用户名: 密码: 验证码:
水性聚氨酯的合成及其作为纸页增强剂的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于传统湿强剂存在的局限性,许多新型环保湿强剂被开发出来作为造纸助剂,水性聚氨酯(WPU)作为水性环保型树脂之一,以水为溶剂,具有无污染、无毒、安全可靠、机械性能优良、相容性好、易于改性等优点,被引用到造纸行业成为近期研究的热点。
     本文根据异氰酸酯(-NCO)基团与纤维上的羟基(-OH)反应的机理,合成了封闭性的WPU;在应用过程中,由于温度对WPU有很大影响,着重研究了WPU的解封闭温度;并针对漂白针叶木浆,将WPU加入到浆料中,系统地研究了WPU,WPU与阳离子聚丙烯酰胺(CPAM)共用对纸页抗张强度的影响。
     合成了水性聚氨酯并对其乳液性能进行了研究。研究结果表明,随着封闭剂用量增加,封闭反应时间相对延长。根据封闭剂用量和溶液的稳定性,确定了亲水扩链剂的用量为甲苯-2,4-二异氰酸酯(2,4-TDI)和聚乙二醇1000(PEG1000)两种单体质量之和的2%。当中和度为0.9-1.1时,WPU乳液的贮存稳定性明显增加。通过搅拌强度、溶剂、温度、加水方式对乳化效果进行了探讨,实验结果显示,在室温下加入适量溶剂,通过强搅拌剪切力先缓慢后快速加入去离子水的方式,有利于乳化成功。
     对水性聚氨酯进行了红外表征并对解封温度进行了研究。研究结果表明,封闭后的聚氨酯在2250-2280cm-1附近的-NCO吸收峰明显减弱,说明封闭反应是成功的。扩链之后,3300cm-1附近出现了明显的N-H吸收峰,说明已经引入了亲水基团。对解封温度的研究表明,在100℃、110℃和120℃下,封闭产物都能在2250cm-1附近出现吸收峰,说明在高温下能解封,而且延长加热时间有利于-NCO基团的解封趋于完善。热重分析(TG)曲线进一步证实了红外测试的结果。
     研究了水性聚氨酯在纸张中的应用。研究结果表明,将含有不同封闭剂用量的WPU乳液添加到浆料后,发现封闭剂用量为0.1mol的乳液应用性能最佳。通过对WPU乳液应用条件的探讨,确定纸页干燥温度为100℃,高温熟化条件为110℃固化40min,紫外熟化时间为2.5min;通过紫外、紫外+高温和高温三种熟化方式对纸页抗张强度影响的对比,发现适宜的熟化方式为高温熟化。探讨了不同pH值下WPU用量对浆料Zeta电位和纸页抗张强度的影响,表明所制备的WPU是带正电性的,可直接与浆料发生吸附作用;发现自制WPU乳液较适于中性和酸性条件下应用,当WPU乳液用量为3.0%时,在中性条件下湿强保留率达到19.45%;当WPU乳液用量为2.5%时,在酸性条件下湿强保留率达到20.70%。通过对CPAM与WPU共用的探讨,发现CPAM与WPU配合使用能提高纸页的湿强度,添加到浆料中的顺序为先添加WPU后添加CPAM。当添加顺序为2.0% WPU + 0.2% CPAM时,纸页的湿强度比添加单一的WPU提高了16.01%,比空白纸样提高了12.7倍;湿强保留率达到了18.99%,比添加单一的WPU提高了22.52%,比空白纸样提高了9.9倍。当添加顺序为3.0%WPU+0.2%CPAM时,纸页的湿强度比添加单一的WPU提高了12.62%,比空白纸样提高了15倍;湿强保留率达到了21.29%,比空白纸样提高了11倍。
Because of the shortage of traditional wet strength agents, a lot of new environment-friend wet strength agents are developed as paper chemicals. Water-based polyurethane(WPU) as one of environment-friend water-based polyurethane resins with water as solvent, is non-polluting, non-toxic, safe, reliable, excellent mechanical properties, compatibility and easy modification with incomparable advantages that the traditional wet-strength resins are not, is applied in paper industry as a research hotspot recently.
     Based on the reaction mechanism of -NCO group and -OH on the fiber, blocked WPU was synthesized on the basis. Because the effect of blocked WPU was affected by temperature in the application, the deblocked temperature was studied. In this paper, according to hand sheets making from bleached softwood pulp, WPU was added to the pulp, the effect on sheet tensile strength of wet strength agents with synthesized WPU and sharing of WPU and CPAM was systematically analyzed. The water-based polyurethane was synthesized. According to the performance of the
     synthesized polyurethane, the reaction time became longer relatively with increased blocked agent. In accordance with the dosage of blocked agent and the stability of emulsion, the dosage of the hydrophilic chain extender was 2% of the quality of the two monomers 2,4-TDI and PEG1000. When the degree of neutralization was 0.9-1.1, the storage stability of WPU emulsion increased significantly. Stirring intensity, solvent, temperature and the ways of adding water were discussed on the emulsification effect. Experimental results showed that room temperature, stirred by strong shear stress in a suitable solvent condition, slowly adding water during the final rapid accession to help emulsifying success.
     The synthesized products were characterized by IR and the deblocked temperature was studied. The results showed that absorption peak of the -NCO group of the blocked PU products near 2250-2280cm-1 had weakened significantly, indicating that blocked reaction was successful. After chain extender, N-H had a clear absorption peak near 3300cm-1, indicating that introduction of the hydrophilic group was successful. The result of deblocked temperature showed that blocked products at 100℃, 110℃and 120℃heating had absorption peak near 2250cm-1, indicating that the blocked product could be deblocked with high temperature, and the prolonged heated time was in favor of -NCO group deblocked. TG curve confirmed further the results of FTIR test.
     The application of the water-based polyurethane in the paper was studied. The synthetic WPU emulsion containing different dosage of blocked agent was added to the pulp, and the results showed that when the dosage of blocked agent was 0.1mol, the application performance of emulsion was the best. According to discussing the application condition of WPU emulsion, drying temperature of the sheets was 100℃; the condition of high temperature curing was 40min at 110℃,the UV curing time was 2.5min. Comparing the methods of UV curing, UV+high temperature curing and high temperature curing, the high temperature curing was the best method. According to discussing the effects of zeta potential of pulp and paper tensile strength were affected by the amount of WPU at different pH, the results showed that the prepared WPU was electropositive which could absorb directly with the pulp; and the synthesized WPU emulsion could be applied better under neutral and acidic conditions. When the amount of emulsion was 3.0%, paper wet-strength retention rate in the neutral condition reached 19.45%; when the amount of emulsion was 2.5%, paper wet-strength retention rate in the acidic condition reached 20.70%. Through CPAM and WPU sharing, the results showed that CPAM and WPU used together and added CPAM after WPU could improve wet strength. When adding the order of 2.0% WPU + 0.2% CPAM, the paper wet strength increased 16.01%, comparing with a single WPU added, increased 12.7 times, and comparing with blank samples, paper wet-strength retention rate reached 18.99%, increased 9.9 times. When adding the order of 3.0% WPU + 0.2% CPAM, the paper wet strength increased 12.62%, comparing with a single WPU added, increased 15 times, comparing with blank samples, paper wet-strength retention rate reached 21.29%, increased 11 times.
引文
[1] Espy H. Wet Strength Resins. Chapter 4 in Pulp and Paper manufacture vol 6; stock preparation[M]. R.W. Hagemeyer, Joint Textbook Committee of the Paper Industry, 1992: 65-88.
    [2] Cates R. Wet Strength Resins. Chapter 9 in Chemical Processing Aids in Papermaking; A Practical Guide[M]. K. Hipolit, Tappi Press, Atlanta, 1992: 129-148.
    [3] Dunlop-Jones N. Wet Strength Chemistry. Chapter 6 in Paper Chemistry[M]. J.C. Roberts Chapman and Hall, New York, 1991: 76-96.
    [4] Eklund D, Lindstrom T. Wet Strength[M]. Chapter 4 in Paper Chemistry: An Introuduction. DT Paper Science Publications, Grankulla, Finland, 1991: 89-105.
    [5]隆言泉主编.造纸原理与工程[M].北京:中国轻工业出版社, 2002.
    [6]周景辉,吴星娥.造纸湿强剂的进展[J].中国造纸, 2003, 22(9): 49-52.
    [7]安郁琴,刘忠.制浆造纸助剂[M].北京:中国轻工业出版社, 2003(5): 58–59.
    [8]张光华编译.造纸湿部化学原理及其应用[M].北京:中国轻工业出版社, 1998.
    [9] Dunlop-Jones. Wet Strength Chemistry[M]. New York: TAPPI Press, 1991.
    [10] Stannett V T. Surfaces and Coatings Related to Paper and Wood[J]. Syracuse University Press, 1967(10): 269-299.
    [11] Westfelt L. Cellulose Chemical Technology[J]. Tappi, 1979(13): 813-825.
    [12] Epsy H H. The effect of pulp refining on wet-strength resin[J]. Tappi, 1980, 70(7): 129-133.
    [13] Dunlop-Jones. Principles of Wet End Chemistry[M]. Atlanta: TAPPI Press, 1996.
    [14] De Jong JI, de Jonge J. The reaction of urea with formaldehyde[J]. Rec Trav Chim, 1952a, 71: 643–660.
    [15] De Jong JI, de Jonge J. The reaction of urea with formaldehyde[J]. Rec Trav Chim, 1952a, 72: 139–156.
    [16] De Jong JI, de Jonge J. The reaction of urea with formaldehyde[J]. Rec Trav Chim, 1952b, 71: 661–667.
    [17]汪多仁.脲醛树脂的生产与应用进展[J].建筑人造板. 1998(1): 26–28.
    [18]顾明莉,罗云.低毒脲醛树脂的合成机理[J].中国胶粘剂. 1998, 7(5): 19–23.
    [19] Britt K W. Polyelectrolyte complexes for surface modification of wood Fibres: Preparation and characterisation of complexes for dry and wet strength improvement of paper[J]. Paper Maker, 1947, 70(39): 106-109.
    [20] U. S. Pat. No.5, 435, 841.
    [21] U. S. Pat. No.5, 478, 656.
    [22] Edward L McCaffrey. Laboratory preparation for macromolecular chemistry[M]. New York, McGraw-Hill, 1970.
    [23] D.布劳恩, H.切尔德龙, W.克恩著,黄葆国等译.聚合物合成和表征技术[M].北京:科学出版社. 1981: 265–267.
    [24]张庆余,韩孝族,纪奎江.低聚物[M].科学出版社. 1994.
    [25]林冶宪.增湿强剂的强度呈现机理及其应用[J].天津造纸. 2002, 31–33.
    [26] Wohnsiedler H P. Urea-Formaldehyde and Melamine-Formaldehyde Condensations[J]. Industrial and engineering chemistry, 44(11): 2679-2686.
    [27]黄鸿.浅谈纸张湿增强剂三聚氰胺甲醛树脂[J].纸和造纸, 2000(4): 54-55.
    [28] Anon. Some new chemical compounds in papermaking urea and malmine-formaldehyde resin[J]. Paper Maker, 1966, 151(5): 68.
    [29] Dankelman W. Angew Makromol Chem, 1986(54): 187.
    [30]何京.湿增强剂在造纸领域中的应用[J].湖北造纸. 2003(6): 25-27.
    [31]宋世雄.湿强剂的应用[J].黑龙江造纸. 2004(3): 34.
    [32] Hamerstrand G E. Dialdehyde starch hydrozoas cationic agents for wet-strength paper[J]. Tappi, 1963, 46(7): 400-404.
    [33]沈一丁.造纸化学品的制备和作用机理[M].北京:中国轻工业出版社. 1999.
    [34] George H Hitching, et al. Pyrido(2,3-D) Pyrimidine compounds and method of making[P]. US: 2926166, 1960.
    [35] Keim Gerald. Cationic thermosetting polyamide-epichlorohydrin resins and process of making same[P]. US: 2926154, 1960.
    [36]吴佩探,李忠正等.造纸用湿强度剂-聚酰胺聚胺表氯醇树脂的合成研究[J].中国造纸, 1988, 7(2): 28-34.
    [37]刘长春,李安平.聚酰胺聚胺表氯醇树脂的制备与应用[J].包装工程, 2001, 22(5): 44-46.
    [38]杜伟民编译.湿强剂的最新研究进展[J].造纸化学品, 2009, 21(1): 63-68.
    [39]何京.湿增强剂在造纸领域中的应用[J].湖北造纸. 2003(6): 25-27.
    [40]来水利,沈一丁等. PAE湿强树脂的生产方法及质量管理[J].西南造纸. 2002(4): 14.
    [41] Devore D I, Fischer S A. Wet-strength mechanism of polyaminoamide-epichlorohydrin resins[J]. Tappi J, 1993, 76(8): 121–128.
    [42]胡惠仁,徐立新,童荣业.造纸化学品[M].北京:化学工业出版社, 2002.
    [43]徐青林,胡惠仁.反应性纸张湿强剂的开发[J]. Paper and Paper Making Mar, 2005, (2): 51-56.
    [44] Sarkanen K V. Tappi Monograph Series: Wet strength in paper and paperboard[J]. Tappi Press, 1965(4): 38–49.
    [45]魏军凤.环氧化聚乙烯亚胺纸张增湿强剂的制备及其增强机理研究[D].硕士学位论文, 2009.
    [46]李世扬,苏宗元.制浆造纸手册[M].北京:中国轻工业出版社,1991: 666-667.
    [47]吴芳.聚酰胺环氧氯丙烷的合成、改性及其在造纸上的应用[D].硕士学位论文, 2010.
    [48] Xu Yufeng, Chen C M, Yang C Q. Application of polymeric multifunctional carboxylic acids to improve wet strength[J]. Tappi, 1998, 81(11): 159-164.
    [49]陈少平,陈得坚.反应性纸张增强剂[J].中国造纸, 2002, 21(3): 8.
    [50] Zhou Y G. Crosslinking of Paper with polyfunctional carboxylic acids [J]. Prod. Papermaking, 1993, 2: 1045.
    [51] Yang C Q. Part A: Polymer Chemistry[J]. Journal of Polymer Science, 1997, 35(3): 557-564.
    [52]李晓宣,李星纬,蒋鹏举.乙二醛/尿素树脂的合成及在造纸上的应用[J].南京理工大学学报. 1999, 23(2): 162-165.
    [53]沈一丁,陈玉群,田德卿.改性氨基树脂增湿强剂的制备及稳定性研究[J].造纸化学品, 2000(2): 19-22.
    [54] David I, Nancy S Clungeon, Stephen A Fischer. Reducing organic chloride contaminats in polyaminoamide-epichlorohydrin wet-strength resins[J]. Tappi, 1991, 74(12): 135.
    [55]刘安平,李临生. PAE与聚丙烯酸丁酯/甲基丙烯酸甲酯核壳乳液的共混改性及其应用研究[J].造纸化学品, 2000(2) : 23-26.
    [56]吴佩琛等.造纸用湿强剂-聚酰胺聚胺表氯醇树脂的合成研究[J].中国造纸, 1988(2):73-76.
    [57] Horine Y. Summaries of peer reviewed papers-application of glutaraldehyde and poly (vinyl alcohol) to improve paper strength[J]. Tappi, 2001, 84(6): 68.
    [58] Hiroo Tanaka.纸ぺ技协志. 1994, 48: 658.
    [59] Lorenz O, Haulena F, Kleben O. Rubber elastic behavior of polyurethane ionomers[J]. Angew Makromol Chem, 1973, 33: 159-175.
    [60] Wandelmaier K, Wiggershaus S. Aqueous binder dispersion for physically drying coating agents and their use[P]. U S, 50854337. 1998, 12, 29.
    [61]李佩燚等.聚氨酯在造纸工业中的应用[J].造纸化学品, 2007, 26(3): 49-51.
    [62]曹坤,吴建芬等.水性聚氨酯研究进展[J].高分子通报, 1994(3): 156-161.
    [63]康平平等.水性聚氨酯的发展-分类-合成及应用[J].材料导报, 2007, (21): 377-380.
    [64]中国聚氨酯工业协会水性聚氨酯专业委员会.水性聚氨酯发展概况[J].涂料技术与文摘, 2008, (7): 21-27.
    [65]仝锋.水性聚氨酯研究进展综述[J].光谱实验室, 2000, 17(1): 55-59.
    [66]吴海平等.中国水性聚氨酯的合成工艺与性能研究[J].应用基础与工程科学学报, 2006, 14(2): 153-159.
    [67]涂伟萍.水性涂料[M].北京:化学化工出版社, 2006, 315.
    [68]陈丽珠等.水性聚氨酯的发展与应用研究进展.涂料技术与文摘, 2008, (5): 13-16.
    [69] Zhang X, Tanaka H J. Synthesis of Polymers Containing Isocyanate Groups and Use of Polymers as Paper Dry and Wet Strength Additives[J]. Wood Sci, 1999, 45: 425.
    [70]杨志勇,张益民,周燕.聚氨酯技术在造纸工业中的应用[J].上海造纸, 2007, 38(2): 49-51.
    [71]杨小敏,刘建平,沈一丁.阳离子聚氨酯施胶剂的研制及应用实验[J].中国造纸, 2002, (5): 21-24.
    [72]杨琴.水性聚氨酯纸页增强剂的合成研究[D].硕士学位论文, 2008.
    [73]申相辉.反应型阳离子聚氨酯的合成及其对纸页增强效果的研究[D].硕士学位论文, 2009.
    [74]熊军,孙芳,杜洪光.丙酮-二正丁胺滴定法测定聚氨酯中的异氰酸酯基[J].分析试验室, 2007, 26(8): 73-76.
    [75]石淑兰,河福望主编.制浆造纸分析与检测[M].中国轻工业出版社, 2006.
    [76] http://baike.baidu.com/view/3121446.htm.
    [77]徐建峰,胡惠仁,崔晖.阳离子水性聚氨酯的制备及其在表面施胶中的应用[J].纸和造纸, 2009,28(6): 36-39.
    [78]丁彩凤,魏庆莉等.水性聚氨酯乳液的性能及其影响因素[J].涂料技术与文摘, 2004, 25(6): 15-18.
    [79] Chattopadhyay D K, Raju K V S N. Structural engineering of polyurethane coatings for high performance applications[J]. Progress in Polymer Science, 2007, 32: 352-418.
    [80]张海龙,张彪,戴震等.封闭型异氰酸酯的反应机理与应用[J].涂料技术与文摘, 2009, 30(2): 14-17.
    [81]李绍雄,朱吕民编.聚氨酯树脂[M].江苏:江苏科学技术出版社, 1992.
    [82]李绍雄,刘益军编.聚氨酯树脂及其应用[M].北京:化学工业出版社, 2001.
    [83]顾继友,高振华.异氰酸酯的封闭浅谈[J].聚氨酯工业, 2002, 17(4): 10-13.
    [84]顾继友,张彦华,高振华. TDI预聚体封闭与解封闭反应研究[J].化学与黏合, 2006, 28(2): 67-70.
    [85] Douglas A Wicks, Zeno W Wicks Jr. Blocked isocyanatesⅢ: Part A. Mechanisms and chemistry[J]. Progress in Organic Coatings, 1999, 36(4): 148-172.
    [86]李新平等.异氰酸酯类纸张增强剂的应用[J].湖南造纸, 2008, (3): 19-21.
    [87]罗道成,易平贵.改性壳聚糖对电镀废水中重金属离子的吸附[J].材料保护, 2002, 35(1): 11-12.
    [88]李锦.水性环保型湿强树脂的合成及其在造纸工业中的应用[D].硕士学位论文, 2007.
    [89]郭小燕.废纸造纸助留体系优化的研究[D].硕士学位论文, 2009.
    [90]惠磊,张安龙,罗清.阳离子聚丙烯酰胺作为助留助滤剂在造纸中的应用[J].黑龙江造纸, 2010, (2): 30-31, 34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700