用户名: 密码: 验证码:
基于图像处理的钢板表面缺陷成像优化与深度信息提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对机器视觉钢板表面缺陷检测技术中的成像优化和深度信息特征提取问题,以如何提高成像质量为切入点,深入研究了钢板生产工艺、表面光学性质及缺陷最优化成像的内在规律和相关理论,基于立体视觉的方法研究实现了钢板表面深度信息提取等关键技术,为提升机器视觉钢板表面检测系统性能提供了理论依据,拓宽了钢板表面自动化检测的思路和技术手段。本文主要研究内容和成果如下:
     1)建立了一个准确描述钢板表面光散射性质的机器视觉表面光照模型。基于钢板生产工艺和表面光学特征,结合BRDF光照模型理论,对不同钢板表面光散射特征进行测试和实验,得到光源条件、光线入射角、表面粗糙度与光散射分布的关系。结果表明钢板表面散射光受入射角和表面粗糙度影响较大,镜向反射峰值明显,并呈现指数函数分布的规律,因此建立了基于粗糙度因子和微平面高斯分布的表面半经验散射模型,通过非线性拟合优化确定了模型中各参数。
     2)以大量钢板表面典型缺陷样本的分析研究为基础,针对缺陷成像光路型式最优化问题,设计实验方案并开发专用平台进行成像实验,量化了成像光路中各参数对图像的影响;提出基于图像多特征的综合像质评价体系,得到各缺陷最佳成像方案,建立了钢板表面缺陷最优成像流程模型,对各子方案组合优化得出整个系统成像方案,作为钢板表面成像的理论研究平台,为提高整个检测系统性能提供依据。
     3)针对工业应用中如何利用立体视觉提取钢板表面三维深度信息,研究了摄像机非线性标定方法。建立基于LENZ径向畸变模型的非线性针孔成像几何模型,分析了面阵和线阵摄像机的模型标定内外参数,利用HALCON的矩阵网格状圆靶平面标定板及机器视觉的函数库平台,基于两步法思想设计算法并实现了单台摄像机的非线性标定,以双面阵摄像机构架实现立体视觉系统的标定,通过误差和精度分析验证了算法准确性和灵活性,可有效应用于工业机器视觉系统中。
     4)针对立体视觉中另一个核心技术即立体匹配算法进行研究。基于灰度相关的区域匹配方法能生成稠密视差图,实现了基于归一化互相关相似度量函数(NCC)的区域灰度相关的匹配算法,结合钢板表面深度提取的要求,分析优化算法参数提高算法精度;并与均值图像金字塔相结合,通过控制匹配窗口尺寸、最小特征值、视差范围阈值及相似度阈值等多个参数,提出一种灵活高效的分层区域匹配的优化NCC算法。
     5)结合相关研究成果,针对实验系统进行成像参数分析与成像系统设计,以及设备选型和安装调试,模拟工业现场环境设计开发了基于机器视觉的钢板表面检测实验系统。该实验系统由小型带钢传输实验台、机器视觉成像系统及图像采集与处理平台三部分组成,是重要的理论和实验研究平台。
In this dissertation, aiming at the problems of imaging optimization and the depth-feature information extraction in the technology of steel plate surface defects detection based on machine vision, with improving the image quality as the starting point, the interaction effect laws and related theories have been researched which of the steel plate production process, the surface optical properties and to optimum imaging of surface defects. And the key techniques of steel plate surface depth extraction were achieved based on the methods of stereo vision to enhance the performance of the steel surface inspection system based on machine vision and provide a theoretical basis, and widened the ideas or techniques of automatic steel plate’s surface inspection system. The main works and achievements of the thesis are as follows:
     1) Building an accurate surface illumination model for machine vision to describe the light scattering distribution of steel plate surface. The model is based on steel production process and surface optical properties and combined with (Bidirectional Reflectance Distribution Function) BRDF lighting model theory. Through the experiments light scattering characteristics of different steel plate surface, the rules of relationship between the light incidence angle, surface roughness and laws of light scattering under a particular light-source conditions were found. The results showed that there was an apparent specular reflection peak on steel surface, and surface light scattering was influenced greatly by light incidence angle and surface roughness, of the law of exponential distribution functions. Thus the improved semi-empirical light scattering mathematical model which based on roughness factor and surface Gaussian distribution of micro-plane components has been formed, and through non-linear model fitting and optimization to determine the parameters.
     2) On the basis of analysis and study on many samples of steel plate typical surface defects, aimed at the optimization problem of imaging optical pattern for steel plate surface defects, we designed the imaging experiment scheme and development the special experiment equipment to research that quantifies the effects of optical imaging parameters to the surface defects images. Further comprehensive evaluation system of image quality based on the images’multi-features was proposed to obtain the optimal imaging program for every defect. Furthermore, through the optimization imaging process model of steel plate surface defects each sub-imaging schemes were analyzed, and the portfolio optimization imaging system design scheme was obtained. As the theories research platform of steel surface imaging for defects, the model provided a basis to improve the performance of the detection system.
     3) In view of achieving three-dimensional depth information extraction using Stereo Vision on the industrial applications, firstly researched the camera nonlinear calibration technology. Building the nonlinear camera pinhole models for area scan CCD camera and line scan CCD camera based on the LENS distortion model, determined the exterior parameters and interior parameters of camera calibration. Using HALCON planar calibration board which was circular targets of two-way array and functions library improved the calibration method for single camera based on principle of two-step and achieved it. And the camera calibration method of binocular stereo vision system which was composed by the structure of two area scan cameras was studied, as an example achieved the calibration process. The accuracy of these parameters and stability of the algorithm were validated through experiments and accuracy analysis. The calibration method is flexible and good portability to be effectively used in industrial machine vision systems.
     4) For the other key technologies of stereo vision, we researched the stereo matching algorithm. The regional matching methods based on gray correlation can generate the dense disparity map. Therefore to improve the algorithm accuracy, the regional matching algorithm based on gray correlation based on normalized cross-correlation (NCC) as the similarity measure function was realized to perform the stereo matching for examples of steel plate, and combined with the requirements of steel surface depth extraction, algorithm parameters were analyzed to be optimized. Further a region-based hierarchical matching algorithm based on the mean image pyramid was proposed combining the NCC method. The algorithm accuracy and computational efficiency have been controlled efficiently through comprehensive setup of the parameters such as matching window size, the smallest eigenvalue, and the disparity search space, similarity measure threshold and others.
     5) On the basis of conclusions in this research, according to the detection indicators of experimental system, we analysis the imaging parameters and design the imaging system, equipment selection, installation and commissioning. A machine vision-based experimental system of the steel plate surface inspection was built with the establishment of the industrial conditions. The system consists of three parts: small strip transmission equipment, machine vision imaging system, platform of image acquisition and processing. The detection test system is an important basis of research on theoretical and experiment.
引文
[1]世界钢铁协会短期展望报告(2011-04)[R].国务院发展研究中心信息网[2011-04-19], http://www.drcnet.com.cn/DRCNet.channel.web/.
    [2]未来十年世界钢材需求与进出口贸易分析及预测[R].中华人民共和国发展和改革委员会[2010-10-15].http://www.sdpc.gov.cn/xxfw/hyyw/t20101015_375213.htm
    [3] 2010钢铁行业运行情况及2011年展望[EB].中国工业和信息化部[2011-02-16]. http://www.miit.gov.cn/n11293472/n11293832/n11293907/n11368223/13593831.html
    [4]中华人民共和国国民经济和社会发展第十二个五年规划纲要(2011-03-16)[N].新华社新华网. http://news.xinhuanet.com/politics/2011-03/16/c_121193916.htm.
    [5]中国金属学会编译.热轧、冷轧、热镀、电镀金属板带的表面缺陷图谱[M].中国金属学会《钢铁》编辑部, 2004,04.
    [6] Moir S., Preston J. Surface defects-evolution and behavior from cast slab to coated strip[J]. Journal of materials processing technology 125-126, 2002: 720-724.
    [7] GB/T 14977-2008.热轧钢板表面质量的一般要求[S].北京:中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 2008,12.
    [8]李桂荣,王宏明.连铸坯热送热装和直接热轧新技术及其效益分析[J].中国冶金, 2002, 04: 30-33.
    [9]周有预,袁凡成.宽板坯高拉速连铸的特点及板坯缺陷的预防[J].钢铁研究, 2003, 06: 1-4, 30.
    [10] Horng-Quai Chiang, Sheue-Ling Hwang. Human Performance in Visual Inspection and Defect Diagnosis Tasks: A Case Study[J]. International J. of Industrial Ergonomics, 1988, 05.V2(03): 235-241.
    [11] Simonis M P,余永桂译.频闪法在带钢表面检查中的应用[J].世界钢铁, 1994, 23(4): 65-68.
    [12]让.路易斯,萨隆.吉兰,于贝尔等,卢文斌译.用安装在火焰切割设备前的涡流探测器检验连铸板坯表面质量[J].无损探伤.1993, 10(6): 517-521.
    [13] W. A. Tony. Automated inspection of metal products not quite ready for prime time[J]. Iron & Steel Making, 1992, 19(1): 14-19.
    [14]贾慧明,范弘,张克,秦义忠,张嘉懿,张遵义.高温连铸坯表面缺陷涡流检测装置:中国, CN1092171 [P]. 1994-09-14.
    [15] Yngve Strom. Automatic surface inspection of continuously cast billets[J]. Iron and Steel Engineer, 1992, V69(5): 29-33.
    [16] Okamoto Y, Kaminaga F, Osakabe. Metal’Detection of surface flaw by infrared radiation sensor[J]. The 7th Sensor symposium, Tokyo: Institution of Electric Engineers of Japan, 1988:107-112.
    [17] Maki H, Tsunozaki Y, Matsufuji Y. Magnetic on-line defect inspection system for strip steel[J]. Iron and Steel Engineer, 1993,V70(1) :56-59.
    [18]韩世全.连铸坯表面及近表面裂纹检出方法及装置:中国, CN1239023 [P]. 1999-12-22.
    [19]邹明,陈晓.超声波检测技术研究进展[J].世界科技研究与发展, 2010.04, V32(2): 198-199.
    [20]何存富.激光超声技术及其应用研究[D].清华大学博士学位论文, 1995.
    [21] Purll D J. Automated Surface Inspection with Solid State Image Sensors[J]. SPIE,1978,(148):18-25.
    [22] Norton. Waynel L,Hill W.J, Brook R.A. Automatic Visual Inspection of Mocing Steel Surface[J].British Journal of NDT,1977,(9):242-258.
    [23]朱正德.谈"机器视觉"在汽车制造业中的应用[J].中国测试技术, 2006, V32(5).
    [24] Chen B, Tojo S, Watanabe K. Machine Vision for a Micro Weeding Robot in a Paddy Field [J]. Biosystems Engineering. 2003, V85(4):393-404.
    [25] F. Lahajnar, S. Kovac. A Machine Vision System for the Rotational Positioning and Verification of Oil Filters[J]. Int J Adv Manuf Technol, 2003(21): 452-459.
    [26] Tian Yuan, Du dong, Hou runshi, Wang li et al. A Model of Automatic Detection System for Weld Defects Based on Machine Vision[J]. Robot. Weld., Intellige. & Automation, 2007, LNCIS 362: 341-348.
    [27] P H Heinemann, N P Pathare, C T Morrow. An automated inspection station for machine vision grading of potatoes[J]. Machine Vision and Applications, 1996(9): 14-19.
    [28]相泽均著,周源译.冷轧钢板缺陷检测系统[J].世界钢铁,1994, V21(2):66-73.
    [29] Fred Treiber. On-line automatic defect detection and surface roughness measurement of steel strip[J]. Iron and Steel Engineer, 1989, V66(9):26-33.
    [30]罗志勇.带钢表面缺陷检测系统的发展[J].钢铁, 1996, 31:127-131.
    [31] Bindinganavle R Suresh, Richard A Fundakowski, Tod S Levitt, John E Overland. A Real-time Automated Visual Inspection System for Hot Steel Slabs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1983,PAMI-5(6):563-572.
    [32] T.F.Porter, R.A.Sylvester, T.W.Bouyoucas. Automatic strip surface defect detection system[J]. Iron and Steel Engineer, 1988, V65 (12):17-20.
    [33] G.Canella, R.Falessi. Surface Inspection and Classification Plant for Stain-less Steel Strip[J]. Non-Destructive Testing. 1992,(12):1185-1189.
    [34] David G. Park, Martin P. Levoi, A.I. (Bram) van Haneghem et al. Practical application of on-line hot strip inspection system at Hoogovens[J]. Iron and Steel Engineer, 1995, V72(7):40-43.
    [35] J.C. Badger, S.T. Enright. Automated Surface Inspection System[J].Iron and Steel Engineer, 1996, V73(3) :48~51.
    [36] C.A. Carisetti, Theodore Y Fong, Charles Fromm. iLearn Self-learning Defect Classifier[J]. Iron and Steel Engineer, 1998, V75(8) :50-53.
    [37]赵海英.热轧厂表面质量检测系统及其在质量控制中的应用[D].复旦大学硕士学位论文, 2006,12.
    [38] J Jarvinen, J Rauhamaa. Real-time inspection of steel strip[J]. Machine Vision News, 2002,(7):9-11.
    [39] Sasaki Toshihiro, Takada Hideki, Tomura Yasuo. Automatic surface inspection system for tin mill black plate (TMBP)[R]. JFE Technical Report, 2007.03, No.9: 60-63.
    [40]罗志勇,刘栋玉,江涛,王斌.新型冷轧带钢表面缺陷在线检测系统[J].华中理工大学学报. 1996(01)
    [41]李炜,黄心汉,王敏等.基于机器视觉的带钢表面缺陷检测系统[J].华中科技大学学报(自然科学版), 2003, 31(02):72-74.
    [42]王成明,颜云辉,陈世礼等.基于改进支持向量机的冷轧带钢表面缺陷分类识别[J].东北大学学报(自然科学版), 2007, 28(03):410-413.
    [43]韩英莉,颜云辉,李骏等.基于DSP的带钢表面缺陷实时检测系统的研究[J].东北大学学报(自然科学版), 2007, 28(04):561-565.
    [44]吴平川,路同浚,王炎.带钢表面自动检测系统研究现状与展望[J].钢铁, 2000, 22(07): 312-315.
    [45]程万胜,冷显国,赵杰,李长乐.一种带钢表面缺陷实时检测系统的研制及应用[J].冶金自动化, 2006, 30(3):45-52.
    [46]欧阳奇,张兴兰,陈登福等.高温连铸坯表面缺陷的机器视觉无损检测[J].重庆大学学报(自然科学版), 2007, 30(11): 27-31.
    [47]叶苏茹,胡治民,欧阳奇,李书新.基于机器视觉的重轨表面缺陷检测系统的研究[J].现代制造工程,2007,(8).
    [48]胡亮,段发阶,丁克勤等.钢板表面缺陷计算机视觉在线检测系统的研制[J].钢铁, 2005, 40(02):59-61.
    [49]胡亮,段发阶,丁克勤,叶声华.基于线阵CCD钢板表面缺陷在线检测系统的研究[J].计量学报, 2005, 03.
    [50]李具中,宋泽喜.武钢二炼钢连铸工艺技术的最新进展[A].第十届全国炼钢年会论文集[C].中国金属学会, 2000:44-47.
    [51]何永辉,龚世强,黄胜标,乔俊良,楼华,蒋剑峰.带钢表面缺陷检测的一种图像获取装置:中国, 01252833[P]. 2003-2-12.
    [52]何永辉,乔俊良,陆丽华,李红梅,万国红,蒋剑峰.扫描式带钢表面检测方法和装置:中国, 02155066 [P]. 2005-12-28.
    [53]何永辉,王康健,石桂芬.基于机器视觉的高速带钢孔洞检测系统[J].应用光学. 2007, 28(03): 345-349.
    [54]徐科,杨朝霖,周鹏.热轧带钢表面缺陷在线检测的方法与工业应用[J].机械工程学报,2009,(4):111-114.
    [55]徐科,周茂贵,徐金梧等.基于线型激光的热轧带钢表面在线检测系统[J].北京科技大学学报,2008, 30(1):77-79.
    [56]徐科,杨朝霖,周鹏等.基于线型激光的连铸板坯表面裂纹在线检测技术[J].北京科技大学学报, 2009(12).
    [57] Reinhard Rinn, Michael Becker, Ralph Foehr and Friedrich Luecking. Steel mill defectdetection and classification at 3000 ft/min using mainstream technology[J]. Proceedings of SPIE 3303, 20 (1998); 10.1117/12.302422.
    [58] T.J.Rodrick. Software Controlled On-line Surface Inspection[J]. Steel Times. 1998, 22 (3):30.
    [59]徐科,徐金梧.基于图像处理的冷轧带钢表面缺陷在线检测技术[J].钢铁, 2002, 37(12): 61-64.
    [60] Espresso System Description of Pickling, Cold Processing & Coating [Z]. Parsytec, Inc. 2005,06.
    [61] Faustino Obeso, Luis F. Sancho, Ignacio Alvarez, etc. New technology for on-line surface inspection in continuous casting slab[J]. AISE Steel Technology, 2001, V79(9):142-150.
    [62] A Kazama, T Oshige. A defect inspection technique using polarized images for steel strip surface[J]. Proc. of SPIE, Optics and Photonics for Information Processing I, 2008. V7072: 0L1-0L9.
    [63]梁治国,徐科,徐金梧.基于线型激光的钢板表面缺陷三维检测技术[J].北京科技大学学报, 2004(06).
    [64]梁治国,徐科,徐金梧,宋强.结构光三维测量中的亚像素级特征提取与边缘检测[J].机械工程学报,2004, 40(12):96-99.
    [65]何永辉,颜永根,赵万生等.表面三维形貌检测方法和装置.中国,99127007[P]. 2003,07, 23.
    [66]何永辉,乔俊良,陆丽华,李红梅,万国红,蒋剑峰.扫描式带钢表面检测方法和装置:中国, 02155066 [P]. 2005-12-28.
    [67] Mike Muehleman. Standardizing Defect Detection for the surface Inspection of Large Web Steel[J]. Illumination technologies, Inc. 2000.
    [68] Zhang Liwei1, Chapko James, Long Hal. Tuning and deployment of surface inspection system[J]. AISTech 2009 Proceedings of the Iron and Steel Technology Conference, 2009.05, V2:801-811.
    [69] G. Blahusch, W. Eckstein, C. Steger. Calibration of Curvature of Field for Depth From Focus[J]. ISPRS Archives, 2003.09, V34, Part 3/W8: 17-19.
    [70] Christoph Lindner, Fernando Puente León. Model-Based Segmentation of Surfaces Using Illumination Series[J]. IEEE Transactions On Instrumentation And Measurement, 2007.08, V56(4):1340-1346.
    [71] Se Ho Choi, Jong Pil Yun, Boyeul Seo, etc. Real-Time Defects Detection Algorithm for High-Speed Steel Bar in Coil[J]. Proceedings of World Academy of Science, Engineering and Technology. 2007.01, V21:66-70.
    [72] Keesug Choi, Kyungmo Koo, Jin S. Lee. Development of Defect Classification Algorithm for POSCO Rolling Strip Surface Inspection System[J]. SICE-ICASE International Joint Conference 2006:2499-2502.
    [73] Marr D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information[M]. CA: W.H. Freeman, San Francisco, 1982.
    [74] Rafael Mayoral. Competitive Hopfield Neural Network for Stereo VisionCorrespondence[J]. Proceeding of IEEE-INNS-ENNS international Joint Conference on Neural Networks 2000 IEEE, 2000.
    [75] Vallerand Steve, Kanbara Masayuki, Yokoya Naokazu. Binocular Vision-based Augmented Reality System With an Increased Registration Depth Using Dynamic Correction of Feature Positions[J]. Proceeding of the 2003 IEEE, Virtual Reality. March 2003: V22-26, p271-272.
    [76]李亚峰,秦开怀.一种双目立体视觉算法的GPU实现[J].计算机工程, 2006.05, V32(10):210-212.
    [77]于辉,左洪福,黄传奇.立体视觉在航空发动机无损检测中的应用[J].无损检测, 2003, 25 (5): 229-233.
    [78]郑俊,邾继贵,叶声华.基于双目立体视觉的机器人测量技术研究[J].计量技术, 2005, 1(04): 15-17.
    [79]张小锋,徐鸿钧,吴琦,傅玉灿.基于双目视觉技术的磨粒高度检测[J].中国机械工程, 2007, 18 (7): 812-815.
    [80] L B Wolff, S K Nayar, M Oren. Improved Diffuse Reflection Models for Computer Vision[J]. International Journal of Computer Vision, 1998, V30(1):55-71.
    [81] Hossein Ragheb, Edwin R Hancock. A Light Scattering Model for Layered Dielectrics with Rough Surface Boundaries[J]. International Journal of Computer Vision, 2008, (79): 179-207.
    [82]李丽娟.目标激光散射特性在钢板表面微观轮廓精度测量中的应用研究[D].长春理工大学博士学位论文, 2005.
    [83]杜颖.强反射表面的光学非接触测头的研究[D].天津大学博士学位论文, 2005.
    [84] Ralph seulin, Fred merienne, Patrick Gorria. Simulation of specular surface imaging based on computer graphics: application on a vision inspection system[J]. EURASIP Journal on Applied Signal Processing, 2002, 07:649-658.
    [85] Christoph Lindner, Fernando Puente León. Model-Based Segmentation of Surfaces Using Illumination Series[J]. IEEE Transactions On Instrumentation And Measurement, 2007.08, V56(4):1340-1346.
    [86]郁道银,谈恒英主编.工程光学(第二版)[M].北京:机械工业出版社, 2006, 01.
    [87] Tinku Acharya, Ajoy K.Ray. Image processing: Principles and Applications[M]. USA: Wiley Publishing. Inc.2007.
    [88]王小青,余颖,陈永强等.海面散射仿真中不同波浪谱和松弛率模型选取的对比研究[J].电子与信息学报, 2010, 02:476-480.
    [89]徐希孺,范闻捷,陶欣.遥感反演连续植被叶面积指数的空间尺度效应[J].中国科学D辑:地球科学,2009, V39(1): 79-87.
    [90]吴振森,江荣熙.不同表面激光双向反射分布函数的实验研究[J].光学学报, 1996, 16(3). 262-268.
    [91] Yuan-jiong Liu, Jian-yi Kong, Xing-dong Wang. Research on image acquisition of automatic surface vision inspection systems for steel sheet[J]. International Conference on Advanced Computer Theory and Engineering, 2010,08 (6):189-192.
    [92] F E Nicodemus, J C Richmond, J J Hisa. Geometrical considerations and nomenclature for reflectance[J]. NBS Monograph 160, National Bureau of Standards, Washington D. C., 1977.
    [93] Phong Bui Tuong. Illumination for Computer Generated Images[J]. Comm. ACM, 1975, V18(6):311-317.
    [94] Gregory J Ward. Measuring and modeling anisotropic reflection[J].ACM SIGGRAPH Computer Graphics, 1992.07, V26 (2): 265-272.
    [95] James F. Blinn. Models of light reflection for computer synthesized pictures[C]. Proc. 4th annual conference on computer graphics and interactive techniques, 1977.
    [96] E Lafortune, Y D Willems. Using the modified phong reflectance model for physically based rendering[J]. Technical Report RP-CW-197, Department of Computing Science, K.U. Leuven, 1994.
    [97] Laszlo Neumann, Attila Neumann, Laszlo Szirmay-Kalos. A new simple reflectance models for metals and other specular materials[J].Technical Repot: TR-186-2-98-17, 1998.07(14).
    [98] Wojciech Matusik. A Data-Driven Reflectance Model[D]. Massachusetts Institute of Technology, Ph.D. Thesis, 2003.
    [99] Donald Hearn, M. Pauline Baker. Computer Graphics with OpenGL, Third Edition[M].北京:电子工业出版社, 2004,04.
    [100]K E Torrance, E M Sparrow. Theory for Off-Specular Reflection from Roughened Surfaces[J]. Journal of the Optical Society of America, 1967, V57(9): 1105-1114.
    [101]Cook R, Torrance K.A reflectance model for computer Graphics[J]. ACM Transactions on Graphics, 1982.01, V1.1(1): 7-24.
    [102]P. Beckmann. Scattering of Light by Rough Surfaces[J]. Progress in Optics: ed. E Wolf, 1967, vol. VI: 55-69.
    [103]Michael Oren, Shree K Nayar. Generalization of the Lambertian model and implications for machine vision[J]. International Journal of Computer Vision, 1995, V14(3): 227-251.
    [104]P. Beckmann, A. Spizzichino. The Scattering of electromagnetic waves from rough surfaces[M]. New York: Pergamon Press, 1963.
    [105]Li Lijuall, Yu Hao, cao Guohua. Non-contacted Optical Instmrnent for the Simultaneous Measufement of the Surfhce Roughness[C]. 5th International symposium on Test and Measurement, 2003.06, V01:4911-4914.
    [106]毛海明.光学表面光散射(1)-理论基础[J].计量学报, 1992, V13(4):269-276.
    [107]C.L. Vernold, J.E. Harvey. A Modified Beckmann-Kirchoff Scattering Theory for Non-paraxial Angles[J]. Proceedings of the SPIE, 1998, V3426:51-56.
    [108]X D He, K E Torrance, F Sillion, D P Greenberg. A comprehensive physical model for light reflection[J]. Conference Proceedings of ACM SIGGRAPH Computer Graphics, 1991.07, V25 (4): 175-186.
    [109]Smith, Bruce C. Geometrical shadowing of a random rough surface[J]. IEEE Transaction on Antennas and propagation, 1967.09, V15(5): 3-21.
    [110]Hossein Ragheb, Edwin R Hancock. Testing new variants of the Beckmann–Kirchhoffmodel against radiance data[J]. Computer Vision and Image Understanding, 2006, V102(02): 145-168.
    [111]蔡开科.连铸坯质量控制[M].北京:冶金工业出版社,2010,05.
    [112]王天义.薄板坯连铸连轧工艺技术实践[M].北京:冶金工业出版社, 2005,06.
    [113]余海.常规热轧带钢轧机粗轧工序轧制工艺研究[J].轧钢, 2010.12, 27(06): 40-43.
    [114]张广建,孙蓟泉,郭衍振等.热轧薄板钢轧制周期内表面粗糙度变化规律的研究[J].山东冶金, 2008.10, 30(05): 42-45.
    [115]张清东,王文广,吴越等.冷轧带钢板形和表面粗糙度协同控制[J].北京科技大学学报, 2005, 27(02): 232-234.
    [116]吴越,张清东,刘军等.带钢冷轧机工作辊表面粗糙度实测研究[J].机械工程学报,2003, V11(90): 20-25.
    [117]冶金工业信息标准化研究所.钢板、钢带及相关标准汇编(第4版)[M].北京:中国标准出版社, 2007-01-01.
    [118]马庆芳,方荣生.实用热物理性质手册[M].北京:中国农业机械出版社, 1986,01.
    [119]赵镇南主编.传热学[M].北京:高等教育出版社, 2002,07.
    [120]张洪涛.钢板表面缺陷在线视觉检测系统关键技术研究[D].天津大学博士学位论文, 2008.
    [121]谢东辉.目标与地物背景光散射特性建模[D].西安电子科技大学硕士学位论文, 2002,01.
    [122]王庆有.图像传感器应用技术[M].北京:电子工业出版社, 2003.
    [123]胡亮.线阵CCD实现钢板表面缺陷在线检测关键技术及其应用研究[D].天津大学博士学位论文, 2005.
    [124]吴贵芳.冷轧带钢表面质量在线监测关键技术的研究[D].北京科技大学博士学位论文, 2006.
    [125]机器视觉系统(2009-12)[R].中国大恒有限公司北京图像视觉技术分公司[2007-04], http://www.daheng-image.com/
    [126]米本和也著,陈榕庭,彭美桂译. CCD/CMOS图像传感器基础与应用[M].北京:科学出版社, 2006.
    [127]陈家凤,陈海清,陈卓.面阵CCD各像元光电变换非线性度探讨.[J].华中科技大学学报(自然科学版), 2002(10).
    [128]ISO 14524-1999. Photography-Electronic Still-picture Cameras-Methods for measuring Opto-Electronic Conversion Functions (OECFs)[S]. 1999
    [129]GB/T 19894-2005.数码照相机-光电转换函数(OECFs)的测量方法[S].北京:中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 2005,09.
    [130]张丕壮,路宏年.面阵CCD微光像感器图像的校正[J].兵工学报, 2000, 21(4): 362-364.
    [131]程万胜,赵杰,蔡鹤皋. CCD像素响应非均匀的校正方法[J].光学精密工程, 2008(2).
    [132]陈迎娟,张之江,张智强. CCD像素响应不均匀性的校正方法[J].光学精密工程, 2004(02).
    [133]S. Mann, R. Mann. Quantigraphic imaging: Estimating the camera response and exposures from differently exposed images[J]. In Computer Vision and Pattern Recognition, 2001,Vol.I: 842-849
    [134]于绪星,朱日宏,李建欣.一种基于人眼视觉特性的图像质量评价[J].中国图象图形学报, 2004.09, (2):191-192.
    [135]熊兴华.数字影像质量评价方法评述[J].测绘科学, 2004, 29(1): 68-69.
    [136]宋强.纹理分析研究及其在钢板表面监测中的应用[D].北京科技大学博士学位论文, 2006.
    [137](美)冈萨雷斯, (美)伍兹.数字图像处理(第3版)[M].北京:电子工业出版社, 2010,01.
    [138]Carsten Steger, Markus Ulrich, Christian Wiedemann. Machine Vision Algorithms and Applications[M]. Germany: Wiley-VCH, Weinheim, 2007, 10.
    [139]Wesley E. Snyder, Hairong Qi. Machine Vision[M]. UK London: Cambridge University Press, 2004.
    [140]范立南,李金峰,张义鑫.基于Visual C++的广义形态图像边缘检测算法实现[J].计算机应用与软件, 2006.07, 23(7): 8-10.
    [141]张广军.机器视觉[M].北京:科学出版社, 2005.
    [142]马颂德,张正友.计算机视觉[M].北京:国防工业出版社, 1998.
    [143]Tsai R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lens[J]. IEEE J.Robotics Automat,1987, 3(4):323-344
    [144]Zhang ZH Y. A flexible new technique for camera calibration[J].IEEE Transactions on Patten Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [145]胡占义,吴福朝.基于主动视觉摄像机标定方法[J].计算机学报,2002,25(11):1149-1156.
    [146]Ma S D. A self-calibration technique for active vision system[J]. IEEE Transactions on Robort Automation, 1996, 12(1):114-120.
    [147]Hatley R. I. Estimation of relative camera position for uncalibrated camera[J]. Proc. of the ECCV’92, Santa Margherita Ligure, Italy, 1992: 379-387.
    [148]Faugeras O. D, Maybank S. Motion from point matches: multiplicity of solutions[J]. International Journal of Computer Vision, 1990, 4: 225-246.
    [149]雷成,吴朝福,胡占义.一种新的基于主动视觉系统的摄像机自标定方法[J]. 2000, 23(11): 1130-1139.
    [150]杨天江,汪威,胡占义.一种基于主动视觉的摄像机内参数自标定方法[J]. 1998, 21(5): 428-435.
    [151]孟晓桥,胡占义.摄像机自标定方法的研究与进展[J].自动化学报,2003, 29(1):110-124.
    [152]Faugeras O. D, Luong Q T, Maybank S. Camera self-calibration: Theory and experiments[J]. Proceedings of the 2nd European Conference on Computer Vision, Italy, 1992: 321-334.
    [153]Hartley R. Euclidean reconstruction and invariants from multiple images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(10): 1036-1041.
    [154]Triggs B. Auto-calibration and the absolute quadric[J]. Proceedings of Computer Visionand Pattern Recognition, 1997: 609-614.
    [155]Pollefeys M, Van Gool L, Oosterlinck A. The modulus constraint: A new constraint for self-calibration[J]. Proceedings of International Conference of Pattern Recognition, Vienna, 1996: 349-353
    [156]Heyden A. Euclidean reconstruction from image sequences with varying and unknown focal length and principal point[J]. Proceedings of Computer Vision and Pattern Recognition, 1997:438-443.
    [157]Pollefeys M, Koch R, Van Gool L. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters[J]. Proceedings of the 6th International Conference on Computer Vision, India, 1998:90-95.
    [158]R. Lenz, D. Fritsch. Accuracy of photometry with CCD-sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 45, (1990):90-110.
    [159]S. Lanser. Model-based localization based on monocular video images[D]. Technical University of Munich, 1997.
    [160]Lenz. R K, Tsai. R Y. Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology[J]. IEEE International Conference on In Robotics and Automation, Proceedings. 1987, Vol.4: 68-75.
    [161]S. Lanser, C. Zierl, R. Beutlhauser. Multi-image calibration of a CCD camera[M]. Computer Science to date: Pattern Recognition. Berlin: Springer-Verlag, 1995:481-491.
    [162]J. Canny. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Nov, 1986, V8(6):679-698.
    [163]C. Steger. On the Calculation of Arbitrary Moments of Polygons[Z]. Technical Report FGBV–96–05 of Technical University of Munich, 1996,10.
    [164]郑南宁.计算机视觉与模式识别[M].北京:国防工业出版社, 1998,03.
    [165]郭龙源.计算机视觉立体匹配相关理论与算法研究[D].南京理工大学博士学位论文, 2009.
    [166]D. Scharstein, R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1-3): 229-246.
    [167]邱阳,白立芬,李庆祥等.基于边缘和区域联合匹配的立体视觉新方法[J].仪器仪表学报, 2001.06, 22(3): 255-256.
    [168]唐丽,吴成柯,刘侍刚等.基于区域增长的立体像对稠密匹配算法[J].计算机学报, 2004, 27(7): 936-943.
    [169]Qiumiing L, et a1. stereo matching and occlusion detection with integrity and illusion sensitivity[J]. Pattern Recognition Letters, 2003, 24(9-10): 1143-1149.
    [170]J. F D.Disparity From Local Weighted Phase-Correlation[J]. IEEE Transactions on Systems, Man and Cybernetics, San Antonio, 1994.
    [171]Tao Hu, May Huang. A new stereo Matching Algorithm for Binocular Vision[J]. International Journal of Hybrid Information Technology, 2010.09, 3(01): 1-6.
    [172]T. K. A stereo matching algorithm with an adaptive window: Theory and Experiments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(9): 920-932.
    [173]S. C, G. M. 3-D surface description from binocular stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(10): 981-994.
    [174] Bobick A F, Intille S S. Large occlusion stereo[J]. International Journal of Computer Vision, 1999, 33(3): 181-200.
    [175]Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    [176]朱松立等.基于角点特征值和视差梯度约束的角点匹配[J].计算机工程与应用, 2005, 34: 62-64.
    [177]Zhou J, Xu Y, Yu W R. Phase matching with multi resolution wavelet transform[J]. Proceeding, SPIE, 2002, 61(10): 82-91.
    [178]贾波.正交多目视觉中立体匹配算法的研究[D].清华大学博士学位论文, 1999.
    [179]O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint[M]. Cambradge, MIT Press, MA, 1993.
    [180]高文,陈熙霖.计算机视觉、算法与系统原理[M].北京:清华大学出版社, 1999.
    [181]L. Di Stefano, S. Mattoccia, M. Mola. An effcient algorithm for exhaustive template mathing based on normalized cross correlation[J]. 12th International conference on Image Analysis and Processing, 2003: 322-327.
    [183]L. D. Stefano, M. Marehionni, S.Mattoccia.A Fast Area-Based Stereo Matching Algorithm[J]. Image and Vision Computing, 2004, 22(12):983-1005.
    [184]Daniel S , Szeliski R. Stereo matching with nonlinear diffusion[J]. International Journal of Computer Vision, 1998, 28(2): 155-174.
    [185]Veksler O. Fast variable window for stereo correspondence using integral images[J]. Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Madison, WI, USA, 2003: 556-561.
    [185]M. Shahiduzzaman, D. Zhang, G. Lu. Improved Spatial Pyramid Matching for Image Classification[J]. ACCV 2010, Part IV: 449–459.
    [186]ZHANG Ke,WANG Hong-mei,LI Yan-jun. A Robust Steerable Pyramid-Based Image Matching Algorithm[J]. Journal of Astronautics, 2005.11, 26(6): 717-723.
    [187]S. L. Tanimoto. Template matching in pyramids[J]. Computer Graphics and Image Processing, 1981, 16: 356-369.
    [188]顾军,刘震,麻洁.钢带自动对中(对边)CPC/EPC纠偏控制系统[J].江苏冶金, 2004.12, 32(6): 49-51
    [189]Spyder3 GigE Vision User Manual[Z]. DALSA Inc. 2008
    [190]Pantera SA DS -21-02M30 and DS-22-02M30 Userís Manual[Z]. DALSA Inc. 2005
    [191]X64 Xcelera-CL LX1 User's Manual-Edition 1.00[Z]. DALSA Inc. 2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700