用户名: 密码: 验证码:
水体系中钌催化不饱和有机物加氢反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水不仅安全、便宜、环境友好,而且在很多化学化工过程中有着不可或缺的作用。上世纪80年代以来,科学家们不断发现水不仅能提高某些反应的活性,还能具有特定的选择性;而催化剂易于分离则一直是水/有机反应体系的优势所在。本论文考察了水存在条件下的苯选择加氢反应,水溶液中链状钌纳米阵列的制备及其在含水体系中不饱和有机物快速全加氢反应中的应用。
     论文采用负载型纳米钌基催化剂和负载型非晶态合金钌硼催化剂对水存在条件下苯选择加氢合成环己烯反应进行了较为系统的研究。研究发现,负载型非晶态合金催化剂H-204在苯选择加氢反应中,显示出很好的催化性能。在苯转化率为40%时,环己烯的选择性达到77%,此时的TOF值为315h~(-1)。
     论文采用聚合物参与的水溶液法,制备出直径1-3nm,长约280nm的链状钌纳米阵列。通过调整PVP的平均分子量、PVP单体与钌的摩尔比和氢气的分压,可以得到各种形态的链状钌纳米阵列。该纳米阵列,在353K,1MPa氢压下,对从10mg/l到10,000mg/l相当宽的浓度范围内的苯酚水溶液的催化加氢反应都显示出很高的活性。
     论文采用含有链状钌纳米阵列的PVP-Ru两亲性微反应器体系,353K,4MPa氢压下,实现了水/有机体系不饱和化合物的快速全加氢反应。该体系表现出优异的催化活性和底物普适性。其中,苯加氢反应的TOF值达到45,000 h~(-1)。据我们所知,这个值是目前文献报道中最高的。其它苯的衍生物、不饱和羰基化合物以及在水中溶解度极低的长链烯烃加氢反应的起始TOF值也都超过1,000 h~(-1)。
Water is not only safe,cheap and environmental friendly, but also play important roles in chemical industry. Since 1980s, scientists found that water could enhance some reactions’rates, elicit new selectivities, and water-soluble catalysts could be reused after easy separation from the water-insoluble products in aqueous/organic system. This paper studied the selective hydrogenation of benzene to cyclohexene, preparation of chain-like Ru nanoparticle arrays and its application in fast hydrogenation of unsaturated compounds in aqueous media. In this paper, supported ruthenium nanoparticle catalysts and supported amorphous Ru-B catalysts were used in selective hydrogenation of benzene to cyclohexene. Supported amorphous catalysts H-204 showed high selectivity to cyclohexene. When benzene conversion was 40%, the selectivity of cyclohexene reached 77% and the TOF value was 315 h~(-1).
     Chain-like Ru nanoparticle arrays, 1-3 nm in diameter and ~280 nm in length, had been successfully synthesized through polymer-mediated aqueous-solution method. The morphology of these Ru nanoparticle arrays could be varied from long chain-like arrays to cross-linked arrays by adjusting the reaction conditions including the average molecular weight of PVP, the mole ratio of repeat unit of PVP to Ru and concentration of hydrogen in solution. The obtained chain-like Ru nanoparticle arrays showed high activity in catalytic hydrogenation of phenol with broad concentration ranging from 10 mg/l to 10,000 mg/l at 353 K, under 1 MPa
引文
1. N. J. Buurma. Water, a Unique Medium for Organic Reactions-Kinetic Studies of Intermolecular Interactions in Aqueous Solutions. Groningen: RIJKSUNIVERSITEIT GRONINGEN, 2003.
    2. D. J. Cole-Hamilton. Homogeneous catalysis - new approaches to catalyst separation, recovery, and recycling. Science, 2003 299(5613): 1702-1706.
    3. W. A. Herrmann and B. Cornils. Organometallic homogeneous catalysis - Quo vadis? Angew. Chem.-Int. Edit. Engl., 1997 36(10): 1049-1067.
    4. B. Cornils and W. A. Herrmann. Aqueous-phase Organometallic Catalysis. WILEY-VCH, 1998.
    5. B. Cornils and E. G. Kuntz. Introducing Tppts and Related Ligands for Industrial Biphasic Processes. J. Organomet. Chem., 1995 502(1-2): 177-186.
    6. H. Nagahara, M. Ono, M. Konishi and Y. Fukuoka. Partial hydrogenation of benzene to cyclohexene. Appl. Surf. Sci., 1997 121: 448-451.
    7. I. H. Horvath and F. Joo. Aqueous Organometallic Chemistry and Catalysis. Dordrecht/Boston/London: Kluwer Academic Publisher, 1995.
    8. J. Haggin. Chem. Eng. News, 1994 72: 29-36.
    9. 209th National Meeting of the American Chemical Society. Anaheim: CA, 1995.
    10. F. Lu, J. Liu and J. Xu. Ruthenium supported catalysts in selective hydrogenation of benzene to cyclohexene. Prog. Chem., 2003 15(4): 338-343.
    11. E. T. Silveira, A. P. Umpierre, L. M. Rossi, G. Machado, J. Morais, G. V. Soares, I. L. R. Baumvol, S. R. Teixeira, P. F. P. Fichtner and J. Dupont. The partial hydrogenation of benzene to cyclohexene by nanoscale ruthenium catalysts in imidazolium ionic liquids. Chem.-Eur. J., 2004 10(15): 3734-3740.
    12. S. H. Yalkowsky and Y. He. Handbook of aqueous solubility data. Boca Raton, Fla.: CRC Press, 2003. p 1496.
    13. B. M. A. Wolffenbuttel, T. A. Nijhuis, A. Stankiewicz and J. A. Moulijn. Influence of water on fast hydrogenation reactions with monolithic and slurry catalysts. Catal. Today, 2001 69(1-4): 265-273.
    14. A. Hideyuki, A. Kuroda and A. Kawasaki Process for Preparing Cyclic Olefins by Selective Partial Hydrogenation of Aromatic Hydrocarbons. US004197415A, 1980
    15. H. Ichihashi and H. Yoshioka Method for Producing Cycloolefins. US004665274A, 1987
    16. V. Mazzieri, N. Figoli, F. C. Pascual and P. L'Argentiere. Effect of the support on the selective hydrogenation of benzene over ruthenium catalysts. 1. Al2O3 and SiO2. Catal. Lett., 2005 102(1-2): 79-82.
    17. J. Q. Wang, P. J. Guo, S. R. Yan, M. H. Qiao, H. X. Li and K. N. Fan. Colloidal RuB/Al2O3 center dot xH(2)O catalyst for liquid phase hydrogenation of benzene to cyclohexene. J. Mol. Catal. A-Chem., 2004 222(1-2): 229-234.
    18. J. Q. Wang, Y. Z. Wang, S. H. Zhe, M. H. Qiao, H. X. Li and K. N. Fan. Partial hydrogenation of benzene to cyclohexene on a Ru-Zn/m-ZrO2 nanocomposite catalyst. Appl. Catal. A-Gen., 2004 272(1-2): 29-36.
    19. S. H. Xie, M. H. Qiao, H. X. Li, W. J. Wang and J. F. Deng. A novel Ru-B/SiO2 amorphous catalyst used in benzene-selective hydrogenation. Appl. Catal. A-Gen., 1999 176(1): 129-134.
    20. T. Takewaki, N. Fujita, T. Yokoyama and T. Maki Method for Producing Cycloolefin. US005569803A, 1996
    21. M. A. Richard, J. D. Deken, P. Alto and D. K. Yee Process and Catalyst for Partially Hydrogenating Aromatics to Produce Cycloolefins. US005334790A, 1994
    22. S. C. Hu and Y. W. Chen. Partial hydrogenation of benzene to cyclohexene on ruthenium catalysts supported on La2O3-ZnO binary oxides. Ind. Eng. Chem. Res., 1997 36(12): 5153-5159.
    23. S. C. Hu and Y. W. Chen. Liquid phase hydrogenation of benzene to cyclohexene on ruthenium catalysts supported on zinc oxide-based binary oxides. J. Chem. Technol. Biotechnol., 2001 76(9): 954-958.
    24. Y. W. Chen and s. C. hU Group Ⅷ Mtal Catalyst on a Gallium-zinc Oxide Support. US006060423A, 2000
    25. 王键强,郭平均,乔明华,阎世润,范康年. Ru/ AlOOH 催化剂的制备、表征及其苯选择加氢反应的研究. 化学学报, 2004 62(18): 1765-1770.
    26. J. W. da-Silva and A. J. G. Cobo. The role of the titania and silica supports in Ru-Fe catalysts to partial hydrogenation of benzene. Appl. Catal. A-Gen., 2003 252(1): 9-16.
    27. Z. Liu, W. L. Dai, B. Liu and J. F. Deng. The effect of boron on selective benzene hydrogenation to cyclohexene over ruthenium boride powders. J. Catal., 1999 187(1): 253-256.
    28. Z. Liu, S. H. Xie, B. Liu and J. F. Deng. Benzene-selective hydrogenation to cyclohexene over supported ruthenium boride catalysts prepared by a novel method. New J. Chem., 1999 23(11): 1057-1058.
    29. J. Struijk, R. Moene, T. Vanderkamp and J. J. F. Scholten. Partial Liquid-Phase Hydrogenation of Benzene to Cyclohexene over Ruthenium Catalysts in the Presence of an Aqueous Salt Solution .2. Influence of Various Salts on the Performance of the Catalyst. Appl. Catal. A-Gen., 1992 89(1): 77-102.
    30. L. Ronchin and L. Toniolo. Selective hydrogenation of benzene to cyclohexene catalyzed by Ru supported catalysts - Influence of the alkali promoters on kinetics, selectivity and yield. Catal. Today, 2001 66(2-4): 363-369.
    31. V. A. Mazzieri, P. C. L'Argentiere and N. S. Figoli. Influence of methanol addition during selective hydrogenation of benzene to cyclohexene. React. Kinet. Catal. Lett., 2004 81(1): 107-112.
    32. E. V. Spinace and J. M. Vaz. Liquid-phase hydrogenation of benzene to cyclohexene catalyzed by Ru/SiO2 in the presence of water-organic mixtures. Catal. Commun., 2003 4(3): 91-96.
    33. P. T. Suryawanshi and V. V. Mahajani. Liquid-phase hydrogenation of benzene to cyclohexene using ruthenium-based heterogeneous catalyst. J. Chem. Technol. Biotechnol., 1997 69(2): 154-160.
    34. M. Hronec, Z. Cvengrosova, M. Kralik, G. Palma and B. Corain. Hydrogenation of benzene to cyclohexene over polymer-supported ruthenium catalysts. J. Mol. Catal. A-Chem., 1996 105(1-2): 25-30.
    35. S. C. Hu and Y. W. Chen. Effect of preparation on Ru-Zn ultrafine catalysts in partial hydrogenation of benzene. Ind. Eng. Chem. Res., 2001 40(14): 3127-3132.
    36. H. Imamura, K. Nishimura, K. Sumioki, M. Fujimoto and Y. Sakata. Selective hydrogenation of benzene to cyclohexadiene and cyclohexene by lanthanide precipitates obtained from Eu or Yb metal solutions in liquid ammonia. Chem. Lett., 2001 (5): 450-451.
    37. H. Imamura, T. Nuruyu, T. Kawasaki, T. Teranishi and Y. Sakata. Improvement of selectivity for partial hydrogenation of benzene by rare earth nitride upon NH3 treatment. Catal. Lett., 2004 96(3-4): 185-187.
    38. A. G. Samuelson. Organometallic Chemistry in Water. Curr. Sci., 1992 63(9-10): 547-550.
    39. B. Cornils, W. A. Herrmann and R. W. Eckl. Industrial aspects of aqueous catalysis. J. Mol. Catal. A-Chem., 1997 116(1-2): 27-33.
    40. F. Joo and A. Katho. Recent developments in aqueous organometallic chemistry and catalysis. J. Mol. Catal. A-Chem., 1997 116(1-2): 3-26.
    41. B. Cornils. Industrial aqueous biphasic catalysis: Status and directions. Org. Process Res. Dev., 1998 2(2): 121-127.
    42. E. Lindner, T. Schneller, F. Auer and H. A. Mayer. Chemistry in interphases - A new approach to organometallic syntheses and catalysis. Angew. Chem.-Int.Edit., 1999 38(15): 2155-2174.
    43. C. R. Strauss. Invited review. A combinatorial approach to the development of environmentally benign organic chemical preparations. Aust. J. Chem., 1999 52(2): 83-96.
    44. B. E. Hanson. New directions in water soluble homogeneous catalysis. Coord. Chem. Rev., 1999 186: 795-807.
    45. F. Bertoux, E. Monflier, Y. Castanet and A. Mortreux. Advances in transition-metal catalyzed hydroxycarbonylation reactions in aqueous-organic two-phase system. J. Mol. Catal. A-Chem., 1999 143(1-3): 11-22.
    46. B. Cornils. Bulk and fine chemicals via aqueous biphasic catalysis. J. Mol. Catal. A-Chem., 1999 143(1-3): 1-10.
    47. D. Sinou, Metal catalysis in water. In Modern Solvents in Organic Synthesis, ed.; 'Ed.'^'Eds.' Springer-Verlag Berlin: Berlin, 1999; 'Vol.' 206, p^pp 41-59.
    48. R. Hatti-Kaul. Aqueous two-phase systems - A general overview. Mol. Biotechnol., 2001 19(3): 269-277.
    49. F. Joo. Aqueous biphasic hydrogenations. Accounts Chem. Res., 2002 35(9): 738-745.
    50. Y. Z. Li, H. Chen, J. R. Chen, P. M. Cheng, J. Y. Hu and X. J. Li. 1-dodecene hydroformylation catalyzed by water soluble rhodium phosphine complex in two-phase system. Chin. J. Chem., 2001 19(1): 58-62.
    51. Y. L. Huang, L. E. Min, Y. Z. Li, R. X. Li, P. M. Cheng and X. J. Li. Positive and negative effects of Na2SO4 on the biphasic hydroformylation catalyzed by RhCl(CO)(TPPTS)(2)-TPPTS-CTAB. Catal. Commun., 2002 3(2): 71-75.
    52. Y. L. Huang, L. Min, Y. Z. Li, C. Hua, P. M. Cheng and X. J. Li. Novel effect of additional metal ion on hydroformylation of hexene-1 in biphasic system. J. Mol. Catal. A-Chem., 2002 185(1-2): 41-46.
    53. L. B. Wang, H. Chen, Y. A. He, Y. Z. Li, M. Li and X. J. Li. Long chain olefin hydroformylation in biphasic catalytic system - how the reaction is accelerated. Appl. Catal. A-Gen., 2003 242(1): 85-88.
    54. M. Li, Y. Z. Li, H. Chen, Y. E. He and X. J. Li. Studies on 1-dodecene hydroformylation in biphasic catalytic system containing mixed micelle. J. Mol. Catal. A-Chem., 2003 194(1-2): 13-17.
    55. M. Li, H. Y. Fu, M. Yang, H. J. Zheng, Y. E. He, H. Chen and X. J. Li. Micellar effect of cationic gemini surfactants on organic/aqueous biphasic catalytic hydroformylation of 1-dodecene. J. Mol. Catal. A-Chem., 2005 235(1-2): 130-136.
    56. 王祥智,陈华,黎耀忠,李贤均. 两相催化体系中β-不饱和醛的选择性加氢反应研究 I 水溶性铑-膦配合物催化肉桂醛的加氢性能. 分子催化, 1995 8(3): 207-212.
    57. F. Van Vyve and A. Renken. Hydroformylation in reverse micellar systems. Catal. Today, 1999 48(1-4): 237-243.
    58. E. Monflier, S. Tilloy, G. Fremy, Y. Castanet and A. Mortreux. A further breakthrough in biphasic, rhodium-catalyzed hydroformylation: The use of per(2,6-di-O-methyl)-beta-cyclodextrin as inverse phase transfer catalyst. Tetrahedron Lett., 1995 36(52): 9481-9484.
    59. T. Mathivet, C. Meliet, Y. Castanet, A. Mortreux, L. Caron, S. Tilloy and E. Monflier. Rhodium catalyzed hydroformylation of water insoluble olefins in the presence of chemically modified beta-cyclodextrins: evidence for ligand-cyclodextrin interactions and effect of various parameters on the activity and the aldehydes selectivity. J. Mol. Catal. A-Chem., 2001 176(1-2): 105-116.
    60. S. Tilloy, H. Bricout and E. Monflier. Cyclodextrins as inverse phase transfer catalysts for the biphasic catalytic hydrogenation of aldehydes: a green and easy alternative to conventional mass transfer promoters. Green Chem., 2002 4(3): 188-193.
    61. E. Monflier, H. Bricout, F. Hapiot, S. Tilloy, A. Aghmiz and A. M. Masdeu-Bulto. High-pressure P-31{H-1} NMR studies ofRhH(CO)(TPPTS)(3) in the presence of methylated cyclodextrins: New light on rhodium-catalyzed hydroformylation reaction assisted by cyclodextrins. Adv. Synth. Catal., 2004 346(4): 425-431.
    62. L. Leclercq, M. Sauthier, Y. Castanet, A. Mortreux, H. Bricout and E. Monflier. Two-phase hydroformylation of higher olefins using randomly methylated alpha-cyclodextrin as mass transfer promoter: A smart solution for preserving the intrinsic properties of the rhodium/trisulfonated triphenylphosphine catalytic system. Adv. Synth. Catal., 2005 347(1): 55-59.
    63. M. T. Reetz. New approaches to supramolecular transition metal catalysis. Top. Catal., 1997 4(3-4): 187-200.
    64. Z. L. Jin, X. L. Zheng and B. Fell. Thermoregulated phase transfer ligands and catalysis .1. Synthesis of novel polyether-substituted triphenylphosphines and application of their rhodium complexes in two-phase hydroformylation. J. Mol. Catal. A-Chem., 1997 116(1-2): 55-58.
    65. X. L. Zheng, J. Y. Jiang, X. Z. Liu and Z. L. Jin. Thermoregulated phase transfer ligands and catalysis. III. Aqueous/organic two-phase hydroformylation of higher olefins by thermoregulated phase-transfer catalysis. Catal. Today, 1998 44(1-4): 175-182.
    66. X. L. Zheng, R. F. Chen and Z. L. Jin. Thermoregulated phase-transfer ligands and catalysis - (V) - Synthesis and catalytic properties of mono- and di-p-polyoxyethylene substituted triphenylphosphines. Chem. J. Chin. Univ.-Chin., 1998 19(4): 574-576.
    67. R. F. Chen, J. Y. Jiang, Y. H. Wang and Z. L. Jin. Thermoregulated phase-transfer ligands and catalysis VIII. Two-phase hydroformylation of 4-isobutylstyrene catalyzed by thermoregulated phase-transfer catalyst OPGPP/Rh. J. Mol. Catal. A-Chem., 1999 149(1-2): 113-117.
    68. J. Y. Jiang, Y. H. Wang, C. Liu, F. S. Han and Z. L. Jin. Thermoregulated phase transfer ligands and catalysis VII. Cloud point of nonionic surface-active phosphine ligands and their thermoregulated phase transferproperty. J. Mol. Catal. A-Chem., 1999 147(1-2): 131-136.
    69. Y. H. Wang, J. Y. Jiang, R. Zhang, X. H. Liu and Z. L. Jin. Thermoregulated Phase Transfer Ligands and Catalysis IX. Hydroformylation of higher olefins in organic monophase catalytic system based on the concept of critical solution temperature of the nonionic tensioactive phosphine ligand. J. Mol. Catal. A-Chem., 2000 157(1-2): 111-115.
    70. J. Y. Jiang, Y. H. Wang, C. Liu, Q. M. Xiao and Z. L. Jin. Thermoregulated phase transfer ligands and catalysis XIV. Synthesis of N,N-dipolyoxyethylene-substituted-4-(diphenylphosphino) benzenesulfonamide (PEO-DPPSA) and the catalytic activity of its rhodium complex in hydroformylation of 1-decene. J. Mol. Catal. A-Chem., 2001 171(1-2): 85-89.
    71. J. Y. Jiang, J. T. Mei, Y. H. Wang, F. Wen and Z. L. Jin. Thermoregulated phase-transfer ligands and catalysis XV CO selective reduction of nitroarenes catalyzed by Ru-3(CO)(9)(PEO-DPPSA)(3) in two-phasic system. Appl. Catal. A-Gen., 2002 224(1-2): 21-25.
    72. Y. H. Wang, J. Y. Jiang, Q. Miao, X. W. Wu and Z. L. Jin. Thermoregulated phase transfer ligands and catalysis - Part XIII. Use of nonionic water-soluble phosphine ligands to effect homogeneous catalyst separation and recycling. Catal. Today, 2002 74(1-2): 85-90.
    73. J. T. Mei, J. Y. Jiang, Y. H. Wang, X. W. Wu and Z. L. Jin. Thermoregulated phase-transfer ligands and catalysis (XVI) - Kinetics investigation of CO selective reduction of aromatic nitro compounds catalyzed by Rh/PETPP in two-phasic system. Chem. J. Chin. Univ.-Chin., 2002 23(5): 915-918.
    74. C. Liu, J. Y. Jiang, Y. H. Wang, F. Cheng and Z. L. Jin. Thermoregulated phase transfer ligands and catalysis XVIII: synthesis of N,N-dipolyoxyethylene-substituted-2-(diphenylphosphino)phenylamine (PEO-DPPPA) and the catalytic activity of its rhodium complex in the aqueous-organic biphasic hydroformylation of 1-decene. J. Mol. Catal. A-Chem., 2003 198(1-2): 23-27.
    75. Y. H. Wang, X. W. Wu, F. Cheng and Z. L. Jin. Thermoregulated phase-separable phosphine ruthenium complex for hydrogenation catalysis. J. Mol. Catal. A-Chem., 2003 195(1-2): 133-137.
    76. Y. C. Yang, L. Wei and Z. L. Jin. New progress in liquid/liquid biphasic catalysis - Thermoregulated non-aqueous liquid/liquid biphasic catalysis. Chin. J. Org. Chem., 2004 24(6): 579-584.
    77. C. L. Feng, Y. H. Wang and Z. L. Jin. The development in hydroformylation of higher olefin in liquid/liquid biphase systems. Prog. Chem., 2005 17(2): 209-216.
    78. T. Bartik, H. Ding, B. Bartik and B. E. Hanson. Surface-Active Phosphines for Catalysis under 2-Phase Reaction Conditions - P(Menthyl)[(Ch2)(8)C6h4-P-So3na](2) and the Hydroformylation of Styrene. J. Mol. Catal. A-Chem., 1995 98(3): 117-122.
    79. H. Ding, J. X. Kang, B. E. Hanson and C. W. Kohlpaintner. New water soluble chelating phosphines for aqueous phase catalysis. J. Mol. Catal. A-Chem., 1997 124(1): 21-28.
    80. B. E. Hanson, H. Ding and C. W. Kohlpaintner. Amphiphilic phosphines for catalysis in the aqueous phase. Catal. Today, 1998 42(4): 421-429.
    81. H. Ding, B. E. Hanson, T. Bartik and B. Bartik. 2-Phase Hydroformylation of Octene-1 with Rhodium Complexes of P[C6h4(Ch2)Mc6h4-P-So3na]3 (M=3, 6) - Rate and Selectivity Enhancement with Surface-Active Phosphines. Organometallics, 1994 13(10): 3761-3763.
    82. H. Ding, B. E. Hanson and J. Bakos. Preparation of a Surface-Active Chiral Diphosphane and Its Use in the Hydrogenation of Prochiral Olefins. Angew. Chem.-Int. Edit. Engl., 1995 34(15): 1645-1647.
    83. S. Shimizu, S. Shirakawa, Y. Sasaki and C. Hirai. Novel water-soluble calix[4]arene ligands with phosphane-containing groups for dual functional metal-complex catalysts: The biphasic hydroformylation of water-insolubleolefins. Angew. Chem.-Int. Edit., 2000 39(7): 1256-1259.
    84. M. T. Reetz and S. R. Waldvogel. beta-cyclodextrin-modified diphosphanes as ligands for supramolecular rhodium catalysts. Angew. Chem.-Int. Edit. Engl., 1997 36(8): 865-867.
    85. M. T. Reetz. Supramolecular transition metal catalysts in two-phase systems. Catal. Today, 1998 42(4): 399-411.
    86. B. Fell and G. Papadogianakis. Rhodium-Catalyzed Micellar 2-Phase Hydroformylation of Normal-Tetradec-1-Ene with Surface-Active Sulfobetaine Derivatives of Tris-(2-Pyridyl)Phosphane as Hydrosoluble Ligands. Journal of Molecular Catalysis, 1991 66(2): 143-154.
    87. A. Buhling, P. C. J. Kamer and P. W. N. M. van Leeuwen. Rhodium catalysed hydroformylation of higher alkenes using amphiphilic ligands. Journal of Molecular Catalysis A: Chemical, 1995 98: 69-80.
    88. A. Buhling, P. C. J. Kamer, P. W. N. M. van Leeuwen and J. W. Elgersma. Rhodium catalysed hydroformylation of higher alkenes using amphiphilic ligands: part 2. Journal of Molecular Catalysis A: Chemical, 1997 116: 297-308.
    89. P. Kalck and F. Monteil. Use of Water-Soluble Ligands in Homogeneous Catalysis. Adv. Organomet. Chem., 1992 34: 219-284.
    1. Y. Fukuoka and H. Nagahara. Cyclohexene from Benzene by Partial Hydrogenation. Abstr. Pap. Am. Chem. Soc., 1991 202: 17.
    2. B. Z. Zhanabaev, P. P. Zanozina and B. T. Utelbaev. Selective Hydrogenation Of Benzene On A Ruthenium Catalyst. Kinet. Catal., 1991 32(1): 191-194.
    3. H. Imamura, T. Konishi, Y. Sakata and S. Tsuchiya. Highly Selective Hydrogenation of Benzene to Cyclohexene Catalyzed by a Sio2-Immobilized or Al2o3-Immobilized Lanthanide Catalyst. J. Chem. Soc.-Chem. Commun., 1993 (24): 1852-1853.
    4. J. Struijk, M. Dangremond, W. J. M. Lucasderegt and J. J. F. Scholten. Partial Liquid-Phase Hydrogenation of Benzene to Cyclohexene over Ruthenium Catalysts in the Presence of an Aqueous Salt Solution .1. Preparation, Characterization of the Catalyst and Study of a Number of Process Variables. Appl. Catal. A-Gen., 1992 83(2): 263-295.
    5. J. Struijk, R. Moene, T. Vanderkamp and J. J. F. Scholten. Partial Liquid-Phase Hydrogenation of Benzene to Cyclohexene over Ruthenium Catalysts in the Presence of an Aqueous Salt Solution .2. Influence of Various Salts on the Performance of the Catalyst. Appl. Catal. A-Gen., 1992 89(1): 77-102.
    6. J. Struijk and J. J. F. Scholten. Selectivity to Cyclohexenes in the Liquid-Phase Hydrogenation of Benzene and Toluene over Ruthenium Catalysts, as Influenced by Reaction Modifiers. Appl. Catal. A-Gen., 1992 82(2): 277-287.
    7. H. Nagahara, M. Ono and Y. Fukuoka, Partial hydrogenation of benzene tocyclohexene. In Science and Technology in Catalysis 1994, ed.; 'Ed.'^'Eds.' Elsevier Science Publ B V: Amsterdam, 1995; 'Vol.' 92, p^pp 375-378.
    8. F. Dobert and J. Gaube. Kinetics and reaction engineering of selective hydrogenation of benzene towards cyclohexene. Chem. Eng. Sci., 1996 51(11): 2873-2877.
    9. C. Milone, G. Neri, A. Donato and M. G. Musolino. Selective hydrogenation of benzene to cyclohexene on Ru/gamma-Al2O3. J. Catal., 1996 159(2): 253-258.
    10. E. T. Silveira, A. P. Umpierre, L. M. Rossi, G. Machado, J. Morais, G. V. Soares, I. L. R. Baumvol, S. R. Teixeira, P. F. P. Fichtner and J. Dupont. The partial hydrogenation of benzene to cyclohexene by nanoscale ruthenium catalysts in imidazolium ionic liquids. Chem.-Eur. J., 2004 10(15): 3734-3740.
    11. W. C. Drinkard Selective Hydrogenation of Aromatic Compounds to Cycloolefinic Compounds. 1972
    12. N. Hajime, K. Mitsuo and K. Kurashiki 1986
    13. H. Nagahara, M. Ono, M. Konishi and Y. Fukuoka. Partial hydrogenation of benzene to cyclohexene. Appl. Surf. Sci., 1997 121: 448-451.
    14. H. Nagahara, M. Konishi, O. Mitsui, Y. Fukuoka and M. Kono. Partial hydrogenation of benzene with ruthenium catalyst H2O system - Effects of alcohols as co-catalyst. Nippon Kagaku Kaishi, 1998 (10): 650-656.
    15. S. H. Yalkowsky and Y. He. Handbook of aqueous solubility data. Boca Raton, Fla.: CRC Press, 2003. p 1496.
    16. B. M. A. Wolffenbuttel, T. A. Nijhuis, A. Stankiewicz and J. A. Moulijn. Influence of water on fast hydrogenation reactions with monolithic and slurrycatalysts. Catal. Today, 2001 69(1-4): 265-273.
    17. L. Fang, L. Jing and X. Jie. Ruthenium supported catalysts in selective hydrogenation of benzene to cyclohexene. Prog. Chem., 2003 15(4): 338-343.
    18. F. Dobert and J. Gaube. Partial Hydrogenation of Benzene to Cyclohexene in a Continuously Operated Slurry Reactor. Catal. Lett., 1995 31(4): 431-438.
    19. D. L. Zhang. Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci., 2004 49(3-4): 537-560.
    20. A. L. Greer, K. L. Rutherford and M. Hutchings. Wear resistance of amorphous alloys and related materials. Int. Mater. Rev., 2002 47(2): 87-112.
    21. S. C. Liu, G. Luo, M. L. Han and Z. J. Li. Characterization of the catalyst prepared by impregnation for selective hydrogenation of benzene to cyclohexene. Chin. J. Catal., 2001 22(6): 559-562.
    22. S. C. Liu, G. Luo, H. R. Wang, Y. L. Xie, B. J. Yang and M. L. Han. Study on operation conditions for liquid phase selective hydrogenation of benzene to cyclohexene over Ru-M-B/ZrO2 catalyst. Chin. J. Catal., 2002 23(4): 317-320.
    23. S. C. Liu, Y. Q. Guo, X. L. Yang, Y. L. Ji and G. Luo. Kinetic equations for liquid-phase selective hydrogenation of benzene to cyclohexene. Chin. J. Catal., 2003 24(1): 42-46.
    24. S. H. Xie, M. H. Qiao, H. X. Li, W. J. Wang and J. F. Deng. A novel Ru-B/SiO2 amorphous catalyst used in benzene-selective hydrogenation. Appl. Catal. A-Gen., 1999 176(1): 129-134.
    25. Z. Liu, W. L. Dai, B. Liu and J. F. Deng. The effect of boron on selective benzene hydrogenation to cyclohexene over ruthenium boride powders. J. Catal., 1999 187(1): 253-256.
    26. Z. Liu, S. H. Xie, B. Liu and J. F. Deng. Benzene-selective hydrogenation to cyclohexene over supported ruthenium boride catalysts prepared by a novel method. New J. Chem., 1999 23(11): 1057-1058.
    27. H. Wang, Z. Y. Liu, R. J. Shi, Y. N. Zhang, H. Q. Zhang and S. C. Liu. Deactivation and regeneration of amorphous Ru-La-B/ZrO2 catalyst for selective hydrogenation of benzene to cyclohexene. Chin. J. Catal., 2005 26(5): 407-411.
    28. V. A. Mazzieri, P. C. L'Argentiere, F. Coloma-Pascual and N. S. Figoli. Effect of chlorine on the properties of Ru/Al2O3. Ind. Eng. Chem. Res., 2003 42(11): 2269-2272.
    29. 姜洪波,高濂,张青红. Fe2O3/TiO2 和 ZnO/TiO3 纳米颗粒薄膜的亲水性能和光催化性能的研究. 无机材料学报 2003 18(3): 695-699.
    30. 李玉敏,耿云峰,王日杰,张继炎,张鎏. 以 ZrO2-Al2O3 为载体的 Co-Mo-K耐硫水煤气变换催化剂. 应用化学 2000 17(3): 276-279.
    31. M. A. Richard, J. D. Deken, P. Alto and D. K. Yee Process and Catalyst for Partially Hydrogenating Aromatics to Produce Cycloolefins. US005334790A, 1994
    1. M. A. Firestone, M. L. Dietz, S. Seifert, S. Trasobares, D. J. Miller and N. J. Zaluzec. Ionogel-templated synthesis and organization of anisotropic gold nanoparticles. Small, 2005 1(7): 754-760.
    2. L. Fang, L. Jing and X. Jie. Ruthenium supported catalysts in selective hydrogenation of benzene to cyclohexene. Prog. Chem., 2003 15(4): 338-343.
    3. J. A. Widegren and R. G. Finke. A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts. J. Mol. Catal. A-Chem., 2003 191(2): 187-207.
    4. U. A. Paulus, U. Endruschat, G. J. Feldmeyer, T. J. Schmidt, H. Bonnemann and R. J. Behm. New PtRu alloy colloids as precursors for fuel cell catalysts. J. Catal., 2000 195(2): 383-393.
    5. J. Q. Wang, Y. Z. Wang, S. H. Zhe, M. H. Qiao, H. X. Li and K. N. Fan. Partial hydrogenation of benzene to cyclohexene on a Ru-Zn/m-ZrO2 nanocomposite catalyst. Appl. Catal. A-Gen., 2004 272(1-2): 29-36.
    6. M. H. Liu, W. Y. Yu, H. F. Liu and J. M. Zheng. Preparation and characterization of polymer-stabilized ruthenium-platinum and ruthenium-palladium bimetallic colloids and their catalytic properties for hydrogenation of o-chloronitrobenzene. J. Colloid Interface Sci., 1999 214(2): 231-237.
    7. 刘杰,计亮年,梅文杰. 金属钌配合物的抗肿瘤活性及其作用机理. 化学进展, 2004 16(6): 969-974.
    8. F. Liu, J. Y. Lee and W. J. Zhou. Multisegment PtRu nanorods: Electrocatalysts with adjustable bimetallic pair sites. Adv. Funct. Mater., 2005 15(9): 1459-1464.
    9. W. C. Choi and S. I. Woo. Bimetallic Pt-Ru nanowire network for anode material in a direct-methanol fuel cell. J. Power Sources, 2003 124(2): 420-425.
    10. M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa and T. Tsuji. Microwave-assisted synthesis of metallic nanostructures in solution. Chem.-Eur. J., 2005 11(2): 440-452.
    11. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim and Y. Q. Yan. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater., 2003 15(5): 353-389.
    12. J. D. Hoefelmeyer, K. Niesz, G. A. Somorjai and T. D. Tilley. Radial anisotropic growth of rhodium nanoparticles. Nano Lett., 2005 5(3): 435-438.
    13. M. Tsuji, K. Matsumoto, T. Tsuji and H. Kawazumi. Rapid synthesis of gold nanostractures by a microwave-polyol method with the assistance of C(n)TAB (n=10, 12, 14, 16) or C16PC. Mater. Lett., 2005 59(29-30): 3856-3860.
    14. C. N. R. Rao, F. L. Deepak, G. Gundiah and A. Govindaraj. Inorganic nanowires. Prog. Solid State Chem., 2003 31(1-2): 5-147.
    15. T. Nautiyal, T. H. Rho and K. S. Kim. Nanowires for spintronics: A study of transition-metal elements of groups 8-10. Phys. Rev. B, 2004 69(19).
    16. B. Wiley, Y. G. Sun, B. Mayers and Y. N. Xia. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem.-Eur. J., 2005 11(2): 454-463.
    17. Y. G. Sun and Y. N. Xia. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002 298(5601): 2176-2179.
    18. Y. D. Yin and Y. N. Xia. Self-assembly of spherical colloids into helical chains with well-controlled handedness. J. Am. Chem. Soc., 2003 125(8):2048-2049.
    19. Y. G. Sun, B. Mayers, T. Herricks and Y. N. Xia. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett., 2003 3(7): 955-960.
    20. A. Tao, F. Kim, C. Hess, J. Goldberger, R. R. He, Y. G. Sun, Y. N. Xia and P. D. Yang. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett., 2003 3(9): 1229-1233.
    21. J. Y. Chen, T. Herricks, M. Geissler and Y. N. Xia. Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J. Am. Chem. Soc., 2004 126(35): 10854-10855.
    22. Y. G. Sun and Y. N. Xia. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc., 2004 126(12): 3892-3901.
    23. T. Herricks, J. Y. Chen and Y. N. Xia. Polyol synthesis of platinum nanoparticles: Control of morphology with sodium nitrate. Nano Lett., 2004 4(12): 2367-2371.
    24. B. Wiley, T. Herricks, Y. G. Sun and Y. N. Xia. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett., 2004 4(9): 1733-1739.
    25. J. Y. Chen, T. Herricks and Y. N. Xia. Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics. Angew. Chem.-Int. Edit., 2005 44(17): 2589-2592.
    26. S. H. Im, Y. T. Lee, B. Wiley and Y. N. Xia. Large-scale synthesis of silvernanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem.-Int. Edit., 2005 44(14): 2154-2157.
    27. Y. J. Xiong, J. Y. Chen, B. Wiley and Y. N. Xia. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J. Am. Chem. Soc., 2005 127(20): 7332-7333.
    28. M. Giersig, I. Pastoriza-Santos and L. M. Liz-Marzan. Evidence of an aggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide. J. Mater. Chem., 2004 14(4): 607-610.
    29. T. Maddanimath, A. Kumar, J. D'Arcy-Gall, P. G. Ganesan, K. Vijayamohanan and G. Ramanath. Wet-chemical templateless assembly of metal nanowires from nanoparticles. Chem. Commun., 2005 (11): 1435-1437.
    30. D. B. Zhang, L. M. Qi, J. M. Ma and H. M. Cheng. Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem. Mat., 2001 13(9): 2753-2755.
    31. N. Pinault and D. W. Bruce. Homogeneous catalysts based on water-soluble phosphines. Coord. Chem. Rev., 2003 241(1-2): 1-25.
    32. S. Z. Luo, Y. Y. Peng, B. L. Zhang, P. G. Wang and J. P. Cheng. Some new trends and recent progress towards environmentally benign synthesis. Curr. Org. Synth., 2004 1(4): 405-429.
    33. E. Gonzalez-Serranoa, T. Corderoa, J. Rodriguez-Mirasola, L. Cotorueloa and J. J. Rodriguez. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors. Water Res., 2004 38: 3043-3050.
    34. M. T. Musser, L. Kaudy, R. Pfefferkorn and J. F. Rounsaville. Ullmann's Encyclopedia of Industrial Chemistry, fifth ed. New York: VCH publisher,1986. p p. 225.
    35. F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert and K. Tekaia-Elhsissen. Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. Nanostruct. Mater., 1999 11(8): 1277-1284.
    36. M. H. Liu, W. Y. Yu and H. F. Liu. Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts. J. Mol. Catal. A-Chem., 1999 138(2-3): 295-303.
    37. J. A. Acuna, C. Delafuente, M. D. Vazquez, M. L. Tascon and P. Sanchezbatanero. Voltammetric Determination of Piroxicam in Micellar Media by Using Conventional and Surfactant Chemically-Modified Carbon-Paste Electrodes. Talanta, 1993 40(11): 1637-1642.
    38. Y. I. Matatov-Meytal and M. Sheintuch. Catalytic abatement of water pollutants. Ind. Eng. Chem. Res., 1998 37(2): 309-326.
    39. N. Duran and E. Esposito. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl. Catal. B-Environ., 2000 28(2): 83-99.
    40. N. Crowther and F. Larachi. Iron-containing silicalites for phenol catalytic wet peroxidation. Appl. Catal. B-Environ., 2003 46(2): 293-305.
    41. M. N. Timofeeva, S. T. Khankhasaeva, S. V. Badmaeva, A. L. Chuvilin, E. B. Burgina, A. B. Ayupov, V. N. Panchenko and A. V. Kulikova. Synthesis, characterization and catalytic application for wet oxidation of phenol of iron-containing clays. Appl. Catal. B-Environ., 2005 59(3-4): 243-248.
    42. F. Stuber, J. Font, A. Fortuny, C. Bengoa, A. Eftaxias and A. Fabregat. Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Top. Catal., 2005 33(1-4): 3-50.
    1. A. G. Samuelson. Organometallic Chemistry in Water. Curr. Sci., 1992 63(9-10): 547-550.
    2. W. A. Herrmann and B. Cornils. Organometallic homogeneous catalysis - Quo vadis? Angew. Chem.-Int. Edit. Engl., 1997 36(10): 1049-1067.
    3. B. Cornils, W. A. Herrmann and R. W. Eckl. Industrial aspects of aqueous catalysis. J. Mol. Catal. A-Chem., 1997 116(1-2): 27-33.
    4. F. Joo and A. Katho. Recent developments in aqueous organometallic chemistry and catalysis. J. Mol. Catal. A-Chem., 1997 116(1-2): 3-26.
    5. B. Cornils. Industrial aqueous biphasic catalysis: Status and directions. Org. Process Res. Dev., 1998 2(2): 121-127.
    6. E. Lindner, T. Schneller, F. Auer and H. A. Mayer. Chemistry in interphases - A new approach to organometallic syntheses and catalysis. Angew. Chem.-Int. Edit., 1999 38(15): 2155-2174.
    7. C. R. Strauss. Invited review. A combinatorial approach to the development of environmentally benign organic chemical preparations. Aust. J. Chem., 1999 52(2): 83-96.
    8. B. E. Hanson. New directions in water soluble homogeneous catalysis. Coord. Chem. Rev., 1999 186: 795-807.
    9. F. Bertoux, E. Monflier, Y. Castanet and A. Mortreux. Advances in transition-metal catalyzed hydroxycarbonylation reactions in aqueous-organic two-phase system. J. Mol. Catal. A-Chem., 1999 143(1-3): 11-22.
    10. B. Cornils. Bulk and fine chemicals via aqueous biphasic catalysis. J. Mol. Catal. A-Chem., 1999 143(1-3): 1-10.
    11. D. Sinou, Metal catalysis in water. In Modern Solvents in Organic Synthesis, ed.; 'Ed.'^'Eds.' Springer-Verlag Berlin: Berlin, 1999; 'Vol.' 206, p^pp 41-59.
    12. R. Hatti-Kaul. Aqueous two-phase systems - A general overview. Mol. Biotechnol., 2001 19(3): 269-277.
    13. F. Joo. Aqueous biphasic hydrogenations. Accounts Chem. Res., 2002 35(9): 738-745.
    14. B. Cornils and E. G. Kuntz. Introducing Tppts and Related Ligands for Industrial Biphasic Processes. J. Organomet. Chem., 1995 502(1-2): 177-186.
    15. F. Monteil, R. Queau and P. Kalck. Behavior of Water-Soluble Dinuclear Rhodium Complexes in the Hydroformylation Reaction of Oct-1-Ene. J. Organomet. Chem., 1994 480(1-2): 177-184.
    16. R. V. Chaudhari, B. M. Bhanage, R. M. Deshpande and H. Delmas. Enhancement of Interfacial Catalysis in a Biphasic System Using Catalyst-Binding Ligands. Nature, 1995 373(6514): 501-503.
    17. Y. Z. Li, H. Chen, J. R. Chen, P. M. Cheng, J. Y. Hu and X. J. Li. 1-dodecene hydroformylation catalyzed by water soluble rhodium phosphine complex in two-phase system. Chin. J. Chem., 2001 19(1): 58-62.
    18. Y. L. Huang, L. E. Min, Y. Z. Li, R. X. Li, P. M. Cheng and X. J. Li. Positive and negative effects of Na2SO4 on the biphasic hydroformylation catalyzed by RhCl(CO)(TPPTS)(2)-TPPTS-CTAB. Catal. Commun., 2002 3(2): 71-75.
    19. Y. L. Huang, L. Min, Y. Z. Li, C. Hua, P. M. Cheng and X. J. Li. Novel effect of additional metal ion on hydroformylation of hexene-1 in biphasic system. J. Mol. Catal. A-Chem., 2002 185(1-2): 41-46.
    20. L. B. Wang, H. Chen, Y. A. He, Y. Z. Li, M. Li and X. J. Li. Long chain olefin hydroformylation in biphasic catalytic system - how the reaction isaccelerated. Appl. Catal. A-Gen., 2003 242(1): 85-88.
    21. M. Li, Y. Z. Li, H. Chen, Y. E. He and X. J. Li. Studies on 1-dodecene hydroformylation in biphasic catalytic system containing mixed micelle. J. Mol. Catal. A-Chem., 2003 194(1-2): 13-17.
    22. M. Li, H. Y. Fu, M. Yang, H. J. Zheng, Y. E. He, H. Chen and X. J. Li. Micellar effect of cationic gemini surfactants on organic/aqueous biphasic catalytic hydroformylation of 1-dodecene. J. Mol. Catal. A-Chem., 2005 235(1-2): 130-136.
    23. H. Bahrmann, M. Haubs, T. Muller, N. Schopper and B. Cornils. Quaternary ammonium salts of phosphines as ligands and their recycling by membrane techniques or phase separation. Part I: Monophasic systems. J. Organomet. Chem., 1997 546: 139-149.
    24. E. Monflier, S. Tilloy, G. Fremy, Y. Castanet and A. Mortreux. A further breakthrough in biphasic, rhodium-catalyzed hydroformylation: The use of per(2,6-di-O-methyl)-beta-cyclodextrin as inverse phase transfer catalyst. Tetrahedron Lett., 1995 36(52): 9481-9484.
    25. T. Mathivet, C. Meliet, Y. Castanet, A. Mortreux, L. Caron, S. Tilloy and E. Monflier. Rhodium catalyzed hydroformylation of water insoluble olefins in the presence of chemically modified beta-cyclodextrins: evidence for ligand-cyclodextrin interactions and effect of various parameters on the activity and the aldehydes selectivity. J. Mol. Catal. A-Chem., 2001 176(1-2): 105-116.
    26. S. Tilloy, H. Bricout and E. Monflier. Cyclodextrins as inverse phase transfer catalysts for the biphasic catalytic hydrogenation of aldehydes: a green and easy alternative to conventional mass transfer promoters. Green Chem., 20024(3): 188-193.
    27. E. Monflier, H. Bricout, F. Hapiot, S. Tilloy, A. Aghmiz and A. M. Masdeu-Bulto. High-pressure P-31{H-1} NMR studies of RhH(CO)(TPPTS)(3) in the presence of methylated cyclodextrins: New light on rhodium-catalyzed hydroformylation reaction assisted by cyclodextrins. Adv. Synth. Catal., 2004 346(4): 425-431.
    28. L. Leclercq, M. Sauthier, Y. Castanet, A. Mortreux, H. Bricout and E. Monflier. Two-phase hydroformylation of higher olefins using randomly methylated alpha-cyclodextrin as mass transfer promoter: A smart solution for preserving the intrinsic properties of the rhodium/trisulfonated triphenylphosphine catalytic system. Adv. Synth. Catal., 2005 347(1): 55-59.
    29. Z. L. Jin, X. L. Zheng and B. Fell. Thermoregulated phase transfer ligands and catalysis .1. Synthesis of novel polyether-substituted triphenylphosphines and application of their rhodium complexes in two-phase hydroformylation. J. Mol. Catal. A-Chem., 1997 116(1-2): 55-58.
    30. X. L. Zheng, J. Y. Jiang, X. Z. Liu and Z. L. Jin. Thermoregulated phase transfer ligands and catalysis. III. Aqueous/organic two-phase hydroformylation of higher olefins by thermoregulated phase-transfer catalysis. Catal. Today, 1998 44(1-4): 175-182.
    31. X. L. Zheng, R. F. Chen and Z. L. Jin. Thermoregulated phase-transfer ligands and catalysis - (V) - Synthesis and catalytic properties of mono- and di-p-polyoxyethylene substituted triphenylphosphines. Chem. J. Chin. Univ.-Chin., 1998 19(4): 574-576.
    32. R. F. Chen, J. Y. Jiang, Y. H. Wang and Z. L. Jin. Thermoregulated phase-transfer ligands and catalysis VIII. Two-phase hydroformylation of 4-isobutylstyrene catalyzed by thermoregulated phase-transfer catalyst OPGPP/Rh. J. Mol. Catal. A-Chem., 1999 149(1-2): 113-117.
    33. J. Y. Jiang, Y. H. Wang, C. Liu, F. S. Han and Z. L. Jin. Thermoregulated phase transfer ligands and catalysis VII. Cloud point of nonionic surface-active phosphine ligands and their thermoregulated phase transfer property. J. Mol. Catal. A-Chem., 1999 147(1-2): 131-136.
    34. Y. H. Wang, J. Y. Jiang, R. Zhang, X. H. Liu and Z. L. Jin. Thermoregulated Phase Transfer Ligands and Catalysis IX. Hydroformylation of higher olefins in organic monophase catalytic system based on the concept of critical solution temperature of the nonionic tensioactive phosphine ligand. J. Mol. Catal. A-Chem., 2000 157(1-2): 111-115.
    35. J. Y. Jiang, Y. H. Wang, C. Liu, Q. M. Xiao and Z. L. Jin. Thermoregulated phase transfer ligands and catalysis XIV. Synthesis of N,N-dipolyoxyethylene-substituted-4-(diphenylphosphino) benzenesulfonamide (PEO-DPPSA) and the catalytic activity of its rhodium complex in hydroformylation of 1-decene. J. Mol. Catal. A-Chem., 2001 171(1-2): 85-89.
    36. J. Y. Jiang, J. T. Mei, Y. H. Wang, F. Wen and Z. L. Jin. Thermoregulated phase-transfer ligands and catalysis XV CO selective reduction of nitroarenes catalyzed by Ru-3(CO)(9)(PEO-DPPSA)(3) in two-phasic system. Appl. Catal. A-Gen., 2002 224(1-2): 21-25.
    37. Y. H. Wang, J. Y. Jiang, Q. Miao, X. W. Wu and Z. L. Jin. Thermoregulated phase transfer ligands and catalysis - Part XIII. Use of nonionic water-soluble phosphine ligands to effect homogeneous catalyst separation and recycling. Catal. Today, 2002 74(1-2): 85-90.
    38. J. T. Mei, J. Y. Jiang, Y. H. Wang, X. W. Wu and Z. L. Jin. Thermoregulated phase-transfer ligands and catalysis (XVI) - Kinetics investigation of CO selective reduction of aromatic nitro compounds catalyzed by Rh/PETPP in two-phasic system. Chem. J. Chin. Univ.-Chin., 2002 23(5): 915-918.
    39. C. Liu, J. Y. Jiang, Y. H. Wang, F. Cheng and Z. L. Jin. Thermoregulated phase transfer ligands and catalysis XVIII: synthesis of N,N-dipolyoxyethylene-substituted-2-(diphenylphosphino)phenylamine (PEO-DPPPA) and the catalytic activity of its rhodium complex in the aqueous-organic biphasic hydroformylation of 1-decene. J. Mol. Catal. A-Chem., 2003 198(1-2): 23-27.
    40. Y. H. Wang, X. W. Wu, F. Cheng and Z. L. Jin. Thermoregulated phase-separable phosphine ruthenium complex for hydrogenation catalysis. J. Mol. Catal. A-Chem., 2003 195(1-2): 133-137.
    41. Y. C. Yang, L. Wei and Z. L. Jin. New progress in liquid/liquid biphasic catalysis - Thermoregulated non-aqueous liquid/liquid biphasic catalysis. Chin. J. Org. Chem., 2004 24(6): 579-584.
    42. C. L. Feng, Y. H. Wang and Z. L. Jin. The development in hydroformylation of higher olefin in liquid/liquid biphase systems. Prog. Chem., 2005 17(2): 209-216.
    43. T. Bartik, H. Ding, B. Bartik and B. E. Hanson. Surface-Active Phosphines for Catalysis under 2-Phase Reaction Conditions - P(Menthyl)[(Ch2)(8)C6h4-P-So3na](2) and the Hydroformylation of Styrene. J. Mol. Catal. A-Chem., 1995 98(3): 117-122.
    44. E. Bonaplata, H. Ding, B. E. Hanson and J. E. McGrath. Hydroformylation of Octene-1 with a Poly(Arylene Ether Triaryl Phosphine) Rhodium Complex.Polymer, 1995 36(15): 3035-3039.
    45. H. Ding, J. X. Kang, B. E. Hanson and C. W. Kohlpaintner. New water soluble chelating phosphines for aqueous phase catalysis. J. Mol. Catal. A-Chem., 1997 124(1): 21-28.
    46. B. E. Hanson, H. Ding and C. W. Kohlpaintner. Amphiphilic phosphines for catalysis in the aqueous phase. Catal. Today, 1998 42(4): 421-429.
    47. M. S. Goedheijt, B. E. Hanson, J. N. H. Reek, P. C. J. Kamer and P. van Leeuwen. Accelerated biphasic hydroformylation by vesicle formation of amphiphilic diphosphines. J. Am. Chem. Soc., 2000 122(8): 1650-1657.
    48. M. T. Reetz and S. R. Waldvogel. beta-cyclodextrin-modified diphosphanes as ligands for supramolecular rhodium catalysts. Angew. Chem.-Int. Edit. Engl., 1997 36(8): 865-867.
    49. M. T. Reetz. New approaches to supramolecular transition metal catalysis. Top. Catal., 1997 4(3-4): 187-200.
    50. M. T. Reetz. Supramolecular transition metal catalysts in two-phase systems. Catal. Today, 1998 42(4): 399-411.
    51. T. Uemura and S. Kitagawa. Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J. Am. Chem. Soc., 2003 125(26): 7814-7815.
    52. R. Brayner, G. Viau and F. Bozon-Verduraz. Liquid-phase hydrogenation of hexadienes on metallic colloidal nanoparticles immobilized on supports via coordination capture by bifunctional organic molecules. Journal of Molecular Catalysis a-Chemical, 2002 182(1): 227-238.
    53. C. Milone, G. Neri, A. Donato and M. G. Musolino. Selective hydrogenation of benzene to cyclohexene on Ru/gamma-Al2O3. J. Catal., 1996 159(2): 253-258.
    54. L. Ronchin and L. Toniolo. Selective hydrogenation of benzene to cyclohexene using a Ru catalyst suspended in an aqueous solution in a mechanically agitated tetraphase reactor: a study of the influence of the catalyst preparation on the hydrogenation kinetics of benzene and of cyclohexene. Appl. Catal. A-Gen., 2001 208(1-2): 77-89.
    55. S. H. Yalkowsky and Y. He. Handbook of aqueous solubility data. Boca Raton, Fla.: CRC Press, 2003. p 1496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700