用户名: 密码: 验证码:
多烘缸造纸机干燥部能量系统分析建模与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制浆造纸工业是传统的高能耗产业。随着国际能源形势越来越严峻和国家产业升级步伐的加快,节能减排是造纸企业必须要面对的一个严峻的挑战。单纯的淘汰落后产能已经不是造纸工业应对挑战的最佳方法,如何对现有的产业结构进行优化升级是更为切实有效的思路。
     纸张的生产本质上是一个脱水的过程。尽管造纸机干燥部脱除了整个过程最少量的水分,但其能耗占整个造纸过程能耗的绝大部分。纸机干燥类型是根据干燥部的结构来划分的,多烘缸造纸机是造纸过程中使用最普遍的一种,大概占到了85~90%。其多烘缸纸机干燥部的能量系统一直是国内外研究的热点。系统的对造纸机干燥部能量系统进行分析和研究对提高造纸企业能效降低成本具有十分重要的意义。
     本论文首先从造纸企业全厂能量系统入手,利用能量系统“三环节”的基本理论对典型造纸厂的能源流向进行了系统的分析和诊断,继而确定了造纸机干燥部是最大的能耗单元。本研究详细介绍了造纸机干燥部的组成、基本结构以及与其相关的能耗设备,将干燥部分为三个不同的功能子系统,并利用热力学第一和第二定律结合分析能流常用Sankey图对造纸机干燥部能量系统进行了分析。通过对某新闻纸机干燥部的分析结果表明:该纸机空气需求量较大,排出空气的热量很高,达到62.05%,过程?损偏大,达到36.51%。通过对比纸机不同状态能流参数发现:气罩空气湿度参数对干燥过程能耗影响显著。当气罩空气湿度上升时,造纸机干燥部蒸汽消耗可以明显降低。分析了造纸机干燥部能量系统的特点,本研究依据单元模块法建立了多烘缸造纸机干燥部的数学模型。通过数学模型的建立,提出了和干燥部能耗密切相关的烘缸特征函数的确定方法。借助干燥部数据在线采集系统获得的数据在WinPAMS平台上对干燥部模型进行了验证,结果表明,该模型结构合理,模拟运算结果和实测结果基本一致。
     在建模的基础上,本研究建立了一种造纸机干燥部能量系统的非线性规划模型,提出了造纸机干燥部能量系统的优化方法。该方法把干燥部分成几类不同的功能模块,通过物料和能量平衡分别建立各模块的过程模型,以造纸机实际的操作参数范围作为约束条件,以单位产品能耗最低为目标,借助Matlab软件的相关算法求解能耗最低的过程操作参数。本研究所建立的模型适应性良好,求解方便,可以针对纸机运行参数进行过程用能的优化。将该模型用于优化某箱板纸机和新闻纸机干燥部的过程参数,优化结果表明,现有的操作参数范围内,箱板纸机可以实现节能5.6%,新闻纸机可以根据不同的操作环境进行参数优化,可实现节能6%左右。
     在线涂布纸机的热回收系统是一个复杂的换热网络。本研究应用夹点技术对某日产1500t的涂布纸机干燥部热回收网络进行了诊断和优化分析。结果表明,该纸机现有的换热网络存在着较大的节能潜力,通过优化改造可以使纸机干燥部的回收热量由原来的4821.6 kJ/s增加到9973.09 kJ/s,节约了干燥部2.3%的蒸汽用量,有明显的节能效果。为了方便夹点技术的应用,本文运用面向对象的技术开了一种计算机辅助程序。该程序的开发提高了运算效率,更利于夹点技术在造纸企业的推广应用。
The papermaking industry is a big consumer of energy. As the world's energy problems become more and more serious, energy consumption reduction in industries is very important. It is a new challenge for the papermaking workers. So improvement of the efficiency without adversely affecting the product quality is very important to the pulp and paper industry.
     Papermaking is essentially a massive dehydration operation. Although drying removes the least amount of paper in absolute terms, it still remains the most costly and energy intensive step in the papermaking process. The type of dryers used in the paper industry can be classified by the basic means of transferring heat to the paper. An estimate of the distribution of dryer types shows that the conventional steam-heated cylinder dryers are still dominant in paper industry, which reaches a proportion of 85~90%. The energy system of multicylinder dryer section is becoming focus of study. A systematic study on paper machine dryer section has great significance for papermaking industry.
     The research is beginning from the total plant energy system. The three-link model is used to analyze the energy flow of a typical paper plant. Paper machine dryer section is found to be the most energy consumer. The structure of the dryer section is introduced in details. And it is divided into three subsystems. Energy and exergy balance and Sankey diagram are used together to analyze a newsprint paper machine in this paper. Data from the dry section of the machine is collected to find out the factors affect the energy using efficiency. The result shows that the paper machine needs lots of air to take out the vapor from the wet web. The energy in exhaust air is very high, reaches 62.05%, and the process exergy lose reaches 36.51%. Humidity of hood air has a significant impact on the process energy consumption. When higher hood humidity increasing, lower energy consumption is achieved. According to these characters of the dryer section, the process mathematical model is established. The characteristic function which reflects the relationship between steam consumption and evaporated water is made. By the help of the online data collection system, the model is verified. And the simulation results is in good agreement with the test results
     Based on the mathematical model, by analyzing the characteristics of the energy system of the dryer section in paper machines, a nonlinear programming (NLP) model of the system energy is established, and the corresponding optimization method is proposed. In the method, the dryer section is divided into several functional modules, and the process model of each module is set up based on material and energy balance. By using the operation parameter ranges as the constraints and taking the minimum energy consumption per unit product as the objective, the operation parameters corresponding to the minimum energy consumption are determined with the help of the algorithm presented in Matlab. It is found that the proposed NLP model is well adaptive and convenient for the energy optimization at different operation parameters, concretely. Applied on a linerboard machine which has surface sizing, the method can reduce the energy consumption by 5.6%. For newsprint machines; the energy consumption in the dryer section reduces by about 6%.
     The heat recovery system of online coating paper machine is a complex heat exchange network. Applied the pinch technology to diagnoses and optimization analysis of heat exchange networks in the drying-section of coated paper machine producing1500 t/d, The result showed that there is a biggish energy-saving potential in the existing heat exchange networks and the quantity of heat-saving in new heat exchange networks after optimizational reforming increased from 4821.6 kJ/s to 9973.1kJ/s, save2.3% fresh steam of drying-section. The energy-saving effect is evident. An object-oriented computer-assisted program is developed for the convenience of the users. The program increases the efficiency and accelerates the application of pinch technology.
引文
[1]中国造纸学会. 2010中国造纸年鉴.北京:中国轻工业出版社. 2010
    [2]国家发展与改革委员会,造纸产业发展政策. 2007
    [3]顾民达.循环经济在我国造纸工业中的应用[J].上海造纸, 2005, 36(3):3-9
    [4]刘焕彬.发展生态造纸工业的几点思考[J].中华纸业, 2006, 27(3):14-19
    [5]于春兵,王新阳.在造纸业发展循环经济的实践探讨[J].山东经济, 2006,(5):67-69
    [6]国家发展改革委员会,节能中长期专项规划. 2004
    [7] Karlsson M., Oyg M. Papermaking science and technology series. Papermaking Part2,Drying. Finish Paper Engineers' Association and TAPPI. 2000
    [8]丁忠柱.纸机干燥部的节能[J].纸和造纸, 1999,(4):16
    [9] Kilponen Leena. Improve ment of heat recovery in exsiting paper machines[D]. Helsinki:Helsinki University of Technology,2002
    [10]徐柱天.造纸机烘干部的通风系统[J].中国造纸, 1983,(02):57-61
    [11]宫振祥,刘振义,李生谦等.纸机干燥部气罩的发展及其对能耗的影响[J].天津轻工业学院学报, 1993,(1):45-50
    [12] Dincer Ibrahim, Cengel Yunus A. energy, entropy and Exergy Concepts and Their Roles in Thermal Engineering[J]. entropy, 2001,(3):116-149
    [13]华贲.工艺过程用能分析及综合.北京:烃加工出版社. 1989
    [14]姚平经.全过程系统能量优化综合.大连:大连理工大学出版社. 1995
    [15]朱明善.能量系统的yong分析.北京:清华大学出版社. 1985
    [16] Edgar Thomas F., Himmelblau David M., Lasdon Leon S. Optimization of chemical process. New York: The McGraw-Hill Companies,Inc. 2001
    [17]何小荣.化工过程优化.北京:清华大学出版社. 2003
    [18]杨友麟,成思危.现代过程系统工程.北京:化学工业出版社. 2003
    [19]刘焕彬.制浆造纸过程数学建模与计算机模拟(研究生讲义). 2005
    [20] B.Linnohoff. Process energy integration-A use guide on process integration for the efficient use of energy. Manchester: UMIST. 1987
    [21] Pinch technology:basic for beginners. www.chereesources.com.
    [22] ?kesson Johan, Sl?tteke Ola, Modeling, calibration and control of a paper machine dryer section, in Modelica 2006. 2006: Vienna
    [23] Berger Helmut, Optimisation of steam and condensate systems of paper machines, in 2nd Joint on Technology Diffusion in Central and Eastern Europe and the CIS. 2004: Vienna
    [24] Dincer I., Z. Sahin A. A new model for thermodynamic analysis of a drying process[J]. International Journal of Heat and Mass Transfer, 2004, 47(4):645-652
    [25] Koper G, Kjelstrup. S, etc. Entropy production for cylinder drying of linerboard and newsprint[J]. International Journal of Heat and Mass Transfer, 2007, 50(7-8):1344-1355
    [26] Stenstr?m S. The modelling of drop behaviour in siphon riser tubes in paper drying cylinders[J]. Chemical Engineering Science, 1993, 48(23):4037-4047
    [27] Pettersson H. Dynamic modeling and simulation of multi-cylinder paper dryers[D]. Lund:Lund University,1998
    [28] Reardon S. A., Davis M. R., Doe P. E. Friction, heat and mass transfer for paper drying[J]. International Journal of Heat and Mass Transfer, 1998, 41(10):1313-1325
    [29] W.Jan.Coumans, Ramakers Bram J. Microscopic drying behaviour of a paper sheet in a multi-cylinder dryer[D]. Eindhoven:Eindhoven University of technology,
    [30] Roonprasang Kiattisak. Thermal analysis of multi-cylinder drying section with variant geomretry[D]. Tagungsband:TU Dresen,2008
    [31] Yeo Yeong-Koo,Hwang Ki-Seok,Yi Sung Chul, et al. Modeling of the drying process in paper plants[J]. Korean Journal Chemical Engineering, 2004, 21(4):761-766
    [32]沈胜强,卢涛,李素芬.纸页干燥过程计算模型[J].中国造纸, 2003, 22(4):4
    [33]章春亮.烘缸有限元计算模型的建立[J].轻工机械, 2002,(3):17-20
    [34] Nilsson J., Stenstr?m S. Modelling of heat transfer in hot pressing and impulse drying of paper[J]. Drying Technology, 2001, 19(10):2469-2485
    [35] Weineisen H., Stenstrom S. Modeling drying and energy performance of industrial through-dryers[J]. Drying Technology, 2008, 26(6):776-785
    [36] Kowalski S. J., Musielak G., Banaszak J. Experimental validation of the heat and mass transfer model for convective drying[J]. Drying Technology, 2007, 25(1-3):107-121
    [37] Farkas I., Meszaros C., Balint A. Mathematical and physical foundations of drying theories[J]. Drying Technology, 2000, 18(3):541-559
    [38] Hashemi S. J., Douglas W. J. M. Through drying of paper from mechanical and chemical pulp blends: Transport phenomena behavior[J]. Drying Technology, 1999, 17(10):2183-2217
    [39] Niemenmaa A.,Lappalainen J.,Laukkanen I., et al. A multi-purpose tool for dynamic simulation of paper mills[J]. Simulation Practice and Theory, 1998, 6(3):297-304
    [40] Slatteke Ola. Modeling and control of the paper machine drying section[D]. Lund:Lund University,2006
    [41] Mouhsine B., Stanislaw T., Mohammed E. A State model for the drying paper in the paper product industry[J]. IEEE Transction on Industrial Electronics, 1997, 44(4):579-586
    [42]曹旭光.制浆造纸过程计算机模拟软件PAMS的实现[D].广州:华南理工大学,1998
    [43]方奕文.造纸机干燥部计算机模拟软件的开发与应用[D].广州:华南理工大学,1993
    [44]刘金星.造纸过程仿真与过程参数辨识方法的研究[D].广州:华南理工大学,2008
    [45] Martin N., Anglani N., etc. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry. Earent Orlando Lawrence Berkeley National Laboratary. 2000
    [46] Pilavachi P. A. The role of the European Union in promoting energy efficiency in the paper industry[J]. Applied Thermal Engineering, 1996, 16(6):539-548
    [47] Schumacher Katja, Sathaye Jayant. India's pulp and paper industry: productivity and energy efficiency. Earent Orlando Lawrence Berkeley National Laboratary. 1999
    [48] Dincer Ibrahim. On energetic, exergetic and enviromental aspects of drying systems[J]. International Journal of energy research, 2002, 26:717-727
    [49] Wall Goran. Exergy Flows in Industry Process[J]. Energy 1988, 13(2):197-208
    [50] Bujak J. Energy savings and heat efficiency in the paper industry: A case study of a corrugated board machine[J]. Energy, 2008, 33(11):1597-1608
    [51] De Beer Jeroen, Worrell Ernst, Blok Kornelis. Long-term energy-efficiencyimprovements in the paper and board industry[J]. Energy, 1998, 23(1):21-42
    [52] Gong Mei. Exergy analysis of a pulp and paper mill[J]. international Journal of energy research, 2005, 29:79-93
    [53] Gemci T., Ozturk A. Exergy analysis of a sulphide-pulp preparation process in the pulp and paper industry[J]. Energy Conversion and Management, 1998, 39(16-18):1811-1820
    [54] Zvolinschi Anita, Johannessen Eivind, Kjelstrup Signe. The second-law optimal operation of a paper drying machine[J]. Chemical Engineering Science, 2006, 61(10):3653-3662
    [55] Bengtsson C.,Karlsson M.,Berntsson T., et al. Co-ordination of pinch technology and the MIND method--applied to a Swedish board mill[J]. Applied Thermal Engineering, 2002, 22(2):133-144
    [56] Matijaevi? L., Otma?i? H. Energy recovery by pinch technology[J]. Applied Thermal Engineering, 2002, 22(4):477-484
    [57] Moraitis C. S., Akritidis C. B. Energy saving in industrial drying plants by partial recovery of the latent heat of the exhaust air[J]. Drying Technology, 1997, 15(6-8):1931-1940
    [58] Vieira M. G. A., Estrella L., Rocha S. C. S. Energy efficiency and drying kinetics of recycled paper pulp[J]. Drying Technology, 2007, 25(10):1639-1648
    [59] Prashant Dave Dennis A. Willing, Gautham K. Kudva, Joseph F. Pekny, Francis J. Doyle,. LP methods in MPC of large-scale systems: Application to paper-machine CD control[J]. AIChE Journal, 1997, 43(4):1016-1031
    [60] Carlsson P., Arfvidsson J. Optimized wood drying[J]. Drying Technology, 2000, 18(8):1779-1796
    [61] Browne T. C., Francis D. W., Towers M. T. Energy cost reduction in the pulp and paper industry: an overview - Increased energy efficiency can lead to improved competitive advantage[J]. Pulp & Paper-Canada, 2001, 102(2):26-30
    [62] Paris J. A systems approach to system closure in integrated newsprint mills[J]. Pulp & Paper-Canada, 2000, 101(5):34-42
    [63] Persson J?rgen, Berntsson Thore. Influence of seasonal variations on energy-savingopportunities in a pulp mill[J]. Energy, 2009, 34(10):1705-1714
    [64] Shafiei S.,Domenech S.,Koteles R., et al. System closure in pulp and paper mills: network analysis by genetic algorithm[J]. Journal of Cleaner Production, 2004, 12(2):131-135
    [65] SzabóL.,Soria A.,Forsstr?m J., et al. A world model of the pulp and paper industry: Demand, energy consumption and emission scenarios to 2030[J]. Environmental Science & Policy, 2009, 12(3):257-269
    [66] Lafourcade S.,Labidi J.,Koteles R., et al. Thermal pinch analysis with process streams mixing at a TMP-newsprint mill[J]. Pulp & Paper-Canada, 2003, 104(12):74-77
    [67] Laurijssen Jobien,De Gram Frans J.,Worrell Ernst, et al. Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry[J]. Energy, 2010, 35(9):3738-3750
    [68] Marshman D. J.,Chmelyk T.,Sidhu M. S., et al. Energy optimization in a pulp and paper mill cogeneration facility[J]. Applied Energy, 2010, 87(11):3514-3525
    [69]解新安,刘焕彬等.过程能量综合技术及其在造纸工业能量系统中的应用[J].造纸科学与技术, 2006, 25(6):21-25
    [70] Iyota H., Nishimura N., Yoshida M. Simulation of superheated steam drying considering initial steam condensation[J]. Drying Technology, 2001, 19(7):1425-1440
    [71] Kiranoudis C. T., Krokida M. K., Maroulis Z. B. Thermocompressor design for efficient energy recovery of paper production plant dryers[J]. Drying Technology, 1999, 17(6):1065-1080
    [72] Zhelev T. K., Ridolfi R. Energy recovery and environmental concerns addressed through emergy-pinch analysis[J]. Energy, 2006, 31(13):2486-2498
    [73] Milosavljevic Nenad,Malinen Pekka,Heikkil Pertti, et al. Experimental and theoretical investigations for the design of scrubbers in heat recovery from paper machines[J]. Applied Thermal Engineering, 1997, 17(6):569-581
    [74] Karlsson,Sl?tteke O,Wittenmark B, et al. Evaluation of models for the steam system to improve control of the paper dryer[C]. in TAPPI Spring Technical Conference & Trade Fair. 2003. Chicago, USA: TAPPI
    [75] Nilsson Lars. Heat and mass transfer in multicylinder drying: Part I. Analysis ofmachine data[J]. Chemical Engineering and Processing, 2004, 43(12):1547-1553
    [76] Nilsson Lars. Heat and mass transfer in multicylinder drying: Part II. Analysis of internal and external transport resistances[J]. Chemical Engineering and Processing, 2004, 43(12):1555-1560
    [77] Lindell K., Stenstr(?)m S. A modular process modeling tool for the analysis of energy use and cost in the pulp and paper industry[J]. Drying Technology, 2006, 24(11):1335-1345
    [78] Brown D., Marechal F., Paris J. A dual representation for targeting process retrofit, application to a pulp and paper process[J]. Applied Thermal Engineering, 2005, 25(7):1067-1082
    [79] Pettersson Frank, S(?)derman Jarmo. Design of robust heat recovery systems in paper machines[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(10):910-917
    [80] S(?)derman J., Pettersson F. Influence of variations in cost factors in structural optimisation of heat recovery systems with moist air streams[J]. Applied Thermal Engineering, 2003, 23(14):1807-1818
    [81] Sivill Leena, Ahtila Pekka. Energy efficiency improvement of dryer section heat recovery systems in paper machines - A case study[J]. Applied Thermal Engineering, 2009, 29(17-18):3663-3668
    [82] Sivill L., Ahtila P., Taimisto M. Thermodynamic simulation of dryer section heat recovery in paper machines[J]. Applied Thermal Engineering, 2005, 25(8-9):1273-1292
    [83] Gabbrielli R., Medeot C., Miconi D. Energy saving in the tissue industry: technical and economic aspects of a case study[J]. Journal of Cleaner Production, 2006, 14(2):185-193
    [84] Onel S., Guruz G. Energy optimization of the Yankee-Hood dryer[J]. Strojniski Vestnik-Journal of Mechanical Engineering, 2001, 47(8):512-518
    [85] Edgar Tohomas F., Himmelblau David M., Lasdon Leon S. Optimization of Chemical Process. New York: McGraw-Hill Press. 2005
    [86] Konukman Alp Er S., camurdan Mehmet C., Akman Ugur. Simultaneous flexibilitytargeting and synthesis of minimum-utility heat-exchanger networks with superstructure-based MILP formulation[J]. Chemical Engineering and Processing, 2002, 41(6):501-518
    [87] Kullberg Nils,Vilén Michael,Sund Pernilla, et al. SIAmate--a compact and modular sequential injection analysis controller[J]. Talanta, 1999, 49(5):961-968
    [88] (?)zkan Semra, Din(?)er Salih. Application for pinch design of heat exchanger networks by use of a computer code employing an improved problem algorithm table[J]. Energy Conversion and Management, 2001, 42(18):2043-2051
    [89] R.Nordman, T.Berntsson. Used of advanced composite curves for assessing cost-effective HEN retrofit II. case study[J]. Applied Thermal Engineering, 2009, 29(11)
    [90]葛玉林,杨洪源,沈胜强.夹点分析在原油常减压蒸馏换热网络的应用[J].热科学与技术, 2007, 6(2):101-105
    [91]罗雄麟,孙琳,王传芳等.换热网络操作夹点分析与旁路优化控制[J].化工学报, 2008, 59(5):1210-1216
    [92]宋昌奇.夹点技术在石油化工中的应用[D].西安:西北工业大学,2005
    [93] Isafiade Adeniyi, Fraser Duncan. Optimization of combinded heat and mass exchanger networks using pinch technology[J]. Asia-Pac.J.Chem.Eng., 2007,(2):11
    [94] Kemp I. C. Reducing dryer energy use by process integration and pinch analysis[J]. Drying Technology, 2005, 23(9-11):2089-2104
    [95] Zhang Hong, Zhai Qingzi. The pinch technique and it's application in the equipment kamyr continuous digester[C]. in ICPPB08. 2008. Nanjing China
    [96]刘传飞,巨云丽,王庆梅.华泰PM10纸机干燥部通汽特点[J].中华纸业, 2006,(11):44-45
    [97] http://www.e-sankey.com/en/benefit/index.htm;
    [98]洪毅,林建良,陶志穗.数学模型.北京:高等教育出版社. 2004
    [99]李洪,曲云霞,李爱景.窄点技术原理及其应用[J].节能, 2005,(11):13-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700