Watanabe T, Hori T, et al, A tele-microsurgery system that shows what the user wants to see, Proceedings 4th IEEE International Workshop on Robot and Human Communication, RO-MAN'95 TOKYO, 1995: 237-246.
    [54]Mitsuishi M, Tomisaki S, Yoshidome T, Tele-micro-surgery system withintelligent user interface, Proceedings 2000 ICRA, Millennium Conference. IEEE International Conference on Robotics and Automation, Symposia Proceedings, 2000, 2(2): 1607-1614.
    [55]Taylor R H, Jensen P, Whitcomb L L, et al, A Steady-Hand Robotic System for Microsurgical Augmentation, International Journal of Robotics research, 1999, 18(12): 1201-1210.
    [56]李群智,机器人辅助显微外科手术系统的研究与开发:[硕士学位论文],天津;天津大学,2004.受理号:李群智,刘治平等,用于显微外科手术机器人中的机械臂,国家发明专利,授权号:
    [57]Li Q Z, Wang S X, Yun J T, et al, Haptic device with gripping force feedback, 2005 IEEE International Conference On Robotics & Automation (ICRA), 2005, 1-4 : 1190-1195.
    [58]王树新,李群智,丁杰男等,具有夹持力感觉的主操作手,国家发明专利,CN 200510013004.5.
    [59]王树新,ZL 03 1 29938.5.
    [60]http://www.prosurgics.com/
    [61]K. Masamune, E. Kobayashi, Y. Masutani et al. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery, Journal of Image Guided Surgery, 1995, 1: 242-8.
    [62]S. Charles, R. E. Williams, B. Hamel, Design of a surgeon-machine interface for teleoperated microsurgery, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1989: 883-4.
    [63]R. H. Taylor, P. Jenson, L. Whitcomb, et al., A steady-hand robotic system for microsurgical augmentation, The International Journal of Robotics Research, 1999, 18: 1201-1210.
    [64]R. Kumar, T. M. Gordia, A. C. Barnes, et al., Performance of robotic augmentation in microsurgery-scale motions, 2nd International Symposium on Medical Image Computing and Computer Assisted Surgery (MICCAI), Springer, 1999: 1108-1115.
    [65]A. M. Quinn,“CyberKnife?: A Robotic Radiosurgery System,”Clinical Journal of Oncology Nursing, 2002, 6(3): 149.
    [66]Cowley G., Introducing Robodoc. A robot finds his calling-in the operating room. Newsweek. 1992, 120(21): 86.
    [67]M. Borner, A. Lahmer, A. Bauer, et al., Experiences with the ROBODOC system in more than 1000 cases, Computer Aided Radiology and Surgery (CARS),Elsevier, 1998: 689-693.
    [68]http://www.acrobot.co.uk/
    [69]王田苗,2003,25(3):255-258。李伟,刘达等,机器人技术在中医正骨手术中的应用研究,机器人
    [70]K. Cleary, A. Melzer, V. Watson, et al.. Interventional robotic systems: Applications and technology state-ofthe-art. Minimally Invasive Therapy and Allied Technologies, 2006, 15(2): 101–113.
    [71]D. Stoianovici, K. Cleary, A. Patriciu, et al., Acubot: a robot for radiological interventions. IEEE Transactions on Robotics and Automation, 2003, 19(5): 927–930.
    [72]http://www.accuray.com/
    [73]Howe R D, Matsuoka Y, Robotics for surgery, Annu. Rev. Biomed. Eng., 1999, 01: 211-240.
    [74]Williams, M.C.C.a.W., Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking towards the Future Applications. In Proceedings of the 39th Allerton Conference on Communication, Control and Computing, 2001.
    [75]Butner S E, Ghodoussi M, A real-time system for tele-surgery, Proceedings 21st International Conference on Distributed Computing Systems, 2001: 236-243.
    [76]Menon M, Shrivastava A, Tewari A, et al, Laparoscopic and Robot Assisted Radical Prostatectomy: Establishment of a Structured Program and Preliminary Analyses of Outomes, J Urol 2002, 168: 945-949.
    [77]D. A. Murphy, J. S. Miller, D. A. Langford, A. B. Snyder,“Endoscopic Robotic Mitral Valve Surgery,”J. Thorac. Cardiovasc. Surg. 2006, 132 (4): 776-781.
    [78]Hyosig Kang, John T. Wen. Autonomous Suturing using Minimally Invasive Surgerical Robots, Proceedings of the 2000 IEEE International Conference on Control Applications, Anchorage, Alaska, USA. September 25-27, 2000.
    [79]Hyosig Kang, John T. Wen. EndoBot: a robotic assistant in minimally invasive surgeries, Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, May 21-26, 2001.
    [80]Mayer H, Nagy I, Knoll A, et al, An Experimental System for Robotic Heart Surgery, 18th IEEE Symposium on Computer-Based Medical Systems, 2005: 55-60.
    [81]Hermann Mayer, Istvan Nagy, Alois Knoll, et al., Haptic Feedback in a Telepresence System for Endoscopic Heart Surgery, Teleoperators and VirtualEnvironments, 2007, 16(5):459-470.
    [82]Shi J R, Pascal M, Viviane P, et al, Preliminary results on the design of a novel laparoscopic manipulator, Proceedings of the 11th World Congress in Mechanism and Machine Science, Tianjin, P. R. China, April 1-4, 2004: 1181-1185.
    [83]Simaan N, Taylor R H, Flint P, A Dexterous System for Laryngeal Surgery, Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orieans, LA April 2004: 351-357.
    [84]Akhil J M, Design of Teleoperated Surgical Instruments for Minimally Invasive Surgery, Doctor of Philosophy in Mechanical Engineering at the Massachusetts Institute of Technology, 1998. 02.
    [85]McLeod I K, Mair E A, Melder P C, Potential applications of the da Vinci minimally invasive surgical robotic system in otolaryngology, Ear, Nose and Throat Journal, August 1, 2005, 84(8): 483-487
    [86]Weinstein G S, O'malley B W, Hockstein N G, Transoral robotic surgery: supraglottic laryngectomy in a canine model, Laryngoscope, 2005, 115(7): 1315-1319.
    [87]Hockstein N G, Nolan J P, O'Malley B W, et al, Robotic Microlaryngeal Surgery: A Technical Feasibility Study Using the daVinci Surgical Robot and an Airway Mannequin, Laryngoscope, 2005, 115(5): 780-785.
    [88]Hockstein N G, Nolan J P, O'Malley B W, et al, Robot-assisted pharyngeal and laryngeal microsurgery: results of robotic cadaver dissections, Laryngoscope, 2005, 115(6): 1003-1008.
    [89]Wang S X, Ding J N, Yun J T, Li Q Z, et al, A robotic system with force feedback for micro-surgery, 2005 IEEE International Conference On Robotics & Automation (ICRA), 2005, 1-4: 199-204.
    [90]王树新,CN 200510013171.9.李群智,丁杰男等,外科手术机器人从操作手,国家发明专利,受理号:丁杰男,李群智等,一种显微外科用微机械手,国家发明专利,授权号:面向喉部微创外科手术的机器人系统设计与实验研究:天津;天津大学,具有缝合功能的喉部微创手术机器人系统设计及实现:
    [91]王树新,ZL 200410093829.7.
    [92]Shuxin Wang, Longwang Yue, Qunzhi Li, Jienan Ding, Conceptual design and dimensional synthesis of "MicroHand", Mechanism and Machine Theory, 2008, 43(9): 1186-1197.
    [93]李群智, [博士论文],2006。
    [94]丁杰男, [博士论文],天津;天津大学,2008。
    [95]岳龙旺, [博士论文],外科手术机器人缝合打结研究:天津;天津大学,2006。
    [96]Caroline G. L. Cao, Christine L. MacKenzie, TASK AND MOTION ANALYSES IN ENDOSCOPIC SURGERY, 1996 ASME IMECE Conference Proceedings: 5th Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Atlanta, Georgia., 1996, 583-590.
    [97]Song S K, Kim W S, Kwon D S, et al, Analysis of Microsurgery Task for developing Micromanipulator, Proceedings of the 12th Korea Automatic Control Conference, 1997, 2: 1631~1634.
    [98]Jun Takamatsu, ABSTRACTION OF MANIPULATION TASKS TO AUTOMATICALLY GENERATE ROBOT MOTION FROM OBSERVATION: [PhD Dissertation], Tokyo; the University of Tokyo, 2006.
    [99]Paterson-Brown S, Dudley HA, Knotting in continuous mass closure of the abdomen. Br J Surg, 1986. 73: 679-680.
    [100]PHILIP M STOTT, LIONEL G RIPLEY, MICHAEL A LAVELLE, The ultimate Aberdeen knot, Ann R Coll Surg Engl, 2007, 89: 713–717.
    [101]Tera H, Aberg C. Tensile strengths of twelve types of knot employed in surgery, using different suture materials. Acta Chir Scand, 1976, 142: 1–7.
    [102]Trimbos JB. Security of various knots commonly used in surgical practice. Obstet Gynecol, 1984, 64: 274–280.
    [103]Loutzenheiser TD, Harryman DT 2nd, Ziegler DW, et al. Optimizing arthroscopic knots using braided or monofilament suture. Arthroscopy, 1998, 14: 57–65.
    [104] Loutzenheiser TD, Harryman DT 2nd, Yung SW, et al. Optimizing arthroscopic knots. Arthroscopy, 1995, 11: 199–206.
    [105]Burkhart SS, Wirth MA, Simonich M, et al. Knot security in simple sliding knots and its relationship to rotator cuff repair: how secure must the knot be?. Arthroscopy, 2000, 16: 202–207.
    [106] Burkhart SS, Wirth MA, Simonich M, et al. Loop security as a determinant of tissue fixation security. Arthroscopy, 1998, 14: 773–776.
    [107]Kim SH, Yoo JC. Arthroscopic Knot Tying. Techniques in Shoulder & Elbow Surgery, 2003, 4(2): 35–43.
    [108]Murasugi K. Knot Theory and Its applications. Birkhauser: Boston, Basel, Berlin, 1996.
    [109]Rolfsen D. Knots and Links. Publish or Perish, Inc. Houston: Texas., 1990.
    [110]Kauffman LH. Knots and Physics. World Scientific Publishing: Singapore, New Jersey, London, HongKong, 2001.
    [111]刘延柱,弹性细杆的非线性力学——DNA力学模型的理论基础,清华大学出版社:北京,2006,6-11.
    [112]Gebe JA, Allison SA, Clendenning JB, et al. Monte Carlo simulations of supercoiling free energies for unknotted and trefoil knotted DNAs. Biophys J, 1995, 68: 619–633.
    [113]Klenin K, Langowski J. Computation of writhe in modeling of supercoiled DNA. Biopolymers, 2000, 54: 307–317.
    [114]Ramachandran G, Schlick T. Buckling transitions in superhelical DNA: dependence on the elastic constants and DNA size. Biopolymers, 1997, 41(1): 5–25.
    [115]Ricca RL. The energy spectrum of a twisted flexible string under elastic relaxation. J Phys AMath Theoret, 1995, 28: 2335–2352.
    [116]Hyosig Kang. Robotic Assisted Suturing in Minimally Invasive Surgery: [PHD], Germany, The Graduate Faculty of Rensselaer Polytechnic Institute, 2002.
    [117]D.W. Miller, R.T. Schlinkert, D.K. Schlinkert, Robotassisted Laparoscopic Cholecystectomy: Initial Mayo Clinic Scottsdale Experience, Mayo Clin. Proc., 2004, 79 (9): 1132-1136.
    [118]J. Heemskerk, R. van Dam, W.G. van Gemert, et al., First Results after Introduction of The Four-armed da Vinci Surgical System in Fully Robotic Laparoscopic Cholecystectomy, Dig. Surg., 2005, 22 (6): 426-431.
    [119]N.L. Miller, D. Theodorescu,“Status of Robotic Cystectomy in 2005”World J. Urol., 2006, 24(2): 180-187.
    [120]M. Wolfram, R. Braeutigam, T. Engl, W. et al., Robotic-assisted Laparoscopic Radical Prostatectomy: The Frankfurt Technique, World J. Ural., 2003, 21 (3): 128-132.
    [121]休斯敦,刘又午,多体系统动力学,天津大学出版社:天津,1987。
    [122]Dai, J. S., An Historical Review of the Theoretical Development of Rigid Body Displacements from Rodrigues Parameters to the Finite Twist, Mechanism and Machine Theory, 2006, 41(1): 41-52.
    [123]Kirtikbhai A Patel, W. E. G. Thomas, Sutures, ligatures and staples, Surgery (Oxford), 2006, 23(2): 56-60.
    [124] http://www.ethicon.com/
    [125]http://www.stericat.in/needles.html
    [126]Ian K. Y. Lo, Stephen S. Burkhart, K. Casey Chan, et al., Arthroscopic Knots: Determining the Optimal Balance of Loop Security and Knot Security, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 2004, 20(5): 489-502.
    [127]Scott P. Fischer, Benjamin D. Rubin, Arthroscopic Knot-Tying Techniques, Operative Techniques in Sports Medicine, 2004, 12: 71-81.
    [128]Thay Q. Lee, Peter A. Matsuura, Robert P. Fogolin, et al., Arthroscopic Suture Tying: A Comparison of Knot Types and Suture Materials, Arthroscopy: The Journal of Arthroscopic and Related Surgery, 2001, 17(4): 348–352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700