用户名: 密码: 验证码:
合成孔径雷达目标识别与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(Synthetic Aperture Radar, SAR)具有全天候、全天时成像、穿透性强等特点,广泛应用于军事目标侦察、自然灾害监测、资源勘察等领域。其图像信息提取多年以来一直被人们研究,是SAR图像解译(目标识别)的关键步骤,在探测、成像、SAR图像解译中扮演着重要的角色。与SAR数据源的快速增长相比,SAR图像解译技术的研究相对比较滞后。
     本文的研究重点是舰船、飞机和车辆等目标的特征提取、特征仿真和目标自动识别。
     根据目标特征提取和目标自动识别的研究过程,在总结前人主要成果的基础上开展了以下工作:
     1)对SAR图像的特点以及SAR图像中不同类型目标的特征进行了分析,详细讨论了SAR图像中面目标的纹理信息和常见的纹理分析方法。
     2)分析了SAR图像预处理中的斑点噪声特征,比较了各种消斑方法的优缺点。斑点噪声的存在影响了SAR图像的质量,本文采用小波阈值去噪的方法降低了SAR图像中的斑点噪声,利用Daubechies小波对图像进行2D小波变换,在阈值处理时采用了分层阈值算法和软-硬阈值折衷的方法。实验证明,该方法可以达到较好的去噪效果,并能保留边缘等细节信息,有助于下一步的SAR图像目标特征、纹理特征提取工作。
     3)研究了Gabor滤波器组在纹理特征提取中的应用。在详细分析了Gabor滤波器的构成和参数选择的基础上,构造了多尺度、多方向的Gabor滤波器组,对要处理的SAR图像进行滤波得到了一系列不同尺度和不同方向上的滤波图像。把提取滤波图像中的局部极值点作为反映目标信息的特征点,用特征点附近的小邻域能量之和表征该点所在区域信息。这是对高分辨率SAR图像中舰船类大型目标利用纹理特征进行目标识别的尝试。实验表明,不同目标的特征提取结果有较大差异,通过合理地设置阈值,可作为区分不同目标的方法,这种特征可应用于后续的SAR图像目标分类和目标识别。
     4)重点讨论了基于物理光学和几何绕射理论的散射中心理论模型,对散射中心模型的各个参数在图像域进行了估计,详细分析了基于散射中心理论的SAR图像目标特征提取算法,开发了SAR目标自动识别系统软件,采用了先估计目标方位后识别目标类型的目标识别方法以提高目标识别的效率,利用Delaunay三角化技术提高了目标方位的估计精度。实测MSTAR (Moving and Stationary TargetAcquisition and Recognition) SAR图像中目标的识别结果表明了该方法的准确性和有效性。
     5)实现了从目标建模、散射计算到雷达图像仿真的全过程。首先使用AutoCAD软件对目标建模并进行三角面元离散,采用反方向光学射线追踪技术进行消隐,以物理光学近似理论计算目标的后向散射,最后利用逆合成孔径雷达成像方法得到了目标的雷达仿真图像。球体的计算结果验证了物理光学的正确性,坦克和飞机模型的仿真成像结果与实验结果和CAD模型的对比进一步证实了目标仿真成像系统的有效性。
     6)利用欧洲非相干散射雷达的常规电离层探测数据,分析了实测数据中接收功率“变”的现象。高度发生在500km以上的功率“突变”一般不是由于地球物理的影响产生的,而是归因于卫星或空间碎片。采用匹配滤波方法实现了对空间碎片的探测和提取,利用相干积累的方法提高了信噪比,共获得了363个碎片,得到了碎片随高度和时间的分布。
Synthetic Aperture Radar (SAR) can observe all-weather, all-day and penetrate some objects. Therefore, it is widely applied in many areas, such as military objective reconnaissance, natural disaster monitoring, resource survey and so on. The information abstraction from the SAR images has been studied all the while, which is the key step of the SAR image interpretation and plays the important roles in the detection, imaging and SAR image interpretation. But it is difficult for the interpretation of SAR image to meet to the rapid growth of the data collection capability。
     This dissertation focuses on the study of the target feature extraction, feature simulation and automatic target recognition (ATR), such as a marine, an aircraft, a vehicle and so on.
     Following the processes of target feature extraction and SAR ATR, and on the basis of previous studies of many pioneers in this field, some investigations are done in this paper as follows:
     1) The basic characteristic of SAR image and the features of some typical objects were studied first, especially the texture information in SAR image and some common texture analysis methods.
     2) The feature of speckle noise in SAR image is analyzed, several speckle removal methods are carried out to reduce the speckle which can corrupt the useful information in the SAR image. The wavelet thresholding method was used to remove speckle noise in the SAR images. In this paper, Daubechies base4 is chosen to make SAR images 2D wavelet transformation. A tradeoff method between soft-thresholding and hard-thresholding was used and the threshold values were calculated at different levels. The experimental result of removing speckles in SAR images was satisfied, and a lot of useful detail information such as edges can be retained.
     3) A Gabor filter bank in different scales and directions was constructed based on detailed analysis of the structure of the Gabor filter and the relations between the filter parameters. A series of filtered images were obtained by the Gabor bank and the local maximum points were extracted from the filtered images. The feature points were characterized by the sum of the energy values in their small neighboring area around them. This method is an attempt at a marine recognition using high resolution SAR imagery. The differences between the feature points extracted from different objects are obvious, and they can be used as important features for distinguishing one object from the other objects. The Gabor texture feature can be applied to object classification and recognition in some situations.
     4) The theory of attributed scattering centers based on the Physics Optics(PO) and the Geometric Theory of Diffraction(GTD) is analyzed and discussed. The detailed formula is derived. The parameters of the model are been well estimated on regions of the SAR image. Leading surface estimation (orientation of the target estimation) and Delaunay walk are introduced to improve performance of the SAR ATR system. The recognition results using MSTAR show that the algorithms for estimating the parameters are efficient and the theory of attributed scattering centers is practical.
     5) The method of radar target modeling, electromagnetic scatter calculation and radar imaging simulation is described. First, it models the object with triangular element by using AutoCAD, reverse ray tracing technique is used to find object shadow, radar scattering character is calculated with the Physics Optics theory, then a high-resolution ISAR image of the target is obtained. The results show that the algorithms for calculating RCS are efficient and the ISAR imaging simulation system is practical.
     6) Based on the conventional ionospheric data obtained by European incoherent scatter radar, the "mutation" phenomenon of the sounding data power was studied. Generally, the "mutation" power in more than 500km is not produced as geophysical effects, but due to satellites or space debris. Matched filtering method was used to achieve the space debris detection and the debris's character extraction, the signal to noise ratio is improved by using coherent accumulation method. A total of 363 pieces were captured, and the distribution of debris with height and time has been gotten.
引文
[1]K. h. Rosenbach, and J. Schiller, Constructin and test of a classifier for noncooperative air-target identification based on 2-D ISAR images, Pro. International Radar Symposium(IRS'98), Munich, Germany, Sep 1998:1023-1033.
    [2]K. h. Rosenbach, and J. Schiller, Identification of aircraft on the basis of 2-D radar images, Proc. IEEE Intenational Radar conf. May 1995.
    [3]Hung-Chih Chiang, Feature Based Classication with Application to Synthetic aperture Radar, PH.D Thesis, The Ohio State University, Columbus, OH,1999.
    [4]John A. Richards,Remote sensing digital image analysis,Springer verlag,1993.
    [5]Robert, Remote sensing, Academic press,1997.
    [6]G. Franceschetti, Synthetic aperture radar processing, CRC press,1999.
    [7]S. Tajbakhsh, M. J. Kim, Application of an extended GTD model to synthetic aperture radar simulation,1994,2316:202-215.
    [8]W. M. Brown, synthetic aperture radar, IEEE Trans.AES,1967,3(2):217-229.
    [9]W.M.Brown and Porrcell, an introduction to synthetic aperture radar,IEEE Spectectrum,1969,4:52-62.
    [10]C. Elahci, T. Bicknell, R. L. Jordan, and C. Wu, Spaceborne synthetic aperture imaging radars:application, techniques, and technology, Proc. IEEE,1982,70(10): 1174-1209.
    [11]C.A. Wiley, Synthetic aperture radar, IEEE Trans.AES,1983,21(3):440-443.
    [12]John C. Curlander, Synthetic aperture radar systems and signal processing, Wiley series in remote sensing,1991.
    [13]Mehrdad Soumekh, Synthetic aperture radar signal processing with Matlab algorithms, JOHN WILEY & SONS,INC.,1999.
    [14]C. V. Jakowatz, Spotlight-mode Synthetic aperture radar, Kluwer academic publishers,1996.
    [15]W.-M.Boerner, Radar target imaging. Springer Verlag,1994.
    [16]张直中,微波成像技术,科学出版社,1990.
    [17]M. J. Prickect and C. C. Chen, Principle of inverse synthetic aperture radar(ISAR) imaging, ESACON record,1980:340-345.
    [18]C. C. Chen and H. C. Andrews, Target-motion-induced radar imaging, IEEE Trans.AES,1980,16(1):2-14
    [19]K. K. Erland, application of inverse synthetic aperture radar on aircraft,, Proc. Of the international conference on radar, Paris,1984:618-623.
    [20]C. W. Sherwin, J. P. Ruina, and R. D. Rawcliffe, Some early developments in synthetic aperture radar systems, IRE Trans. on military electronics,1962,6(2): 111-115.
    [21]J. J. Kovaly, High resolution radar fundamentals, In Eli-Broakner, Radar Technology, Dedham, Mass., Artech House,1977.
    [22]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999:1-19.
    [23]张澄波.综合孔径雷达——原理、系统分析与应用.北京:科学出版社,1989:1-603.
    [24]蒋斌.SAR图像道路提取方法研究[硕士学位论文].长沙:国防科技大学,2004.
    [25]王培.SAR图象中船舶目标的提取及分形方法在SAR图象分类中的应用[硕士学位论文].北京:中国科学院电子学研究所,2000.
    [26]宋建社,袁礼海,薛文通.SAR图像处理的最新研究与应用.遥感技术与应用,2002,17(5):284-288.
    [27]胡笑斌.SAR图像目标识别中几个问题的研究[硕士学位论文].合肥:合肥工业大学,2005.
    [28]Proceedings IEEE Special Issue on Radar.1985.
    [29]Proceedings IEEE Special Issue on Radar Cross Section.1989.
    [30]John L Volakis. XPATCH:A High-Frequency Electro- magnetic-scattering prediction Code and Environment for Complex Three-Dimensional Objects. IEEE AP Magazine,1994,36(1):65-69.
    [31]J M Rius, M Ferrando, et al.. GRECO:Graphical electromagnetic computing for RCS prediction in real-time. IEEE AP magazine,1993,35(2):7-17.
    [32]袁孝康.星载合成孔径雷达导论,国防工业出版社,2003.
    [33]张直中.机载和星载合成孔径雷达导论,电子工业出版社,2004.
    [34]C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images, Artech House, Boston,1998.
    [35]金海燕,焦李成,刘芳.基于Curvelet域隐马尔可夫树模型的SAR图像去噪,计算机学报,2007,30(3):491-497.
    [36]孙文峰.雷达目标识别技术述评.雷达与对杭,2001,(3):1-8.
    [37]刘迎春,宋健社,郑永安.SAR图像识别与提取特征,航空计算技术,2003,33(4):55-58.
    [38]Chen C H, Pau L F and Wang PSP. Handbook of Pattern Recognition and Computer Vision (2nd Edition). World Scientific Publishing Co,1998:207-248.
    [39]Wang L and He D C.A New Statistical Approach for Texture Analysis. Photogram metric Engineering and Remote Sensing,1990,56(1):61-66.
    [40]赵书河,贾红燕.应用遥感形像纹理特征提取线性体的马尔可夫随机场模型.遥感技术与应用,1999,14(4):49-52.
    [41]Pierce L, Ling P and Dobson M. Texture estimation in SAR images of forests. 1GARSS'03, Proceeding,2003 IEEE International,2003,6:4010-4012.
    [42]述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社,1998:139-231.
    [43]A.J.Luckman, A.C.Frery, C.C.F. Yanasse,G.B Groom, "Texture in airborne SAR imagery of tropical forest and its relationship to forest regeneration stage", International Journal of Remote Sensing,1997,18 (6):1333-1349.
    [44]Smith G Measuring Texture Classification Algorithms. Pattern Recgonition Letters.1997,18(14):1495-1501.
    [45]Picard R, Elfadel I M and Pentland A P. Markov/Gibbs Texture Modeling:Aura Matrices and Temperature Effects. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Maui, Hawaii,1991:371-377.
    [46]秦其明,陆荣建.分形与神经网络方法在卫星数字图像分类中的应用.北京人学学报(自然科学版)2000,36(6):858-864.
    [47]郑肇葆,郑宏,潘励.纹理分类中遗传算法参数的选择.测绘学报2000,29(1):35-39.
    [48]朱长青,杨晓梅.具有更佳分辨率小波分解的遥感图像纹理分类.地理研究,1997,16(1):53-58.
    [49]Weszka J S, Dyer C R and Rosenfeld A. A Comparative Study of Texture Measures for Terrain Classification. IEEE Transactions on Systems, Man and Cybernetics,1976,6:269-285.
    [50]Nyoungui A D, Tonye E and Akono A. Evaluation of Speckle Filtering and Texture Analysis Methods for Land Cover Classification from SAR Images. International Journal of Remote Sensing,2002,23(9):1895-1925.
    [51]Rajesh K, jawahar C V, Aengupta S, et al. Performance Analysis of Texture Features for Characterization and Classification of SAR Images. International, Journal of Remote Sensing,2001,22(8):1555-1569.
    [52]Laine A and Fan J. Texture Classification by Wavelet Packet Signature. IEEE Transactions on Pattern Recognition and Machine Intelligence,1993, 15(11):1186-1191.
    [53]Lu CS and Chung PC, Chen CF. Unsupervised Texture Segmentation via Wavelet Transform. Pattern Recognition,1997,30(5):729-742.
    [54]Zhu CQ and Yang X M. Study of Remote Sensing Texture Analysis and Classification Using Wavelet. International Journal of Remote Sensing,1998, 19(16):3197-3203.
    [55]Randen T and Hus(?)y J H. Filtering for texture classification:A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(4): 291-310.
    [56]M. E. Shokr. Evaluation of second-order texture parameters for sea ice classification from radar images. Journal of Geophysical Research, 1991,96(C6):10625-10640.
    [57]Clausi D A. Comparison and fusion of co-occurrence, Gabor, and MRF texture features for classification of SAR sea ice imagery. Atmosphere Oceans,2001, 39(4):183-194.
    [58]Clausi DA and Yue B. Comparing cooccurrence probabilities and Markov random fields for texture analysis. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(1):215-228.
    [59]Carr J R and Miranda F P. The semi-variogram in comparison to the co-occurrence matrix for classification of image texture. IEEE Transactions on Geoscience and Remote Sensing,1998,36(6):1945-1952.
    [60]Schleher, D.C., "Radar Detection in Log Normal Clutter", Proc. IEEE Int. Radar Conf. Radar'75,1975:262-267.
    [61]R.GWhite, "A simulated annealing algorithm for radar cross-section estimation and segmentation",Applications of Artificial Neural Networks V 2243 1994:231-240"
    [62]管鲍,孙洪,“SAR图像滤波的迭代方法.电波科学学报”,2003,18(1):12-17。
    [63]庞晓红,王贞松,“SAR图像保留边缘多窗口相干斑滤除方法”,‘遥感学报,1998,114(2)。
    [64]Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage. Biometrika,1994,81:524-455.
    [65]Gagnon L and Jouan A. Speckle Filtering of SAR Images-A Comparative Study Between Complex-Wavelet-Based and Standard Filters. Proc.SPIE,1997, 3169:80-91.
    [66]Smith G and Burns I. Measuring Texture Classification Algorithms. Pattern Recognition Letters,1997,18:1495-1501.
    [67]Donoho D L and Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage, Journal of the American Statistical Assoc,1995,90(432):1200-1224.
    [68]Donoho D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory,1995,41 (3):613-627.
    [69]冯象初,甘小冰,宋国乡.数值泛函与小波理论.西安:西安电子科技大学出版社,2003:159-]62.
    [70]陈武凡.小波分析及其在图像处理中的应用.北京:科学出版社,2002:152-165.
    [71]Gabor D. Theory of communications. Journal of Institution of Electrical Engineers, 1946,93 (3):429-457.
    [72]Granlund G H. In search of a general picture processing operator. Computer Graphics and Image Processing,1978,8(2):155-173.
    [73]Daugman J G. Uncertainty relation for resolution in space, spatial frecquency and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America,1985,2(7):1160-1169.
    [74]Kamarainen JK, Kyrki V, Kalviainen H. Invariance properties of Gabor filter-based features—Overview and applications. IEEE Trans, on Image Processing,2006,15(5):1088-1099.
    [75]Daugman, J G. Complete discrete 2-d Gabor transform by neural networks for image analysis and compression. IEEE Transactions on Acoustics, Speech, and Signal Processing,1988,36 (7):1169-1179.
    [76]Stockwell R, Mansinha L, and Lowe R. Localization of the complex spectrum: The S transform. IEEE Transactions on Signal Processing,1996,44 (4):998-1001.
    [77]Kyrki V, Kamarainen J K, and Kalviainen H. Simple Gabor feature space for invariant object recognition. Pattern Recognition Letters,2004,25(3):311-318.
    [78]Buhmann J, Lange J, and von der Malsburg C. Distortion invariant object recognition by matching hierarchically labeled graphs. In Proceedings of the International Joint Conference on Neural Networks, Washington DC, IEEE, 1989(1):155-159.
    [79]Bovik A, Clark M, and Geisler W. Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12,(1),55-73.
    [80]Wiskott L, Fellous, J M, Kruger N, and von der Malsburg C. Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19 (7),775-779.
    [81]Bodnarova A., Bennamoun M, and Latham S. Optimal Gabor filters for textile flaw detection. Pattern Recognition 2002,35 (12):2973-2991.
    [82]Bolcskei H, Hlawatsch F, and Feichtinger H. Frame-theoretic analysis of oversampled _lter banks. IEEE Transactions on Signal Processing 1998,46 (12): 3256-3268.
    [83]Park H J and Yang H S. Invariant object detection based on evidence accumulation and Gabor features. Pattern Recognition Letters,2001,22:869-882.
    [84]Tan T N. Texture edge detection by modeling visual cortical channels. Pattern Recognition,1995,28(9):1283-1298.
    [85]Kyrki V. local and Global Feature Extraction for Invariant object Recognition. PhD Thesis. Lappeenranta University of Technology,2002:5-11.
    [86]董学志,宋健中,韩广良.一种利用Gabor小波特征的目标跟踪方法.光学技术,2003,(4):484-486.
    [87]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2005.
    [88]匡纲要,高贵,蒋咏梅等.合成孔径雷达目标检测理论、算法及应用.湖南长沙:国防科技大学出版社,2007.
    [89]计科峰,匡纲要,郁文贤.SAR图像目标峰值特征提取与方位角估计方法研究.宇航学报,2004,25(1):102-108.
    [90]阮秋琦,阮宇智等译.数字图像处理中文版(第二版).北京:电子工业出版社,2007.
    [91]计科峰,匡纲要,粟毅等.一种改进的图像域SAR目标散射中心特征提取方法.电路与系统学报,2004,9(2):40-87.
    [92]L C. Potter, R L. Moses. Attributed Scattering Centers for SAR ATR. IEEE Transactions on image processing,1997,6(1):79-91.
    [93]M-W Tu, I J. Gupta, Eric K. Walton. Application of Maximum Likelihood Estimation to radar imaging.IEEE Transactions on Antennas and Propagation, January 1997,45(1),20-27.
    [94]L C Potter, D-M Chiang, R Carriere et al. A GTD-Based Parametric Model for Radar Scattering.IEEE Transactions on Antennas and Propagation,1995,43(10): 1058-1067.
    [95]M J. Gerry, L C. Potter, R L. Moses et al. Image domain scattering center models for synthetic aperture radar. Proceedings of the Acoustics, Speech, and Signal Processing on IEEE International Conference.1999,4:2319-2322.
    [96]Y Akyildiz, R L. Moses. A scattering center model for SAR imagery. SPIE.1999,3869:76-85.
    [97]Y Akyildiz and R L. Moses. Structure selection in synthetic aperture radar scattering models. Proceedings of the Acoustics Speech, and Signal Processing on IEEE International Conference.2000,5:3021-3024.
    [98]M A Koets, R L. Moses. Feature Extraction Using Attributed Scattering Center Models on SAR Imagery. SPIE 3721:104-115.
    [99]G T Ruck, D E Barrick, et al.. Radar Cross Section Handbook, New York-London: Plenum Press,1970.
    [100]J S Moreira, A Prata. A Self-checking Predictor-corrector Algorithm for Efficient Evaluation of Reflector Antenna Radiation Integrals. IEEE Trans.on AP,1994, 42(2):246-254.
    [101]D C Munson. A Tomographic Formulation of Spotlight-Mode SAR, Proc. of IEEE,1983,71 (8):917-925.
    [102]S Sefi. Ray Tracing Tools for High Frequency Electro-magnetic Simulations Stockholm:Royal Institute of Technology,2003.
    [103]孙家广,杨元贵.计算机图形学.清华大学出版社,1995.
    [104]Anselmo L,Cordelli A,Pardini C,et al.Space debrismitigation extension of the SDM tool[A].lSA Techni-cal Report On Space Debris[C].2000.
    [105]Anselmo L,Pardini C.The effects of spacecraft and up-per stage breakups on the geostationary ring[J].TheJournal of the Astronautical Sciences,2000,48(1):1-23.
    [106]Bernhard R P,Christiansen E L, Kerr J H.Space shuttle meteoroid andorbital debris impact damage[J]. International Journal of ImpactEngineering,2001,26:33-38.
    [107]Woodman, R. F., Hagfors, T. Methods for the measurement of vertical ions spheric motions near the magnetic equator by incoherent scattering. Journal of Geophysical Research,1969,74:1205-1212.
    [108]Gray, R. W., Farley, D. T. Theory of incoherent scatter measurements using compressed pulse. Radio Science,1973,8:123-131.
    [109]Farley, D. T. Multipule-pulse incoherent scatter correlation function measurements Radio Science,1972,7:661-666.
    [110]Farley, D. T. Incoherent scatter correlation function measurements. Radio Science,1969,4:935-953.
    [111]Rino, C. L., Baron, M. J., Burch, G. H., et al. A multipulse correlator design for incoherent scatter radar. Radio Science,1974,9:1117-1127.
    [112]Woodman, R. F. A general statistical instrument theroy of at mospheric and ionospheric radars. Journal of Geophysical Research,1991,96:7911-7928.
    [113]Lehtinen, M. S., Huuskonen, A genetal incoherent scatter analysis and GUISDAP. Journal of Atmospheric and Solar-Terrestrial Physics,1996,58(1-4):435-452.
    [114]Lehtinen, M. S., Haggstrom, I. A new modulation principle for incoherent scatter measurements. Radio Science,1987,22:625-634.
    [115]M. A. Richards.Fundamentals of radar signal processing. in Chinese (刑孟道,王彤,李真芳等译,雷达信号处理基础,电子工业出版社,北京,2008:117-138).
    [116]J.Markkanen, M.Lehtinen, M.Landgraf. Real-time space debris monitoring with EISCAT. Advances in Space Research,2005,35:1197-1209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700